1
|
Wang T, Li D, Tian X, Huang G, He M, Wang C, Kumbhar AN, Woldemicael AG. Mitigating salinity stress through interactions between microalgae and different forms (free-living & alginate gel-encapsulated) of bacteria isolated from estuarine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171909. [PMID: 38522526 DOI: 10.1016/j.scitotenv.2024.171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Salinity stress in estuarine environments poses a significant challenge for microalgal survival and proliferation. The interaction between microalgae and bacteria shows promise in alleviating the detrimental impacts of salinity stress on microalgae. Our study investigates this interaction by co-cultivating Chlorella sorokiniana, a freshwater microalga, with a marine growth-promoting bacterium Pseudomonas gessardii, both of which were isolated from estuary. In this study, bacteria were encapsulated using sodium alginate microspheres to establish an isolated co-culture system, preventing direct exposure between microalgae and bacteria. We evaluated microalgal responses to different salinities (5 PSU, 15 PSU) and interaction modes (free-living, gel-encapsulated), focusing on growth, photosynthesis, cellular metabolism, and extracellular polymeric substances (EPS) properties. High salinity inhibited microalgal proliferation, while gel-fixed interaction boosted Chlorella growth rate by 50.7 %. Both attached and free-living bacteria restored Chlorella's NPQ to normal levels under salt stress. Microalgae in the free-living interaction group exhibited a significantly lower respiratory rate compared to the pure algae group (-17.2 %). Increased salinity led to enhanced EPS polysaccharide secretion by microalgae, particularly in interaction groups (19.7 %). Both salt stress and interaction increased the proportion of aromatic proteins in microalgae's EPS, enhancing its stability by modulating EPS glycosidic bond C-O-C and protein vibrations. This alteration caused microalgal cells to aggregate, free-living bacteria co-culture group, and fixed co-culture group increasing by 427.5 %, 567.1 %, and 704.1 %, respectively. In gel-fixed bacteria groups, reduced neutral lipids don't accumulate starch instead, carbon redirects to cellular growth, aiding salt stress mitigation. These synergistic activities between salinity and bacterial interactions are vital in mitigating salinity stress, improving the resilience and growth of microalgae in saline conditions. Our research sheds light on the mechanisms of microalgal-bacterial interactions in coping with salt stress, offering insights into the response of estuarine microorganisms to global environmental changes and their ecological stability.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Li
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xin Tian
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guolin Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Ali Nawaz Kumbhar
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Abeselom Ghirmai Woldemicael
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Cao J, Qin L, Zhang L, Wang K, Yao M, Qu C, Miao J. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice. Int J Biol Macromol 2024; 267:131214. [PMID: 38580029 DOI: 10.1016/j.ijbiomac.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 μm and 97.350 μm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.
Collapse
Affiliation(s)
- Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
3
|
Zheng S, Zou S, Feng T, Sun S, Guo X, He M, Wang C, Chen H, Wang Q. Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2022; 348:126746. [PMID: 35065224 DOI: 10.1016/j.biortech.2022.126746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Chlamydomonas reinhardtii grows fast and is rich in polyunsaturated fatty acids. To explore whether the alpha-linolenic acid (ALA) content can be further enhanced, the cultures were incubated under different culture temperatures, light intensities and inoculum densities. Results showed that temperature exhibited more great impact on ALA synthesis of C. reinhardtii than light intensity and inoculum size. The changes of light intensity and inoculum size displayed non-significant effects on ALA content. The optimal ALA proportion in cells was obtained under the condition of 10 °C, 50 μE/m2/s and 5% inoculum density, which reached ∼ 39%.The augmented initial inoculum density could markedly improve the biomass of C. reinhardtii under 10 °C. The maximum ALA productivity (16.42 mg/L/d) was gained under 10 °C coupled with 25% inoculum size, where higher intracellular sugar and protein yield were observed. These results suggest C. reinhardtii would be an alternative feedstock for the industrial production of ALA.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tian Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangxu Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Ahmed DAEA, Gheda SF, Ismail GA. Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12831-12846. [PMID: 33089464 DOI: 10.1007/s11356-020-11289-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effect of Ulva fasciata and Sargassum lacerifolium seaweeds as heavy metal remediators for soil and on the growth of radish (Raphanus sativus L.). The soil was inoculated by dry biomass of each seaweed alone and by their mixture. Seaweeds inoculation increased the organic matter content, clay-size fraction, and nutrients in the soil. Seaweeds mixture treatment caused a significant reduction in the contents of Pb, Cu, Zn and Ni in the soil samples and reduced them to the tolerable limits (40.2, 49.3, 43.8 and 1.1 mg kg-1, respectively), while Cd, Cr, Fe, and Mn contents were closely decreased to the tolerable limits. Biosorption of soil heavy metals by seaweeds decreased the bioaccumulated concentrations of metals in radish plant roots and/or translocated to its shoots compared to control. For seaweeds mixture-treated soil, cultivated radish roots were able to phyto-extract Cd, Cu, Cr, and Ni from the soil (bioaccumulation factor values > 1) of 7.45, 1.18, 3.13, and 26.6, respectively. Seaweeds inoculation promoted the growth of cultivated radish and improved the germination percentage and the morphological and biochemical growth parameters compared to control plants. The achieved soil remediation by dried seaweeds might be due to their efficient metal biosorption capacity due to the existence of active functional groups on their cell wall surfaces. Increased growth observed in radish was as a result of nutrients and growth hormones (gibberellins, indole acetic acid, and cytokinins) present in dried seaweeds. This study shows the efficiency of seaweeds as eco-friendly bioremediators for controlling soil pollution.
Collapse
Affiliation(s)
| | - Saly Farouk Gheda
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Gehan Ahmed Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Zheng S, Chen S, Zou S, Yan Y, Gao G, He M, Wang C, Chen H, Wang Q. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. BIORESOURCE TECHNOLOGY 2021; 321:124428. [PMID: 33272824 DOI: 10.1016/j.biortech.2020.124428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Pyropia-processing wastewater (PPW) contains diverse organic nutrients and causes environmental pollution. To explore the nutrient removal efficiency and growth performance of Chlorella sp. on PPW, the cultures were conducted in different culture substrates. Results showed that, after 7 days of incubation, the removal rates of total nitrogen (TN), total phosphorus (TP) and phycobiliprotein (PP) all reached more than 90% by cultivating Chlorella sp. C2 and C. sorokiniana F-275 in PPW. The chemical oxygen demand (COD) removal efficiencies could be over 50%. Meanwhile, the increments of biomass in two tested Chlorella strains were 1.39 and 4.89 times higher than those of BG11 and BBM substrates and the increases in lipid productivity were 1.34 and 10.18- fold, respectively. The C18:3 fatty acid proportions were markedly reduced by 27.89% and 29.10%. These results suggest that Chlorella sp. could efficiently reduce various nutrients in PPW and simultaneously accumulate higher biomass with higher biodiesel characteristics.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shanyi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yiwen Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Stirk WA, van Staden J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol Adv 2020; 44:107612. [DOI: 10.1016/j.biotechadv.2020.107612] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022]
|
7
|
Kumbhar AN, He M, Rajper AR, Memon KA, Rizwan M, Nagi M, Woldemicael AG, Li D, Wang C, Wang C. The Use of Urea and Kelp Waste Extract is A Promising Strategy for Maximizing the Biomass Productivity and Lipid Content in Chlorella sorokiniana. PLANTS (BASEL, SWITZERLAND) 2020; 9:E463. [PMID: 32272580 PMCID: PMC7238413 DOI: 10.3390/plants9040463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
The decline in fossil fuel reserves has forced researchers to seek out alternatives to fossil fuels. Microalgae are considered to be a promising feedstock for sustainable biofuel production. Previous studies have shown that urea is an important nitrogen source for cell growth and the lipid production of microalgae. The present study investigated the effect of different concentrations of urea combined with kelp waste extract on the biomass and lipid content of Chlorella sorokiniana. The results revealed that the highest cell density, 20.36 × 107 cells-1, and maximal dry biomass, 1.70 g/L, were achieved in the presence of 0.5 g/L of urea combined with 8% kelp waste extract. Similarly, the maximum chlorophyll a, b and beta carotenoid were 10.36 mg/L, 7.05, and 3.01 mg/L, respectively. The highest quantity of carbohydrate content, 290.51 µg/mL, was achieved in the presence of 0.2 g/L of urea and 8% kelp waste extract. The highest fluorescence intensity, 40.05 × 107 cells-1, and maximum total lipid content (30%) were achieved in the presence of 0.1 g/L of urea and 8% kelp waste extract. The current study suggests that the combination of urea and kelp waste extract is the best strategy to enhance the biomass and lipid content in Chlorella sorokiniana.
Collapse
Affiliation(s)
- Ali Nawaz Kumbhar
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Abdul Razzaque Rajper
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Khalil Ahmed Memon
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Muhammad Rizwan
- US Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology; Jamshoro 76062, Pakistan;
| | - Mostafa Nagi
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Abeselom Ghirmai Woldemicael
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Dan Li
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Chun Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (A.N.K.); (M.H.); (A.R.R.); (K.A.M.); (M.N.); (A.G.W.); (D.L.); (C.W.)
| |
Collapse
|
8
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
9
|
Engin IK, Cekmecelioglu D, Yücel AM, Oktem HA. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for biodiesel production. BIORESOURCE TECHNOLOGY 2018; 251:128-134. [PMID: 29274519 DOI: 10.1016/j.biortech.2017.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Direct disposal of vinasse, a by-product of molasses fermentation plants, threatens environmental health. This study investigated the usage of vinasse as a nutrient source for the heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05. The 500-mL flask experiments resulted in higher biomass productivities under mixotrophic conditions (0.16 ± 0.01 g L-1 day1) than the heterotrophic conditions (0.13 ± 0.01 g L-1 day1). A 1.7-fold increase in biomass productivity was achieved by scaling up from 500-mL flasks (0.16 ± 0.01 g L-1 day1) to 2-L flasks (0.27 ± 0.019 g L-1 day1). The 5-L bioreactor experiments resulted in a biomass productivity of 0.32 ± 0.2 g L-1 day1 and lipid productivity of 3.4 ± 0.20 g L-1 day-1. This study demonstrated that Micractinium sp. ME05 can be cultivated with vinasse to produce large amounts of biomass. The FAME profile of mixotrophic Micractinium sp. ME05 cells was promising for further biodiesel production. This study highlights the feasibility of industrial by- product-vinasse as the nutrient source for biomass and lipid productions using the novel Micractinium sp. ME05 cells.
Collapse
Affiliation(s)
- Iskin Kose Engin
- Middle East Technical University, Department of Biotechnology, 06800 Ankara, Turkey; Middle East Technical University, Central Laboratory, Molecular Biology and Biotechnology R&D Center, 06800 Ankara, Turkey
| | - Deniz Cekmecelioglu
- Middle East Technical University, Department of Food Engineering, 06800 Ankara, Turkey
| | - Ayse Meral Yücel
- Middle East Technical University, Department of Biotechnology, 06800 Ankara, Turkey; Middle East Technical University, Department of Biological Sciences, 06800 Ankara, Turkey
| | - Huseyin Avni Oktem
- Middle East Technical University, Department of Biotechnology, 06800 Ankara, Turkey; Middle East Technical University, Department of Biological Sciences, 06800 Ankara, Turkey; Nanobiz Ltd. METU-Technopolis, Ankara, Turkey.
| |
Collapse
|
10
|
Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:227. [PMID: 30151055 PMCID: PMC6100726 DOI: 10.1186/s13068-018-1225-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 05/13/2023]
Abstract
Microalgae are capable of producing sustainable bioproducts and biofuels by using carbon dioxide or other carbon substances in various cultivation modes. It is of great significance to exploit microalgae for the economical viability of biofuels and the revenues from high-value bioproducts. However, the industrial performance of microalgae is still challenged with potential conflict between cost of microalgae cultivation and revenues from them, which is mainly ascribed to the lack of comprehensive understanding of carbon metabolism and energy conversion. In this review, we provide an overview of the recent advances in carbon and energy fluxes of light-dependent reaction, Calvin-Benson-Bassham cycle, tricarboxylic acid cycle, glycolysis pathway and processes of product biosynthesis in microalgae, with focus on the increased photosynthetic and carbon efficiencies. Recent strategies for the enhanced production of bioproducts and biofuels from microalgae are discussed in detail. Approaches to alter microbial physiology by controlling light, nutrient and other environmental conditions have the advantages of increasing biomass concentration and product yield through the efficient carbon conversion. Engineering strategies by regulating carbon partitioning and energy route are capable of improving the efficiencies of photosynthesis and carbon conversion, which consequently realize high-value biomass. The coordination of carbon and energy fluxes is emerging as the potential strategy to increase efficiency of carbon fixation and product biosynthesis. To achieve more desirable high-value products, coordination of multi-stage cultivation with engineering and stress-based strategies occupies significant positions in a long term.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Weiyang Zhao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
11
|
Duan S, Ma W, Wang B, Pan Y, Meng F, Yu S, Wu L. In situ preparation of “Cr-keeper” nanoparticles – Separation of trace vanadium (V) from chromium (VI) in aqueous solution. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Liu Z, Li X, Xie W, Deng H. Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohydr Polym 2017; 173:353-359. [PMID: 28732876 DOI: 10.1016/j.carbpol.2017.05.079] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Kelp (Laminaria japonica) is an economically important type of algae cultured in East Asia. Kelp waste is a by-product from the extraction of commercial alginate from kelp. This work reports the isolation of nanocrystalline cellulose (NCC) from the cellulose extracted from the kelp waste. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) show that the crystallinity index of the isolated kelp NCC was 69.4%, which was slightly higher than that of kelp cellulose as well as maintained the cellulose I crystalline form and typical cellulose chemical structure. In thermogravimetric analysis (TGA), kelp NCC showed decreased thermostability and a higher residual mass. Transmission electronic microscopy (TEM) confirmed the ordinary rod-like shape of the produced NCC with various dimensions. The kelp NCC aqueous dispersions displayed the expected characteristic optical and gel effects. Studies on the variables and the orthogonal experiment of NCC preparation contributed a maximum yield of 52.3%. The exploration on the preparation of kelp NCC in this study lays foundations for future applications.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China; School of Chemical Engineering, Wuzhou University, Wuzhou, Guangxi Province 543002, PR China.
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Wei Xie
- School of Chemical Engineering, Wuzhou University, Wuzhou, Guangxi Province 543002, PR China
| | - Haoyuan Deng
- School of Chemical Engineering, Wuzhou University, Wuzhou, Guangxi Province 543002, PR China
| |
Collapse
|
13
|
Zheng S, He M, Sui Y, Gebreluel T, Zou S, Kemuma ND, Wang C. Kelp waste extracts combined with acetate enhances the biofuel characteristics of Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2017; 225:142-150. [PMID: 27888731 DOI: 10.1016/j.biortech.2016.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
To probe the effect of kelp waste extracts (KWE) combined with acetate on biochemical composition of Chlorella sorokiniana, the cultures were performed under independent/combined treatment of KWE and acetate. The results showed that high cell density and biomass were obtained by KWE combined with acetate treatments, whose biomass productivity increased by 79.69-102.57% and 20.04-35.32% compared with 3.0gL-1 acetate and KWE treatments respectively. The maximal neutral lipid per cell and lipid productivity were gained in KWE combined with 3.0gL-1 acetate treatment, which increased by 16.32% and 129.03% compared with 3.0gL-1 acetate, and 253.35% and 70.74% compared with KWE treatment. Meanwhile, C18:3n3 and C18:2n6c contents were reduced to 4.90% and 11.88%, whereas C16:0 and C18:1n9c were improved to 28.71% and 37.76%. Hence, supplementing appropriate acetate in KWE cultures is supposed to be a great potential method for large-scale cultivation of C. sorokiniana to generate biofuel.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangsui Sui
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Temesgen Gebreluel
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanmei Zou
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nyabuto Dorothy Kemuma
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Natural Resources, Egerton University, Egerton 536, Kenya
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Zheng S, Jiang J, He M, Zou S, Wang C. Effect of Kelp Waste Extracts on the Growth and Development of Pakchoi (Brassica chinensis L.). Sci Rep 2016; 6:38683. [PMID: 27934911 PMCID: PMC5146658 DOI: 10.1038/srep38683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022] Open
Abstract
To explore the effects of kelp waste extracts (KWE) on the growth and development of Brassia chinensis L., germination and greenhouse experiments were carried out under different concentrations of KWE. The results showed that a higher germination percentage (95%), associated with high germination index (8.70), germination energy (71.67%) and seedling vigor index (734.67), was obtained under a lower KWE concentration (2%) compared with the control. The radicle length (4.97 cm), fresh weight (0.32 g/10 seedlings) and dry weight (0.015 g/10 seedlings) were significantly increased in the treatment of 2% KWE. KWE also could enhance the root growth, the maximum leaf length × width and the fresh weight of plants, the optimal value of which increased by 8.37 cm, 58.14 cm2 and 7.76 g under the treatment of 10% KWE compared with the control respectively. Meanwhile, the contents of vitamin C and soluble sugars in pakchoi leaf were improved by 19.6 mg/100 g and 1.44 mg/g compared with the control, and the nitrate content was decreased by 212.27 mg/kg. Briefly, KWE could markedly stimulate the pakchoi seeds germination at a lower concentration (2%) and enhance the plant growth and quality at a higher concentration (10%).
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jiang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanmei Zou
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Calixto CD, da Silva Santana JK, de Lira EB, Sassi PGP, Rosenhaim R, da Costa Sassi CF, da Conceição MM, Sassi R. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. BIORESOURCE TECHNOLOGY 2016; 221:438-446. [PMID: 27668876 DOI: 10.1016/j.biortech.2016.09.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The potential of four regional microalgae species was evaluated in relation to their cell growth and biomass production when cultured in the following alternative media: bio-composts of fruit/horticultural wastes (HB), sugarcane waste and vinasse (VB) chicken excrements (BCE), raw chicken manure (RCM), and municipal domestic sewage (MDS). The cultures were maintained under controlled conditions and their growth responses, productivities, biochemical compositions, and the ester profiles of their biomasses were compared to the results obtained in the synthetic media. The MDS and HB media demonstrated promising results for cultivation, especially of Chlorella sp., Chlamydomonas sp., and Lagerheimia longiseta, which demonstrated productivities superior to those seen when grown on the control media. The highest lipid levels were obtained with the HB medium. The data obtained demonstrated the viability of cultivating microalgae and producing biomass in alternative media prepared from MDS and HB effluents to produce biodiesel.
Collapse
Affiliation(s)
- Clediana Dantas Calixto
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Jordana Kaline da Silva Santana
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Evandro Bernardo de Lira
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Patrícia Giulianna Petraglia Sassi
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Raul Rosenhaim
- Laboratório de Combustíveis e Materiais - LACOM, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58059-900, Brazil
| | - Cristiane Francisca da Costa Sassi
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| | - Marta Maria da Conceição
- Centro de Tecnologia e Desenvolvimento Regional - CTDR, Universidade Federal da Paraíba, Av. dos Escoteiros, sn. Mangabeira VII, João Pessoa, PB CEP 58055-000, Brazil.
| | - Roberto Sassi
- Laboratório de Ambientes Recifais e Biotecnologia com Microalgas - LARBIM, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, João Pessoa, Paraíba CEP 58051-900, Brazil
| |
Collapse
|