1
|
Tekin S, Bolat M, Atasever A, Bolat İ, Çinar B, Shadidizaji A, Dağ Y, Şengül E, Yildirim S, Hacimuftuoglu A, Warda M. Mechanistic insights into the P-coumaric acid protection against bisphenol A-induced hepatotoxicity in in vivo and in silico models. Sci Rep 2025; 15:11023. [PMID: 40164713 PMCID: PMC11958805 DOI: 10.1038/s41598-025-87099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025] Open
Abstract
Bisphenol A (BPA), commonly found in plastic containers and epoxy resins used for food products, presents substantial health risks, particularly in relation to hepatic toxicity. This study investigates BPA-induced liver damage and explores the mechanistic dose-dependent protective effects of P-coumaric acid (PCA). 50 male rats were divided into control, BPA-treated, BPA + PCA50, BPA + PCA100, and PCA100 groups. BPA exposure for 14 days induced oxidative stress, evidenced by elevated malondialdehyde levels and decreased activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Higher doses of PCA effectively mitigated these effects by restoring redox balance and enhancing antioxidant enzyme activities. Additionally, BPA disrupted inflammation and apoptosis pathways, inhibiting anti-inflammatory markers and interfering with the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway. PCA exhibited dose-dependent protection against these disruptions. Computational analyses revealed that BPA inhibits cyclooxygenase-1 through stable hydrogen bonding with threonine at position 322. PCA's dual protective effect was confirmed by attenuating inflammatory pathways, including TNF-α inhibition and suppression of the Kelch-like ECH-associated protein 1 (KEAP1) and Nrf2 signaling pathway. Histopathological assessments confirmed that PCA alleviated significant hepatic damage induced by BPA. Immunohistochemical and immunofluorescence analyses further supported PCA's protective role against BPA-induced apoptosis and cellular hepatotoxicity. These findings underscore PCA's protective potential against BPA-induced hepatotoxicity and highlight novel mechanistic interactions that warrant further investigation in applied nutritional biochemistry.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Aslıhan Atasever
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çinar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Yusuf Dağ
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Şengül
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Pan Y, Chen W, Kang Q, Hao L, Lu J, Zhu J. Enhanced physicochemical characteristics and biological activities of low-temperature ethylenediamine/urea pretreated lignin. Bioprocess Biosyst Eng 2025; 48:367-379. [PMID: 39614883 DOI: 10.1007/s00449-024-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/22/2024] [Indexed: 02/27/2025]
Abstract
Low-temperature ethylenediamine (EDA)/urea pretreatment had been demonstrated to be an efficient pretreatment method for enzymatic hydrolysis and bioethanol production. For high-value utilization of the third main components of lignocellulosic biomass, the physicochemical structure characteristics and biological activities of low-temperature EDA/urea pretreated lignin (EUL) were comprehensively investigated in the present study. The results demonstrated that the pretreatment process facilitated the depolymerization of lignin, resulting in notable reduction in molecular weight and polydispersity index from 2.32 to 1.42 kg/mol and 1.44 to 1.20, respectively. The EDA/urea pretreated lignin (EUL) exhibited enhanced ultraviolet absorption capacity and the most significant DPPH radical scavenging and inhibition of Staphylococcus aureus in comparison to the primary lignin (PL) and the NaOH pretreated lignin (NL). Enhanced physicochemical characteristics and biological activities of EUL make it more suitable to be developed as sunscreen ingredient or antioxidant and antimicrobial agent in food preservation and conservation.
Collapse
Affiliation(s)
- Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Weiwei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| |
Collapse
|
3
|
Polyphenol Release from Wheat Bran Using Ethanol-Based Organosolv Treatment and Acid/Alkaline Catalysis: Process Modeling Based on Severity and Response Surface Optimization. Antioxidants (Basel) 2022; 11:antiox11122457. [PMID: 36552665 PMCID: PMC9774914 DOI: 10.3390/antiox11122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Wheat bran (WB) is globally a major food industry waste, with a high prospect as a bioresource in the production of precious polyphenolic phytochemicals. In this framework, the current investigation had as objectives (i) to use ethanol organosolv treatment and study the effect of acid and alkali catalysts on releasing bound polyphenols, (ii) establish linear and quadratic models of polyphenol recovery based on severity and response surface, and (iii) examine the polyphenolic composition of the extracts generated. Using sulfuric acid and sodium hydroxide as the acid and the alkali catalyst, respectively, it was found that the correlation of combined severity factor with total polyphenol yield was significant in the acid catalysis, but a highly significant correlation in the alkali-catalyzed process was established with modified severity factor, which takes into consideration catalyst concentration, instead of pH. Optimization of the process with response surface confirmed that polyphenol release from WB was linked to treatment time, but also catalyst concentration. Under optimized conditions, the acid- and alkali-catalyzed processes afforded total polyphenol yields of 10.93 ± 0.62 and 19.76 ± 0.76 mg ferulic acid equivalents g-1 dry mass, respectively. Examination of the polyphenolic composition revealed that the alkali-catalyzed process had a striking effect on releasing ferulic acid, but the acid catalysis was insufficient in this regard. The outcome concerning the antioxidant properties was contradictory with respect to the antiradical activity and ferric-reducing power of the extracts, a fact most probably attributed to extract constituents other than ferulic acid. The process modeling proposed herein may be valuable in assessing both process effectiveness and severity, with a perspective of establishing WB treatments that would provide maximum polyphenol recovery with minimum harshness and cost.
Collapse
|
4
|
Liu Z, Shi E, Ma F, Zhou X, Jiang K. Improved Release of Monosaccharides and Ferulic Acid Using Enzyme Blends From Aspergillus Niger and Eupenicillium Parvum. Front Bioeng Biotechnol 2022; 9:814246. [PMID: 35155413 PMCID: PMC8830502 DOI: 10.3389/fbioe.2021.814246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Supplementing commercial xylanase and cellulase with selected debranching enzymes only resulted in slight enhancement of the enzymatic hydrolysis of wheat bran autohydrolysis residues (WBAR) which was obtained at 160°C over a 30-min period of autohdyrolysis, while a blend of enzymes from Aspergillus niger and Eupenicillium parvum achieved synergistic efficacy in this context. Using an equal mixture blend of these enzymes at a 0.5% (w/w) enzyme loading dosage with the addition of ferulic acid esterase (1 U/g substrate), the obtained hydrolysis yields were desirable, including 84.98% of glucose, 84.74% of xylose, 80.24% of arabinose, and 80.86% of ferulic acid. Following further separation using an HP-20 resin, the final ferulic acid recovery levels were as high as 62.5% of the esterified ferulic acid present within the initial WBAR input. Together, these data suggest that a combination of autohydrolysis and enzymatic hydrolysis using crude enzyme blends can efficiently achieve wheat bran enzymatic saccharification and associated ferulic acid release.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Enze Shi
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Feng Ma
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin Zhou
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Kankan Jiang,
| |
Collapse
|
5
|
Flourat AL, Combes J, Bailly-Maitre-Grand C, Magnien K, Haudrechy A, Renault JH, Allais F. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production? CHEMSUSCHEM 2021; 14:118-129. [PMID: 33058548 DOI: 10.1002/cssc.202002141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Indexed: 06/11/2023]
Abstract
p-Hydroxycinnamic acids (i. e., p-coumaric, ferulic, sinapic, and caffeic acids) are phenolic compounds involved in the biosynthesis pathway of lignin. These naturally occurring molecules not only exhibit numerous attractive properties, such as antioxidant, anti-UV, and anticancer activities, but they also have been used as building blocks for the synthesis of tailored monomers and functional additives for the food/feed, cosmetic, and plastics sectors. Despite their numerous high value-added applications, the sourcing of p-hydroxycinnamic acids is not ensured at the industrial scale except for ferulic acid, and their production cost remains too high for commodity applications. These compounds can be either chemically synthesized or extracted from lignocellulosic biomass, and recently their production through bioconversion emerged. Herein the different strategies described in the literature to produce these valuable molecules are discussed.
Collapse
Affiliation(s)
- Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Jeanne Combes
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | | | - Kévin Magnien
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Arnaud Haudrechy
- Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, F-51097, REIMS Cedex, France
| | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, F-51097, REIMS Cedex, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| |
Collapse
|
6
|
Ribeiro TB, Campos D, Oliveira A, Nunes J, Vicente AA, Pintado M. Study of olive pomace antioxidant dietary fibre powder throughout gastrointestinal tract as multisource of phenolics, fatty acids and dietary fibre. Food Res Int 2020; 142:110032. [PMID: 33773651 DOI: 10.1016/j.foodres.2020.110032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 12/13/2020] [Indexed: 01/17/2023]
Abstract
Pulp-enriched powder (POPP) was obtained from olive pomace solid fraction, a derived from the new value chain established for olive by-products. As a multifunctional powder, POPP retains several bioactive compounds (fatty acids, dietary fibre and phenolics) under potential synergic interaction, even more, reactive throughout the digestion. So, in this study, the potential multifunctionality of POPP was evaluated after the gastrointestinal tract. A significant loss of phenolics occurred during oral digestion (62.48%). However, the potential role of dietary fibre as phenolics' carrier and its possible liberation in the stomach allowed recovering a significant amount of phenolics (77.11%) and a bioaccessibility index of at least 50% (mainly for tyrosol and its glucoside). POPP also provides high content of dietary fibre mainly insoluble fibre (69.68 g/100 g dry weight) linked to a substantial amount of bound phenolics (7.63 mg of gallic acid equivalents/g fibre dry weight), with a positive effect on the fatty acids bioaccessibility [decreased the saturated (5-6%) and facilitated the unsaturated fatty acids bioaccessibility (4-11%)]. PCA analysis became evident the negative effect of simulated gastrointestinal digestion upon POPP as mainly linked to phenolics' loss. Despite all negative effects of the simulated digestion on POPP bioactive composition, phenolics and unsaturated fatty acids showed to be bioaccessible in significant amount, and the amount of bound phenolics associated to fibre retained in the colon have the potential to exert gut health benefits.
Collapse
Affiliation(s)
- Tânia B Ribeiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição, 2, Lagares, 3405-155 Oliveira do Hospital, Portugal
| | - Débora Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Nunes
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição, 2, Lagares, 3405-155 Oliveira do Hospital, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
7
|
Ribeiro TB, Oliveira A, Campos D, Nunes J, Vicente AA, Pintado M. Simulated digestion of an olive pomace water-soluble ingredient: relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct 2020; 11:2238-2254. [PMID: 32101211 DOI: 10.1039/c9fo03000j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olive pomace is a semisolid by-product with great potential as a source of bioactive compounds. Using its soluble fraction, a liquid-enriched powder (LOPP) was obtained, exhibiting a rich composition in sugars, polyphenols and minerals, with potential antioxidant, antihypertensive and antidiabetic health benefits. To validate the potential of LOPP as a functional ingredient the effect of the gastrointestinal tract on its bioactive composition and bioactivities was examined. Polyphenols and minerals were the most affected compounds; however, a significant bioaccessibility of potassium and hydroxytyrosol was verified (≥57%). As a consequence, the LOPP bioactivities were only moderately affected (losses around 50%). For example, 57.82 ± 1.27% of the recovered antioxidant activity by ORAC was serum-available. From an initial α-glucosidase inhibition activity of 87.11 ± 1.04%, at least 50% of the initial potential was retained (43.82 ± 1.14%). Regarding the initial ACE inhibitory activity (91.98 ± 3.24%), after gastrointestinal tract losses, significant antihypertensive activity was retained in the serum-available fraction (43.4 ± 3.65%). The colon-available fraction also exhibited an abundant composition in phenolics and minerals. LOPP showed to be a potential functional ingredient not only with potential benefits in preventing cardiovascular diseases but also in gut health.
Collapse
Affiliation(s)
- Tânia B Ribeiro
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal. and Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Débora Campos
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João Nunes
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
8
|
Park MR, Chen Y, Thompson M, Benites VT, Fong B, Petzold CJ, Baidoo EEK, Gladden JM, Adams PD, Keasling JD, Simmons BA, Singer SW. Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass. CHEMSUSCHEM 2020; 13:4455-4467. [PMID: 32160408 DOI: 10.1002/cssc.202000268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Indexed: 06/10/2023]
Abstract
There is strong interest in the valorization of lignin to produce valuable products; however, its structural complexity has been a conversion bottleneck. Chemical pretreatment liberates lignin-derived soluble fractions that may be upgraded by bioconversion. Cholinium ionic liquid pretreatment of sorghum produced soluble, aromatic-rich fractions that were converted by Pseudomonas putida (P. putida), a promising host for aromatic bioconversion. Growth studies and mutational analysis demonstrated that P. putida growth on these fractions was dependent on aromatic monomers but unknown factors also contributed. Proteomic and metabolomic analyses indicated that these unknown factors were amino acids and residual ionic liquid; the oligomeric aromatic fraction derived from lignin was not converted. A cholinium catabolic pathway was identified, and the deletion of the pathway stopped the ability of P. putida to grow on cholinium ionic liquid. This work demonstrates that aromatic-rich fractions obtained through pretreatment contain multiple substrates; conversion strategies should account for this complexity.
Collapse
Affiliation(s)
- Mee-Rye Park
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mitchell Thompson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Veronica T Benites
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bonnie Fong
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John M Gladden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94551, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technology, Shenzhen, China
| | - Blake A Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Büscher N, Spille C, Kracht JK, Sayoga GV, Dawood AWH, Maiwald MI, Herzog D, Schlüter M, Liese A. Countercurrently Operated Reactive Extractor with an Additively Manufactured Enzyme Carrier Structure. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Niclas Büscher
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Claas Spille
- Institute of Multiphase Flows, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany
| | - John K. Kracht
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Giovanni V. Sayoga
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Ayad W. H. Dawood
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Maria Isabelle Maiwald
- Institute of Laser and System Technologies, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany
| | - Dirk Herzog
- Institute of Laser and System Technologies, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany
| | - Michael Schlüter
- Institute of Multiphase Flows, Hamburg University of Technology, Eißendorfer Str. 38, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| |
Collapse
|
10
|
Li D, Long L, Ding S. Alkaline organosolv pretreatment of different sorghum stem parts for enhancing the total reducing sugar yields and p-coumaric acid release. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:106. [PMID: 32536971 PMCID: PMC7288516 DOI: 10.1186/s13068-020-01746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The sorghum stem can be divided into the pith and rind parts with obvious differences in cell type and chemical composition, thus arising the different recalcitrance to enzyme hydrolysis and demand for different pretreatment conditions. The introduction of organic solvents in the pretreatment can reduce over-degradation of cellulose and hemicellulose, but significance of organic solvent addition in pretreatment of different parts of sorghum stem is still unclear. Valorization of each component is critical for economy of sorghum biorefinery. Therefore, in this study, NaOH-ethanol pretreatment condition for different parts of the sorghum stem was optimized to maximize p-coumaric acid release and total reducing sugar recovery. RESULT Ethanol addition improved p-coumaric acid release and delignification efficiency, but significantly reduced hemicellulose deconstruction in NaOH-ethanol pretreatment. Optimization using the response surface methodology revealed that the pith, rind and whole stem require different NaOH-ethanol pretreatment conditions for maximal p-coumaric acid release and xylan preservation. By respective optimal NaOH-ethanol pretreatment, the p-coumaric acid release yields reached 94.07%, 97.24% and 95.05% from pith, rind and whole stem, which increased by 8.16%, 8.38% and 8.39% compared to those of NaOH-pretreated samples. The xylan recoveries of pith, rind and whole stem reached 76.80%, 88.46% and 85.01%, respectively, which increased by 47.75%, 15.11% and 35.97% compared to NaOH pretreatment. Adding xylanase significantly enhanced the enzymatic saccharification of pretreated residues. The total reducing sugar yields after respective optimal NaOH-ethanol pretreatment and enzymatic hydrolysis reached 84.06%, 82.29% and 84.09% for pith, rind and whole stem, respectively, which increased by 29.56%, 23.67% and 25.56% compared to those of NaOH-pretreated samples. Considering the separation cost of the different stem parts, whole sorghum stem can be directly used as feedstock in industrial biorefinery. CONCLUSION These results indicated that NaOH-ethanol is effective for the efficient fractionation and pretreatment of sorghum biomass. This work will help to understand the differences of different parts of sorghum stem under NaOH-ethanol pretreatment, thereby improving the full-component utilization of sorghum stem.
Collapse
Affiliation(s)
- Dandan Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Bayrak S, Öztürk C, Demir Y, Alım Z, Küfrevioglu Öİ. Purification of Polyphenol Oxidase from Potato and Investigation of the Inhibitory Effects of Phenolic Acids on Enzyme Activity. Protein Pept Lett 2020; 27:187-192. [DOI: 10.2174/0929866526666191002142301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
Abstract
Background:
Polyphenol Oxidase (PPO) belongs to the oxidoreductase enzyme family.
Methods:
Here, PPO was purified from potato using Sepharose 4B-L-tyrosine-p-aminobenzoic acid
affinity chromatography. It determined the interactions between some phenolic acids and the
enzyme.
Results:
The enzyme was obtained with a specific activity of 15333.33 EU/mg protein and 7.87-
fold purification. It was found that phenolic acids exhibited inhibitory properties for PPO. The IC50
values of the phenolic acids were found in the range of 0.36-2.12 mM, and their Ki values were
found in the range of 0.28± 0.07-1.72±0.32 mM. It was determined that all studied compounds
displayed a competitive inhibition effect. Among these compounds, 3-hydroxybenzoic acid was
found to be the most effective PPO inhibitor (Ki: 0.28±0.07 mM).
Conclusion:
Investigating the inhibition kinetics of the enzyme will simplify the testing of PPO
inhibitor candidates.
Collapse
Affiliation(s)
- Songül Bayrak
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, 25240, Turkey
| | - Cansu Öztürk
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, 25240, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Zuhal Alım
- Department of Chemistry, Faculty of Science and Arts, Ahievran University, Kırsehir, 40100, Turkey
| | - Ömer İrfan Küfrevioglu
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, 25240, Turkey
| |
Collapse
|
12
|
Liu T, Yang L, Liu B, Tan L. Hydroxycinnamic acids release during bioconversion of corn stover and their effects on lignocellulolytic enzymes. BIORESOURCE TECHNOLOGY 2019; 294:122116. [PMID: 31520858 DOI: 10.1016/j.biortech.2019.122116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Hydroxycinnamic acids released during alkaline pretreatment of lignocellulose, especially p-coumaric acid (p-CA) and ferulic acid (FA), negatively affect the enzymatic hydrolysis and fermentation. However, the mechanism of this effect is not well understood. In this study, we investigated the releasing behavior and negative effect and examined the underlying mechanisms. The results demonstrated that the hydrogen peroxide concentration and biomass loading affected the release of p-CA and FA significantly during alkaline hydrogen peroxide (AHP) pretreatment of corn stover. p-CA and FA mainly inhibited the activity of endoglucanase, xylanase, and filter paper activity (FPA), while the amount of lignocellulolytic enzyme protein was not affected. Thus, they acted as inhibitors of enzyme activities. Molecular docking study indicated that p-CA and FA inhibited the lignocellulolytic enzyme activity and enzymatic hydrolysis efficiency mainly by forming non-covalent bonds to specific amino acids in the active sites of the lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Tongjun Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Yang
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Liu
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Liping Tan
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
13
|
Li L, Long L, Ding S. Bioproduction of High-Concentration 4-Vinylguaiacol Using Whole-Cell Catalysis Harboring an Organic Solvent-Tolerant Phenolic Acid Decarboxylase From Bacillus atrophaeus. Front Microbiol 2019; 10:1798. [PMID: 31447812 PMCID: PMC6691155 DOI: 10.3389/fmicb.2019.01798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The compound 4-vinyl guaiacol (4-VG) is highly valued and widely applied in the pharmaceutical, cosmetic, and food industries. The bioproduction of 4-VG from ferulic acid (FA) by non-oxidative decarboxylation using phenolic acid decarboxylases is promising but has been hampered by low conversion yields and final product concentrations due to the toxicities of 4-VG and FA. In the current study, a new phenolic acid decarboxylase (BaPAD) was characterized from Bacillus atrophaeus. The BaPAD possessed excellent catalytic activity and stability in various organic solvents. Whole Escherichia coli cells harboring intracellular BaPAD exhibited greater tolerances to FA and 4-VG than those of free BaPAD. A highly efficient aqueous-organic biphasic system was established using 1-octanol as the optimal organic phase for whole-cell catalysis. In this system, a very high concentration (1580 mM, 237.3 g/L) of 4-VG was achieved in a 2 L working volume bioreactor, and the molar conversion yield and productivity reached 98.9% and 18.3 g/L/h in 13 h, respectively.
Collapse
Affiliation(s)
- Lulu Li
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Liangkun Long
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shaojun Ding
- The Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
14
|
Nishi K, Ramakrishnan S, Gunasekaran VP, Parkash K, Ramakrishnan A, Vijayakumar N, Ganeshan M. Protective effects of p‑coumaric acid on ethanol induced male reproductive toxicity. Life Sci 2018; 209:1-8. [DOI: 10.1016/j.lfs.2018.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/22/2018] [Indexed: 11/15/2022]
|
15
|
Tapping the Bioactivity Potential of Residual Stream from Its Pretreatments May Be a Green Strategy for Low-Cost Bioconversion of Rice Straw. Appl Biochem Biotechnol 2018; 186:507-524. [PMID: 29658061 PMCID: PMC6209036 DOI: 10.1007/s12010-018-2751-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/26/2018] [Indexed: 01/22/2023]
Abstract
In this study, it was found that the residual stream from pretreatments of rice straw exhibited high antioxidant activity. Assays based on the Folin-Ciocalteu colorimetric method confirmed that the residual stream contained large amounts of phenolic compounds. Three antioxidant assays were employed to evaluate the bioactivity of the residual stream. Strong linear correlations existed among the release of phenolic compounds, saccharification efficiency, and antioxidant activity. The alkaline pretreatment provided a much greater release of phenolic compounds, especially phenolic acids, compared to the acid pretreatment, and consequently, it had stronger linear correlations than the acid pretreatment. Antibacterial experiments demonstrated the ability of the phenolic compounds in the residual stream to inhibit the growth of microorganisms, indicating the potential of these compounds as antimicrobial agents. To discuss the possibility of the co-production of antimicrobial agents and biofuels/biochemicals, both acid and alkaline pretreatments were optimized using response surface methodology. Under the optimal conditions, 285.7 g glucose could be produced from 1 kg rice straw with the co-production of 3.84 g FA and 6.98 g p-CA after alkaline pretreatment. These results show that the recovery of phenolic compounds from the residual stream could be a green strategy for the low-cost bioconversion of rice straw.
Collapse
|
16
|
Linh TN, Fujita H, Sakoda A. Release kinetics of esterified p-coumaric acid and ferulic acid from rice straw in mild alkaline solution. BIORESOURCE TECHNOLOGY 2017; 232:192-203. [PMID: 28231537 DOI: 10.1016/j.biortech.2017.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 05/24/2023]
Abstract
The release kinetics of esterified p-coumaric acid (PCA) and ferulic acid (FA) from rice straw under a mild alkaline condition were investigated to collect fundamental data for the design of a recovery process. The results showed that the straw size, NaOH concentration, and temperature were the key parameters governing release kinetics. The analysis demonstrated that FA is released considerably faster than PCA. The close relationship between lignin and the PCA dissolution indicates a reciprocal and/or simultaneous release. Moreover, PCA is broadly distributed in the lignin network but tends to be located more densely in the lignin fraction which is not easily solubilized by alkaline treatment. In contrast, the release of FA is strongly affected by removal of lignin fraction which is easily solubilized. These results suggest that the release kinetics are controlled by the accessibility of NaOH to their ester sites in the lignin/hemicellulose network, and by their localization.
Collapse
Affiliation(s)
- Tran Ngoc Linh
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Hirokata Fujita
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Akiyoshi Sakoda
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
17
|
Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017; 22:molecules22020281. [PMID: 28208818 PMCID: PMC6155946 DOI: 10.3390/molecules22020281] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Bioactive compounds from natural sources, due to their widely-recognized benefits, have been exploited as cosmeceutical ingredients. Among them, phenolic acids emerge with a very interesting potential. In this context, this review analyzes hydroxycinnamic acids and their derivatives as multifunctional ingredients for topical application, as well as the limitations associated with their use in cosmetic formulations. Hydroxycinnamic acids and their derivatives display antioxidant, anti-collagenase, anti-inflammatory, antimicrobial and anti-tyrosinase activities, as well as ultraviolet (UV) protective effects, suggesting that they can be exploited as anti-aging and anti-inflammatory agents, preservatives and hyperpigmentation-correcting ingredients. Due to their poor stability, easy degradation and oxidation, microencapsulation techniques have been employed for topical application, preventing them from degradation and enabling a sustained release. Based on the above findings, hydroxycinnamic acids present high cosmetic potential, but studies addressing the validation of their benefits in cosmetic formulations are still scarce. Furthermore, studies dealing with skin permeation are scarcely available and need to be conducted in order to predict the topical bioavailability of these compounds after application.
Collapse
|
18
|
Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsiaghi M, Sundstrom ER, Rodriguez A, Baidoo E, Tanjore D, Pray T, Sale K, Singh S, Keasling JD, Simmons BA, Singer SW, Magnuson JK, Arkin AP, Skerker JM, Gladden JM. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:241. [PMID: 29075325 PMCID: PMC5651578 DOI: 10.1186/s13068-017-0927-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/10/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. RESULTS In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. CONCLUSIONS This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Collapse
Affiliation(s)
- Junko Yaegashi
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - James Kirby
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720 USA
| | - Masakazu Ito
- Energy Biosciences Institute, 2151 Berkeley Way, Berkeley, CA 94704 USA
| | - Jian Sun
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Tanmoy Dutta
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Mona Mirsiaghi
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Eric R. Sundstrom
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Alberto Rodriguez
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Edward Baidoo
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Deepti Tanjore
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Todd Pray
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Kenneth Sale
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Seema Singh
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Steven W. Singer
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Jon K. Magnuson
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - Adam P. Arkin
- Energy Biosciences Institute, 2151 Berkeley Way, Berkeley, CA 94704 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jeffrey M. Skerker
- Energy Biosciences Institute, 2151 Berkeley Way, Berkeley, CA 94704 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - John M. Gladden
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| |
Collapse
|
19
|
Qing Q, Zhou L, Guo Q, Huang M, He Y, Wang L, Zhang Y. A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover. BIORESOURCE TECHNOLOGY 2016; 218:209-216. [PMID: 27371793 DOI: 10.1016/j.biortech.2016.06.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
Na3PO4 and Na2S were employed as efficient alkaline catalysts for the pretreatment of corn stover. To systematically obtain optimal conditions, the effects of critical pretreatment parameters including sodium phosphate concentration (1-4%), sulfidity (0-20%), pretreatment temperature (100-120°C), and reaction time (20-60min) on the reducing sugar yield of pretreated substrates were evaluated in a lab-scale using the response surface methodology. Pretreated under the sodium phosphate concentration of 4%, sulfidity of 10%, temperature of 120°C, and reaction time of 40min, the reducing sugar yield and glucose yield of the pretreated corn stover achieved 91.11% and 64.01%, respectively, with a moderate enzyme loading of 30FPU/g substrate. Additionally, a strong correlation (R(2)=0.971 and R(2)=0.954) between the delignification and the reducing sugar yield (or glucose yield) was observed by this pretreatment method. These results evidently support that the combined Na3PO4-Na2S pretreatment is an effective and feasible method for processing lignocellulosic biomass.
Collapse
Affiliation(s)
- Qing Qing
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Linlin Zhou
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Qi Guo
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Meizi Huang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yucai He
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Liqun Wang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yue Zhang
- Department of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, China.
| |
Collapse
|