1
|
Agrawal A, Chaudhari PK, Ghosh P. Anaerobic digestion of fruit and vegetable waste: a critical review of associated challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24987-25012. [PMID: 35781666 DOI: 10.1007/s11356-022-21643-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The depletion of fossil fuels coupled with stringent environmental laws has encouraged us to develop sustainable renewable energy. Due to its numerous benefits, anaerobic digestion (AD) has emerged as an environment-friendly technology. Biogas generated during AD is primarily a mixture of CH4 (65-70%) and CO2 (20-25%) and a potent energy source that can combat the energy crisis in today's world. Here, an attempt has been made to provide a broad understanding of AD and delineate the effect of various operational parameters influencing AD. The characteristics of fruit and vegetable waste (FVW) and its feasibility as a potent substrate for AD have been studied. This review also covers traditional challenges in managing FVW via AD, the implementation of various bioreactor systems to manage large amounts of organic waste and their operational boundaries, microbial consortia involved in each phase of digestion, and various strategies to increase biogas production.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Department of Chemical Engineering, National Institute of Technology, Raipur, C.G, India
| | | | - Prabir Ghosh
- Department of Chemical Engineering, National Institute of Technology, Raipur, C.G, India.
| |
Collapse
|
2
|
Guérin-Rechdaoui S, Bize A, Levesque-Ninio C, Janvier A, Lacroix C, Le Brizoual F, Barbier J, Amsaleg CR, Azimi S, Rocher V. Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:114057. [PMID: 35995225 PMCID: PMC9391084 DOI: 10.1016/j.envres.2022.114057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.
Collapse
Affiliation(s)
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, Antony, 92160, France
| | - Camille Levesque-Ninio
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Alice Janvier
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Carlyne Lacroix
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Florence Le Brizoual
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Jérôme Barbier
- ID Solutions, Development Department, Grabels, 34790, France
| | | | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Vincent Rocher
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| |
Collapse
|
3
|
Wang T, Ni Z, Kuang B, Zhou L, Chen X, Lin Z, Guo B, Zhu G, Jia J. Two-stage hybrid microalgal electroactive wetland-coupled anaerobic digestion for swine wastewater treatment in South China: Full-scale verification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153312. [PMID: 35065128 DOI: 10.1016/j.scitotenv.2022.153312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands have been widely used for organic wastewater treatment owing to low operating costs and simple maintenance. However, there are some disadvantages such as unstable efficiency in winter. In this study, a microalgal electroactive biofilm-constructed wetland was coupled with anaerobic digestion for full-scale treatment of swine wastewater. In a 12-month outdoor trial, the overall removal efficiencies of chemical oxygen demand, ammonium, nitrate, total nitrogen, total phosphorus, and nitrite reached 98.26%/95.14%, 97.96%/92.07%, 85.45%/66.04%, 95.07%/91.48%, 91.44%/91.52%, and 85.45%/84.67% in summer/winter, respectively. Hydrolytic bacteria were dominant in the anaerobic digestion part, and Cyanobium, Shewanella, and Azoarcus were enriched in the microalgal electroactive biofilm. The operating cost of the entire system was approximately 0.118 $/m3 of wastewater. These results confirm that the microalgal electroactive biofilm significantly enhances the efficiency and stability of constructed wetlands. In conclusion, the anaerobic digestion-microalgal electroactive biofilm-constructed wetland is technically and economically feasible for the treatment of swine wastewater.
Collapse
Affiliation(s)
- Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bin Kuang
- Jiangmen Polytechnic, Jiangmen 529020, PR China
| | - Lilin Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xuanhao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Ziyang Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
4
|
Lv L, Feng C, Li W, Zhang G, Ren Z, Liu X, Song X, Wang P. Exogenous N-acyl-homoserine lactones accelerate resuscitation of starved anaerobic granular sludge after long-term stagnation. BIORESOURCE TECHNOLOGY 2021; 337:125362. [PMID: 34116280 DOI: 10.1016/j.biortech.2021.125362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
So as to accelerate the resuscitation of starved anaerobic granular sludge after long-term stagnation, an innovative method was tried derived from the regulation of N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS). The mixture of four AHLs was added to the starved anaerobic granular sludge system in this research. The results confirmed that the exogenous AHLs shortened the recovery time of the granular sludge, and improved the treatment performance and methanogenic capacity of the recovered anaerobic sludge to the level before stagnation. At the same time, exogenous AHLs enhanced the synthesis of extracellular polymeric substances (EPS) during the resuscitation period of starved anaerobic granular sludge. The outcomes of microbial composition detection showed that the change of bacterial and methanogenic bacteria communities towards accelerated performance recovery was significantly correlated with exogenous AHLs. This exploration provided a new technical idea for speeding up the recovery of starved anaerobic granular sludge.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Chendi Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xinxin Song
- Tianjin Municipal Engineering Design & Research Institute Ltd, Tianjin 300392, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
5
|
Ta DT, Lin CY, Ta TMN, Chu CY. Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. BIORESOURCE TECHNOLOGY 2020; 317:123986. [PMID: 32799083 DOI: 10.1016/j.biortech.2020.123986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Research of single-stage anaerobic biohythane production is still in an infant stage. A single-stage dark fermentation system using separately-entrapped H2- and CH4-producing microbes was operated to produce biohythane at hydraulic retention times (HRTs) of 48, 36, 24, 12 and 6 h. Peak biohythane production was obtained at HRT 12 h with H2 and CH4 production rates of 3.16 and 4.25 L/L-d, respectively. At steady-state conditions, H2 content in biohythane and COD removal efficiency were in ranges of 7.3-84.6 % and 70.4-77.9%, respectively. During the fermentation, the microbial community structure of the entrapped H2-producing microbes was HRT-independent whereas entrapped CH4-producing microbes changed at HRTs 12 and 6 h. Caproiciproducens and Methanobacterium were the dominant genera for producing H2 and CH4, respectively. The novelty of this work is to develop a single-stage biohythane production system using entrapped anaerobic microbes which requires fewer controls than two-stage systems.
Collapse
Affiliation(s)
- Doan-Thanh Ta
- Department of Environmental Engineering and Science, Feng Chia University, Taiwan
| | - Chiu-Yue Lin
- Department of Environmental Engineering and Science, Feng Chia University, Taiwan; Green Energy and Biotechnology Industry Development Research Center, Feng Chia University, Taiwan.
| | - Thi-Minh-Ngoc Ta
- Food Technology Department, Ho Chi Minh City University of Technology, Viet Nam
| | - Chen-Yeon Chu
- Green Energy and Biotechnology Industry Development Research Center, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan
| |
Collapse
|
6
|
Abstract
Anaerobic digestion is an efficient technology for a sustainable conversion of various organic wastes such as animal manure, municipal solid waste, agricultural residues and industrial waste into biogas. This technology offers a unique set of benefits, some of which include a good waste management technique, enhancement in the ecology of rural areas, improvement in health through a decrease of pathogens and optimization of the energy consumption of communities. The biogas produced through anaerobic digestion varies in composition, but it consists mainly of carbon dioxide methane together with a low quantity of trace gases. The variation in biogas composition are dependent on some factors namely the substrate type being digested, pH, operating temperature, organic loading rate, hydraulic retention time and digester design. However, the type of substrate used is of greater interest due to the direct dependency of microorganism activities on the nutritional composition of the substrate. Therefore, the aim of this review study is to provide a detailed analysis of the various types of organic wastes that have been used as a substrate for the sustainable production of biogas. Biogas formation from various substrates reported in the literature were investigated, an analysis and characterization of these substrates provided the pro and cons associated with each substrate. The findings obtained showed that the methane yield for all animal manure varied from 157 to 500 mL/gVS with goat and pig manure superseding the other animal manure whereas lignocellulose biomass varied from 160 to 212 mL/gVS. In addition, organic municipal solid waste and industrial waste showed methane yield in the ranges of 143–516 mL/gVS and 25–429 mL/gVS respectively. These variations in methane yield are primarily attributed to the nutritional composition of the various substrates.
Collapse
|
7
|
Blasco L, Kahala M, Tampio E, Vainio M, Ervasti S, Rasi S. Effect of Inoculum Pretreatment on the Composition of Microbial Communities in Anaerobic Digesters Producing Volatile Fatty Acids. Microorganisms 2020; 8:microorganisms8040581. [PMID: 32316448 PMCID: PMC7232380 DOI: 10.3390/microorganisms8040581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/28/2023] Open
Abstract
Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and can be produced through the fermentation of organic wastes. VFAs have become an anticipated resource- and cost-effective way to replace fossil resources with higher added value and more versatile fuels and chemicals. However, there are still challenges in the production of targeted compounds from diverse and complex biomasses, such as urban biowastes. In this study, the aim was to modulate the microbial communities through inoculum treatment to enhance the production of green chemicals. Thermal and freeze-thaw treatments were applied to the anaerobic digester inoculum to inhibit the growth of methanogens and to enhance the performance of acidogenic and acetogenic bacteria. VFA fermentation after different inoculum treatments was studied in batch scale using urban biowaste as the substrate and the process performance was assessed with chemical and microbial analyses. Inoculum treatments, especially thermal treatment, were shown to increase VFA yields, which were also correlating with the dynamics of the microbial communities and retention times of the test. There was a strong correlation between VFA production and the relative abundances of the microbial orders Clostridiales (families Ruminococcaceae, Lachnospiraceae and Clostridiaceae), and Lactobacillales. A syntrophic relationship of these taxa with members of the Methanobacteriales order was also presumed.
Collapse
|
8
|
André L, Zdanevitch I, Pineau C, Lencauchez J, Damiano A, Pauss A, Ribeiro T. Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. BIORESOURCE TECHNOLOGY 2019; 289:121737. [PMID: 31323720 DOI: 10.1016/j.biortech.2019.121737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Roadside grass cuttings and solid cattle manure are resources that are available as input for dry anaerobic co-digestion. Two series of measurements were carried out, one in June 2016 and one in October 2016. The methane potentials were determined on a laboratory scale and revealed a high degree of seasonality, 202.9 and 167.9 Nm3CH4.tVS-1, respectively. Moreover, these substrates were co-digested in reactors by the dry process on a pilot scale (60 L). Two strategies for filling and optimization, as layers or as a mixture, were compared. The seasonality also determined the physicochemical parameters and the hydrodynamic properties involved in percolation of the liquid phase recirculated in the dry digestion process. The production of methane depended on the filling method, the seasonality, and the nature of the input, which in some cases resulted in inhibition of 34.8-44.4 Nm3CH4.tVS-1.
Collapse
Affiliation(s)
- L André
- Institut Polytechnique UniLaSalle, EA 7519 Transformations & AgroRessources, Rue Pierre Waguet, BP 30313, F-60026 Beauvais Cédex, France
| | - I Zdanevitch
- INERIS, Parc technologique Alata, BP 2 - 60550, Verneuil en Halatte, France
| | - C Pineau
- CEREMA, 9 rue René Viviani, BP 46223 - 44262, Nantes cedex 2, France
| | - J Lencauchez
- AILE, 73 rue de Saint Brieuc, CS 56520 - 35025, Rennes, France
| | - A Damiano
- AILE, 73 rue de Saint Brieuc, CS 56520 - 35025, Rennes, France
| | - A Pauss
- EA 4297 TIMR UTC/ESCOM, Sorbonne University, Université de technologie de Compiègne, 60203 Compiègne cedex, France
| | - T Ribeiro
- Institut Polytechnique UniLaSalle, EA 7519 Transformations & AgroRessources, Rue Pierre Waguet, BP 30313, F-60026 Beauvais Cédex, France.
| |
Collapse
|
9
|
Feng S, Hong X, Wang T, Huang X, Tong Y, Yang H. Reutilization of high COD leachate via recirculation strategy for methane production in anaerobic digestion of municipal solid waste: Performance and dynamic of methanogen community. BIORESOURCE TECHNOLOGY 2019; 288:121509. [PMID: 31195363 DOI: 10.1016/j.biortech.2019.121509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/11/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The influences of reutilization of high COD leachate via recirculation strategy on methane production and dynamic of methanogen community in anaerobic digestion of Municipal Solid Waste (MSW) were revealed. With a COD concentration of 6000 mg·L-1 recirculation, the efficiency of hydrolytic acidification process was improved and alleviated the pH reduction during acidification, while the highest COD removal efficiency was achieved. The maximum methane production rate and accumulated CH4 production by the 6000 mg·L-1 group increased by 90.7% and 156.0%, respectively. Whereas the performance of the 9000 mg·L-1 group was actually below the control group. According to high-throughput sequencing, the superiority of acetotrophic Methanothrix was replaced by hydrogenotrophic Methanobacterium in the 3000- and 6000-mg·L-1 systems. Methanoculleus predominated in the 9000-mg·L-1 system, while Methanoregula, Methanolinea, and Methanospirillum suffered intensive inhibition effects. Canonical correspondence analysis verified a positive correlation between the dominant methanogens Methanobacterium and CH4 production, and a negative correlation with Methanoculleus.
Collapse
Affiliation(s)
- Shoushuai Feng
- School of Biotechnology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xianjing Hong
- School of Biotechnology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Tao Wang
- School of Biotechnology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xing Huang
- WUXI City Environmental Technology Co., Ltd, No. 3 Tangnan Road, Liangxi District, Wuxi 214026, Jiangsu, China
| | - Yanjun Tong
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hailin Yang
- School of Biotechnology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, No. 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
10
|
Yu J, Zhao L, Feng J, Yao Z, Huang K, Luo J, Wei S, Chen J. Sequencing batch dry anaerobic digestion of mixed feedstock regulating strategies for methane production: Multi-factor interactions among biotic and abiotic characteristics. BIORESOURCE TECHNOLOGY 2019; 284:276-285. [PMID: 30952055 DOI: 10.1016/j.biortech.2019.03.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the synergistic effects and regulation strategy of multiple factors for improving methane production in sequencing batch dry anaerobic digestion (SBD-AD) using corn stalks (CS) and cow dung (CD). The regulation of the spray frequency (SF) and inoculum content (IC) significantly improved methane yield, which increased feedstock ratios (FRs) by 12.4-121.3%. Moreover, the relationship between SF and IC produced distinct interaction modes. An FR of 4:6 increased the SF to 2 h for the CD-rich condition, and an FR of 6:4 decreased the SF during a 6 h interval and increased the IC for the CS-rich condition, resulting in increases in methane yield and the conversion efficiency of volatile fatty acids (VFAs). Methanogenesis (Methanogens) played a key role in SBD-AD. The nutrient substrate (NH4-N+) and key enzyme activities of methanogens were significantly affected such that the synergistic effect of the acetoclastic and hydrogenotrophic methanogenesis pathways was likely strengthened.
Collapse
Affiliation(s)
- Jiadong Yu
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China.
| | - Lixin Zhao
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Jing Feng
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Zonglu Yao
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Kaiming Huang
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Juan Luo
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Shimeng Wei
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Jiankun Chen
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| |
Collapse
|
11
|
A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091915] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many operating parameters, individually or together, may influence the performance of anaerobic digestion towards biogas or digestate yield and quality maximization. The most preferred method of optimizing an anaerobic digestion plant often relies on how carefully the crucial parameters, such as pH, temperature, organic loading rate, hydraulic retention time, and pressure, are chosen. There is a large amount of literature available on optimization of anaerobic digestion; however, given the continued development and implementation of innovative technologies, together with the introduction of increasingly complex systems, it is necessary to update present knowledge on process parameters and their role on operational ranges and flexibilities in real-life anaerobic digestion system. Accordingly, the present review discusses the importance of the selection of operational parameters in existing technologies and their impact on biogas yield. Notably, the four broad areas of feedstock utilization (substrate, inoculum, codigestion and pretreatment), process condition (pH, temperature, pressure, and reactor design), reactor control (HRT and OLR) and inhibition (Ammonia and VFAs) are covered in this review. In addition, particular emphasis is placed on the most recent innovations that have been or may be implemented in current or future biogas plants.
Collapse
|
12
|
André L, Pauss A, Ribeiro T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. BIORESOURCE TECHNOLOGY 2018; 247:1027-1037. [PMID: 28912079 DOI: 10.1016/j.biortech.2017.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a state-of-art about solid anaerobic digestion (AD), focused on recent progress and trends of research is proposed. Solid anaerobic digestion should be the most appropriate process for degradation of by-products with high total solid (TS) content, especially lignocellulosic materials like agricultural waste (straw, manure), household waste and food waste. Solid AD is already widely used in waste water treatment plant for treating plant for sewage sludge but could be more developed for lignocellulosic materials with high TS content. Many research works were carried out in Europe on solid AD, focused on current hurdles (BMP, codigestion, inhibition, microbial population, rheology, water transfers, inoculum, etc.) in order to optimize the solid AD process. In conclusion, hurdles of solid AD process should and must be solved in order to propose better productivity and profitability of such system operating with high TS content (>15%), favouring reliable industrial processes.
Collapse
Affiliation(s)
- Laura André
- Institut Polytechnique UniLaSalle, UR Transformations & Agroressources, Département STAI, rue Pierre Waguet, BP 30313, 60026 Beauvais Cedex, France
| | - André Pauss
- Sorbonne Universités, EA 4297 TIMR UTC/ESCOM, UTC, CS 60319, 60203 Compiègne cedex, France
| | - Thierry Ribeiro
- Institut Polytechnique UniLaSalle, UR Transformations & Agroressources, Département STAI, rue Pierre Waguet, BP 30313, 60026 Beauvais Cedex, France.
| |
Collapse
|
13
|
Khan MA, Ngo HH, Guo WS, Liu Y, Nghiem LD, Hai FI, Deng LJ, Wang J, Wu Y. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 219:738-748. [PMID: 27570139 DOI: 10.1016/j.biortech.2016.08.073] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield.
Collapse
Affiliation(s)
- M A Khan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Y Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - L D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - F I Hai
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - L J Deng
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - J Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Y Wu
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|