1
|
Liang J, Zhang P, Chen L, Chang J, Zhang R, Zhang G, Tian Y. Effect of high corn straw loads on short-chain fatty acid production in semi-continuous rumen reactor. BIORESOURCE TECHNOLOGY 2024; 395:130396. [PMID: 38301941 DOI: 10.1016/j.biortech.2024.130396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Ruminal microorganisms can efficiently hydrolyze biomass waste for short-chain fatty acid (SCFA) production. However, the continuous SCFA production by ruminal microorganisms at high loads is unclear. In this study, the effectiveness of a rumen semi-continuous reactor at high load for SCFA production was explored. Results showed that SCFA concentration reached 13.3 g/L at 8 % (w/v) corn straw load. The higher the corn straw load, the lower the volatile solid removal. Rumen microbial community composition changed significantly with increasing corn straw load. A significant decrease in bacterial diversity and abundance was observed at 8 % corn straw load. Some core genera such as Prevotella, Saccharofermentans, and Ruminococcus significantly increased. As corn straw loads increased, the expression of functional genes related to hydrolysis and acidogenesis gradually increased. Thus, the 8.0 % load is suitable for SCFA production. These findings provide new insights into high load fermentation of ruminal microorganisms.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Wang G, Tian Y, Zhang G. Response of rumen microorganisms to pH during anaerobic hydrolysis and acidogenesis of lignocellulose biomass. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:476-486. [PMID: 38128366 DOI: 10.1016/j.wasman.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Rumen microorganisms can efficiently degrade lignocellulosic wastes to produce volatile fatty acids (VFAs). pH is a key factor in controlling the type and yield of VFAs by affecting the microorganisms involved in rumen fermentation. However, the effects of different pH on rumen microbial diversity, communities, and mechanisms are unclear. In this study, the hydrolysis and acidogenesis of corn straw and diversity, communities, and mechanisms of rumen microorganisms were explored at different initial pHs. Results showed that the highest hemicellulose, cellulose, and lignin degradation efficiency of corn straw was 55.2 %, 38.3 %, and 7.01 %, respectively, and VFA concentration was 10.2 g/L at pH 7.0. Low pH decreased the bacterial diversity and increased the fungal diversity. Rumen bacteria and fungi had different responses to initial pHs, and the community structure of bacteria and fungi had obviously differences at the genus level. The core genera Succiniclasticum, Treponema, and Neocallimastix relative abundance at initial pH 7.0 samples were significantly higher than that at lower initial pHs, reaching 6.01 %, 1.61 %, and 5.35 %, respectively. The bacterial network was more complex than that of fungi. pH, acetic acid, and propionic acid were the main factors influencing the bacterial and fungal community structure. Low pH inhibited the expression of functional genes related to hydrolysis and acidogenesis, explaining the lower hydrolysis and acidogenesis efficiency. These findings will provide a better understanding for rumen fermentation to produce VFAs.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
3
|
Liang J, Fang W, Chang J, Zhang G, Ma W, Nabi M, Zubair M, Zhang R, Chen L, Huang J, Zhang P. Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production. BIORESOURCE TECHNOLOGY 2022; 358:127447. [PMID: 35690238 DOI: 10.1016/j.biortech.2022.127447] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Rumen microorganisms have the ability to efficiently hydrolyze and acidify lignocellulosic biomass. The effectiveness of long-term rumen microorganism fermentation of lignocellulose in vitro for producing volatile fatty acids (VFAs) is unclear. The feasibility of long-term rumen microorganism fermentation of lignocelluose was evaluated in this study, and a stable VFA production was successfully realized for 120 d. Results showed that VFA concentration reached to 5.32-8.48 g/L during long-term fermentation. Hydrolysis efficiency of hemicellulose and cellulose reached 36.5%-52.2% and 29.4%-38.4%, respectively. A stable bacterial community was mainly composed of Prevotella, Rikenellaceae_RC9_gut_group, Ruminococcus, and Succiniclasticum. VFA accumulation led to a pH decrease, which caused the change of bacterial community structure. Functional prediction showed that the functional genes related to hydrolysis and acidogenesis of corn stover were highly expressed during long-term fermentation. The successful long-term rumen fermentation to produce VFAs is of great significance for the practical application of rumen microorganisms.
Collapse
Affiliation(s)
- Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Muhammad Zubair
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
4
|
Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8030115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The revolutionary transformation from petrol-based production to bio-based production is becoming urgent in line with the rapid industrialization, depleting resources, and deterioration of the ecosystem. Bio-based production from waste-streams is offering a sustainable and environmentally friendly solution. It offers several advantages, such as a longer operation period, less competition for microorganisms, higher efficiency, and finally, lower process costs. In the current study, several bio-based products (organic acids, biomethane, biohydrogen, and metal leachates) produced under acidic conditions are reviewed regarding their microbial pathways, processes, and operational conditions. Furthermore, the limitations both in the production process and in the scale-up are evaluated with future recommendations.
Collapse
|
5
|
Liang J, Fang W, Wang Q, Zubair M, Zhang G, Ma W, Cai Y, Zhang P. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production. BIORESOURCE TECHNOLOGY 2021; 342:126004. [PMID: 34583109 DOI: 10.1016/j.biortech.2021.126004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic fermentation of corn straw with rumen microorganisms as inoculum to produce volatile fatty acids (VFAs) is important for biomass valorization. In this study, dynamic variation in bacterial and fungal community composition, carbohydrate-active enzymes (CAZymes) and key functional genes related with VFA production was explored via metagenomic sequencing. Rumen microorganisms efficiently hydrolyzed and acidified corn straw, and VFA concentration reached 8.99 g/L in 72 h. Bacterial and fungal community significantly changed, but the core genera kept stable. Low pH and VFA accumulation were the main factors affecting bacterial and fungal communities. The positive correlations between bacteria were more complex than those between fungi. Most CAZyme abundance significantly decreased after 72 h fermentation, and functional gene abundance participating in VFA generation also decreased. This study provided new insights into dynamic variation of bacteria and fungi during anaerobic ruminal fermentation in vitro, promoting the application of rumen microorganisms in practice.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Fang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Muhammad Zubair
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Weifang Ma
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Liang J, Zhang H, Zhang P, Zhang G, Cai Y, Wang Q, Zhou Z, Ding Y, Zubair M. Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum: Hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:235-243. [PMID: 33636425 DOI: 10.1016/j.wasman.2021.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Rumen liquid is excellent to effectively degrade lignocellulose. In this study, the suitable rice straw load during anaerobic fermentation of rice straw with rumen liquid as inoculum was explored to improve volatile fatty acid (VFA) production. At 10.0% rice straw load, the highest VFA concentration reached 10821.4 mg/L, and acetic acid and propionic acid were the main components. In 10.0% rice straw load system, high concentration of soluble chemical oxygen demand (SCOD) was also observed, and the enzymatic activities at 48 h were higher than those at other rice straw loads. At 10.0% rice straw load, lower diversity and richness of rumen bacteria were found than those at other rice straw loads. Bacteroides, Prevotella, and Ruminococcus were the main rumen bacteria during rice straw degradation, and the rumen bacteria might secret effective lignocellulolytic enzymes to enhance the hydrolysis and acidogenesis of rice straw. The determination of suitable rice straw load will be beneficial to the application of rumen liquid as inoculum in actual production.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu 030801, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiran Ding
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Muhammad Zubair
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Al-Sagheer AA, Elwakeel EA, Ahmed MG, Sallam SMA. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31450-31458. [PMID: 30203345 DOI: 10.1007/s11356-018-3152-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Guava leaves (Psidium guajava, GL), a high-phenolic- and flavonoid-containing plant resource capable of substituting the high-quality forage, may help in mitigating ruminal methane (CH4) emission without adverse impact on nutrient degradability if supplemented at an appropriate level. In order to test this hypothesis, rumen fermentation, CH4 production, and nutrient degradability of GL either solely or as a substitute of berseem hay (Trifolium alexandrinum, BH) were evaluated in a diet containing 50:50 concentrate to roughage. Five different levels of GL (0, 12.5, 25, 37.5, and 50%) were tested in vitro after 24 h incubation using a semi-automated gas production (GP) system. The current findings indicated that merely the presence of GL resulted in significantly lower values for cumulative GP (P < 0.001), CH4 emission (P < 0.05), truly degraded dry matter (TDDM; P < 0.001), truly degraded organic matter (TDOM; P < 0.001), and ammonia nitrogen (NH3-N) concentration (P < 0.001); however, pH (P < 0.001) and partitioning factor (P < 0.001) were higher. The total and individual volatile fatty acid (VFA) concentrations were drastically declined with GL as compared to BH (P < 0.05). A negative linear correlation was recorded between the levels of GL and GP including CH4 production (P < 0.05). The addition of GL up to 25% did not pose any negative effect on both TDDM and TDOM values along with NH3-N concentration. In addition, the inclusion of GL up to 25% did not affect the total or individual VFA concentration. Conclusively, in a medium concentrate diet, use of 25% GL and 25% BH in animal diet could be a promising alternative for mitigating the CH4 production without any deleterious effect on nutrient degradability.
Collapse
Affiliation(s)
- Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Eman A Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, Egypt
| | - Mariam G Ahmed
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, Egypt
| | - Sobhy M A Sallam
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, Egypt
| |
Collapse
|
8
|
Meng Y, Jost C, Mumme J, Wang K, Linke B. Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system. J Environ Sci (China) 2016; 45:200-206. [PMID: 27372134 DOI: 10.1016/j.jes.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity.
Collapse
Affiliation(s)
- Yao Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department Bioengineering, Leibniz Institute for Agricultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Carsten Jost
- Department Bioengineering, Leibniz Institute for Agricultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Jan Mumme
- UK Biochar Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3JN, UK
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Bernd Linke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|