1
|
Chen T, Zhang L, Guo W, Zhang W, Sajjad W, Ilahi N, Usman M, Faisal S, Bahadur A. Temperature drives microbial communities in anaerobic digestion during biogas production from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53823-53838. [PMID: 38436844 DOI: 10.1007/s11356-024-32698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 °C), T25 (25 °C), and T35 (35 °C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 °C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Collapse
Affiliation(s)
- Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co., Ltd, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Bahadur A, Zhang L, Guo W, Sajjad W, Ilahi N, Banerjee A, Faisal S, Usman M, Chen T, Zhang W. Temperature-dependent transformation of microbial community: A systematic approach to analyzing functional microbes and biogas production. ENVIRONMENTAL RESEARCH 2024; 249:118351. [PMID: 38331158 DOI: 10.1016/j.envres.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The stability and effectiveness of the anaerobic digestion (AD) system are significantly influenced by temperature. While majority research has focused on the composition of the microbial community in the AD process, the relationships between functional gene profile deduced from gene expression at different temperatures have received less attention. The current study investigates the AD process of potato peel waste and explores the association between biogas production and microbial gene expression at 15, 25, and 35 °C through metatranscriptomic analysis. The production of total biogas decreased with temperature at 15 °C (19.94 mL/g VS), however, it increased at 35 °C (269.50 mL/g VS). The relative abundance of Petrimonas, Clostridium, Aminobacterium, Methanobacterium, Methanothrix, and Methanosarcina were most dominant in the AD system at different temperatures. At the functional pathways level 3, α-diversity indices, including Evenness (Y = 5.85x + 8.85; R2 = 0.56), Simpson (Y = 2.20x + 2.09; R2 = 0.33), and Shannon index (Y = 1.11x + 4.64; R2 = 0.59), revealed a linear and negative correlation with biogas production. Based on KEGG level 3, several dominant functional pathways associated with Oxidative phosphorylation (ko00190) (25.09, 24.25, 24.04%), methane metabolism (ko00680) (30.58, 32.13, and 32.89%), and Carbon fixation pathways in prokaryotes (ko00720) (27.07, 26.47, and 26.29%), were identified at 15 °C, 25 °C and 35 °C. The regulation of biogas production by temperature possibly occurs through enhancement of central function pathways while decreasing the diversity of functional pathways. Therefore, the methanogenesis and associated processes received the majority of cellular resources and activities, thereby improving the effectiveness of substrate conversion to biogas. The findings of this study illustrated the crucial role of central function pathways in the effective functioning of these systems.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co. Ltd. Lanzhou 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Lu Y, Chen R, Huang L, Wang X, Chou S, Zhu J. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. J Biotechnol 2023; 374:114-121. [PMID: 37579845 DOI: 10.1016/j.jbiotec.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
As a renewable carbon source produced from organic wastes by acidogenic fermentation, volatile fatty acids (VFAs) are important intermediates in chemical and biological fields and beneficial to resource recovery and carbon neutrality. Maximizing VFA production by some strategies without additional chemicals is critical to increasing economic and environmental benefits. In this study, the effects of initial organic load (OL) on the performance of VFA production, variations of intermediate metabolites, and the thermogravimetric properties of potato peel waste (PPW) during batch acidogenic fermentation were studied. The results showed that the concentration of VFAs increased with the increase of initial OL, while the VFA yield decreased with the increase of initial OL. When the initial OL was in the range of 28.4 g VS/L-91.3 g VS/L, the fermentation type of PPW was butyric acid fermentation. The highest butyric acid proportion of 61.3% was achieved with the initial OL of 71.5 g VS/L. With the increase of initial OL, the proportion of acetic acid and the utilization rate of protein in the PPW decreased. VFAs were produced from proteins and carbohydrates in the early stage and mainly produced from carbohydrates in the later stage. The production efficiency of VFA was relatively high with the initial OL of 71.5 g VS/L, because more easily-biodegradable compounds were solubilized. The results showed that suitably increased initial OL could accelerate acidogenesis, reduce hydrolysis time, and increase the proportion of butyric acid. The findings in this work suggest that PPW is a promising feedstock for butyric acid biosynthesis and appropriate initial OL is beneficial to VFA production.
Collapse
Affiliation(s)
- Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Jiasixie Agronomy College of Weifang University of Science and Technology, Shouguang 262700, China
| | - Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Santao Chou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
4
|
Liu S, Wang Q, Li Y, Ma X, Zhu W, Wang N, Sun H, Gao M. Highly efficient oriented bioconversion of food waste to lactic acid in an open system: Microbial community analysis and biological carbon fixation evaluation. BIORESOURCE TECHNOLOGY 2023; 370:128398. [PMID: 36496318 DOI: 10.1016/j.biortech.2022.128398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The valorization of organic solid waste to lactic acid (LA) in open fermentation systems has attracted tremendous interest in recent years. In this study, a highly efficient oriented LA bioconversion system from food waste (FW) in open mode was established. The maximum LA production was 115 g/L, with a high yield of 0.97 g-LA/g-total sugar. FW is a low-cost feedstock for LA production, containing indigenous hydrolysis and LA-producing bacteria (LAB). Saccharification and real-time pH control were found to be essential for maintaining LAB dominantly in open systems. Furthermore, microbial community analysis revealed that Enterococcus mundtii adapted to complex FW substrates and dominated the subsequent bioconversion process. The oriented LA bioconversion exhibited the capacity for biological carbon fixation by reducing CO2 emissions by at least 21 kg per ton of FW under anaerobic conditions.
Collapse
Affiliation(s)
- Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 10083, China
| | - Yuan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Ma
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 10083, China.
| |
Collapse
|
5
|
Ore OT, Akeremale OK, Adeola AO, Ichipi E, Olubodun KO. Production and Kinetic Studies of Biogas from Anaerobic Digestion of Banana and Cassava Wastes. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Moyo L, Simate G, Mutsatsa T. Biological acidification of pig manure using banana peel waste to improve the dissolution of particulate phosphorus: A critical step for maximum phosphorus recovery as struvite. Heliyon 2022; 8:e10091. [PMID: 36061013 PMCID: PMC9433603 DOI: 10.1016/j.heliyon.2022.e10091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Traditional disposal of agricultural bio-waste such as pig manure and banana peel waste poses an environmental nuisance. The uncontrolled disintegration of these waste materials decomposes to toxic effluent and methane a greenhouse gas twenty-one times more potent than carbon dioxide at trapping heat in the atmosphere, which is detrimental to the climate by elevating temperatures. Agricultural bio-waste is rich in nutrients that include nitrogen and phosphorus. Selectively separating these nutrients from the solid phase to produce high value products has been envisaged as an effective method of waste valorisation. This study aims to investigate the solubilisation of phosphorus (P) during anaerobic digestion (AD) of pig manure with banana peel waste as the co-substrate. The objective was to enhance the biological dissolution of the phosphorus from solid pig manure to the aqueous phase as this is envisaged to subsequently ease the recovery of P as a concentrated product via crystallization. Thereafter, phosphorus is used as a slow-release mineral fertilizer. Biological acidification was effective in reducing the pH to less than 6.50 from an initial pH of 7.28 at higher doses of BPW >100 g/L. Maximum dissolution of total phosphorus of 75% was observed at a pH of 5.40. Multiple regression analysis was used to correlate pH, banana peel waste concentration, and the anaerobic digestion time (ADT) to optimize the dissolution of P as this was deduced to be occurring at a low pH. A 2nd order polynomial was deduced to best fit the data with an R2 value of 0.90. The p values for the HRT and banana peel waste concentration were both <0.05 showing that both variables had a strong influence on the pH.
Collapse
Affiliation(s)
- L.B. Moyo
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
- Department of Chemical Engineering, National University of Science and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe
| | - G.S. Simate
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - T. Mutsatsa
- Department of Chemical Engineering, National University of Science and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe
| |
Collapse
|
7
|
Torres-Alvarez D, León-Buitimea A, Albalate-Ramírez A, Rivas-García P, Hernández-Núñez E, Morones-Ramírez JR. Conversion of banana peel into diverse valuable metabolites using an autochthonous Rhodotorula mucilaginosa strain. Microb Cell Fact 2022; 21:96. [PMID: 35643468 PMCID: PMC9148461 DOI: 10.1186/s12934-022-01834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Low-cost substrates are an exciting alternative for bioprocesses; however, their complexity can affect microorganism metabolism with non-desirable outcomes. This work evaluated banana peel extract (BPE) as a growth medium compared to commercial Yeast-Malt (YM) broth in the native and non-conventional yeast Rhodotorula mucilaginosa UANL-001L. The production of carotenoids, fatty acids, and exopolysaccharides (EPS) was also analyzed. Biomass concentration (3.9 g/L) and growth rate (0.069 g/h) of Rhodotorula mucilaginosa UANL-001L were obtained at 200 g/L of BPE. Yields per gram of dry biomass for carotenoids (317 µg/g) and fatty acids (0.55 g/g) showed the best results in 150 g/L of BPE, while 298 µg/g and 0.46 mg/g, respectively, were obtained in the YM broth. The highest yield of EPS was observed in 50 g/L of BPE, a two-fold increase (160.1 mg/g) compared to the YM broth (76.3 mg/g). The fatty acid characterization showed that 100 g/L of BPE produced 400% more unsaturated compounds (e.g., oleic and ricinoleic acid) than the YM broth. Altogether, these results indicate that BPE is a suitable medium for producing high-value products with potential industrial applications.
Collapse
|
8
|
Song L, Yang D, Liu R, Liu S, Dai L, Dai X. Microbial production of lactic acid from food waste: Latest advances, limits, and perspectives. BIORESOURCE TECHNOLOGY 2022; 345:126052. [PMID: 34592459 DOI: 10.1016/j.biortech.2021.126052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
A significant amount of food waste (FW) is produced every year. If it is not disposed of timeously, human health and the ecological environment can be negatively affected. Lactic acid (LA), a high value-added product, can be produced by fermentation from FW as a substrate, realizing the concurrent treatment and recycling of FW, which has attracted increasing research interest. In this paper, the latest advances and deficiencies were presented from the following aspects: microorganisms involved in LA fermentation and the metabolic pathways of Lactobacillus, fermentation conditions, and methods of enhanced biotransformation and LA separation. The limitations of the LA fermentation of FW are mainly associated with low LA concentration and yield, the low purity of L(+)-LA, and the high separation costs. The establishment of biorefineries of FW with lactic acid as the target product is the future development direction, but there are still many research studies to be done.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingling Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Oladzad S, Fallah N, Mahboubi A, Afsham N, Taherzadeh MJ. Date fruit processing waste and approaches to its valorization: A review. BIORESOURCE TECHNOLOGY 2021; 340:125625. [PMID: 34332444 DOI: 10.1016/j.biortech.2021.125625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
In the Middle East and North Africa, dates are a traditional and economically valuable crop, playing an essential role in people's daily diets. Date fruit production and related processing industry generate a large quantity of waste; for illustration, the date juicing industry produces roughly 17-28% Date press cake (DPC), which is mainly discarded in open lands and drains. Considering the generation volume and the nutrient content of DPC, this organic by-product stream can be valorized through the production of a wide range of products with a great market appeal, such as volatile fatty acids, activated carbon, organic acids, etc. To provide an insight into the feasibility of the application DPC as a green precursor for various chemical and biological processes, the chemical and nutritional composition of dates and DPC, an overview of the date processing industries, and common practices conducted for DPC valorization addressed and thoroughly discussed, in this review.
Collapse
Affiliation(s)
- Sepideh Oladzad
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden; Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | | |
Collapse
|
10
|
Pan Y, Zheng X, Xiang Y. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing. BIORESOURCE TECHNOLOGY 2021; 340:125709. [PMID: 34375790 DOI: 10.1016/j.biortech.2021.125709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The characterized microbial consortium can efficiently degrade rice straw to produce acetic and butyric acids in high yields. The rice straw lost 86.9% in weight and degradation rates of hemicellulose, cellulose, and lignin attained were 97.1%, 86.4% and 70.3% within 12 days, respectively. During biodegradation via fermentation of rice straw, average concentrations of acetic and butyric acids reached 1570 mg/L and 1270 mg/L, accounting for 47.2% and 35.4% of the total volatile fatty acids, respectively. The consortium mainly composed of Prevotella, Cellulosilyticum, Pseudomonas, Clostridium and Ruminococcaceae, etc. Metagenomic analyses indicated that glycoside hydrolases (GHs) were the largest enzyme group with a relative abundance of 54.5%. Various lignocellulose degrading enzymes were identified in the top 30 abundant GHs, and were primarily distributed in the dominant genera (Prevotella, Cellulosilyticum and Clostridium). These results provide a new route for the commercial recycling of rice straw to produce organic acids.
Collapse
Affiliation(s)
- Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Xuntao Zheng
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yang Xiang
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Fazzino F, Mauriello F, Paone E, Sidari R, Calabrò PS. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. CHEMOSPHERE 2021; 271:129602. [PMID: 33453477 DOI: 10.1016/j.chemosphere.2021.129602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The management of the huge amount of orange peel waste (OPW) is a complex issue although it has a very high potential in terms of biorefining. One of the main problems in the valorisation of OPW is the seasonality of its production with the ensiling method being largely proposed as a possible solution. During the ensiling process, value added chemicals including lactic acid, acetic acid and ethanol are spontaneously produced together with a significant loss of volatile solids (VS) . In this contribution, the stimulation of lactic acid bacteria by either a biological (inoculation with leachate coming from a previous ensiling process) or chemical (MnCl2 supplementation) methods has been tested with the aim to increase the chemicals production preventing, at the same time, the VS loss. The inoculation with the leachate improves both the VS recovery (+7%) and the concentration of lactic acid (+113%) with respect to the uninoculated one (control). The overall yields of the process are noticeable, up to about 55 g·kgTS-1 of lactic acid, 26 g·kgTS-1 of acetic acid and 120 g g·kgTS-1 of ethanol have been produced. On the other hand, the chemical stimulation enhances the production of liquid products together with a significant VS loss. The proposed preservation method, due to its simplicity, can be easily implemented at full-scale allowing the production of added-value chemicals and the concurrent storage of the OPW that can be further valorised (e.g. animal feed, pectin or biomethane production).
Collapse
Affiliation(s)
- Filippo Fazzino
- Università Degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, Loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Francesco Mauriello
- Università Degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, Loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Emilia Paone
- Università Degli Studi di Firenze, Dipartimento di Ingegneria Industriale (DIEF), Via di S. Marta 3, I-50139, Firenze, Italy
| | - Rossana Sidari
- Università Degli Studi Mediterranea di Reggio Calabria, Department Agraria, Loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Paolo S Calabrò
- Università Degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, Loc. Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
12
|
Li C, Ong KL, Cui Z, Sang Z, Li X, Patria RD, Qi Q, Fickers P, Yan J, Lin CSK. Promising advancement in fermentative succinic acid production by yeast hosts. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123414. [PMID: 32763704 DOI: 10.1016/j.jhazmat.2020.123414] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 05/22/2023]
Abstract
As a platform chemical with various applications, succinic acid (SA) is currently produced by petrochemical processing from oil-derived substrates such as maleic acid. In order to replace the environmental unsustainable hydrocarbon economy with a renewable environmentally sound carbohydrate economy, bio-based SA production process has been developed during the past two decades. In this review, recent advances in the valorization of solid organic wastes including mixed food waste, agricultural waste and textile waste for efficient, green and sustainable SA production have been reviewed. Firstly, the application, market and key global players of bio-SA are summarized. Then achievements in SA production by several promising yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica are detailed, followed by calculation and comparison of SA production costs between oil-based substrates and raw materials. Lastly, challenges in engineered microorganisms and fermentation processes are presented together with perspectives on the development of robust yeast SA producers via genome-scale metabolic optimization and application of low-cost raw materials as fermentation substrates. This review provides valuable insights for identifying useful directions for future bio-SA production improvement.
Collapse
Affiliation(s)
- Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhenyu Sang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Li
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Raffel Dharma Patria
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech., Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Lian T, Zhang W, Cao Q, Wang S, Dong H. Enhanced lactic acid production from the anaerobic co-digestion of swine manure with apple or potato waste via ratio adjustment. BIORESOURCE TECHNOLOGY 2020; 318:124237. [PMID: 33091690 DOI: 10.1016/j.biortech.2020.124237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The valorization of organic waste into lactic acid (LA) via co-digestion has attracted tremendous research interests in recent years. This study investigated the feasibility of intensifying the LA accumulation from anaerobic digestion (AD) of swine manure (SM) by adding apple waste (AW) or potato waste (PW). Results indicated that AW or PW obviously enhanced the accumulation of LA, and when the optimal mixing ratio of AW or PW to SM of 75:25, the maximum concentrations of LA were 27.61 and 8.91 g COD/L, which were around 3.53- and 1.14-folds of that of the mono-digestion of SM, respectively. Meanwhile, the co-digestion of SM and AW showed significantly higher LA production than that of SM and PW (p < 0.05). High reducing sugar content of AW contributed to LA accumulation in AD process. In addition, AW increased the relative abundance of Lactobacillus and Clostridium, thus benefited the production of LA.
Collapse
Affiliation(s)
- Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
14
|
Lu Y, Zhang Q, Wang X, Zhou X, Zhu J. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. BIORESOURCE TECHNOLOGY 2020; 316:123851. [PMID: 32738559 DOI: 10.1016/j.biortech.2020.123851] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, potato peel waste was used as feedstock to produce volatile fatty acids (VFAs) by anaerobic digestion. The effects of different pH levels (pH 5.0, pH 7.0, pH 11.0, and uncontrolled pH) on VFA concentration and composition, intermediate products, and metabolic state were evaluated. The results showed that the highest total VFA production was achieved with pH 7.0 (41.9 g COD/L and 632.2 mg COD/g VSfed), followed by that with uncontrolled pH. Butyric acid was the dominant product under acidic pH, whereas acetic acid dominated under alkaline pH. The type of acidogenic fermentation at pH 7.0 was the mixed-acid type. The change in NADH level in the mixed-acid type of fermentation consisted of small fluctuations, enhancing the stability and efficiency of fermentation. The enzymatic activities of acetate kinase and butyrate kinase were slightly inhibited at pH 5.0 and 11.0, resulting in relatively low VFAs production.
Collapse
Affiliation(s)
- Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China.
| |
Collapse
|
15
|
Peinemann JC, Rhee C, Shin SG, Pleissner D. Non-sterile fermentation of food waste with indigenous consortium and yeast - Effects on microbial community and product spectrum. BIORESOURCE TECHNOLOGY 2020; 306:123175. [PMID: 32192963 DOI: 10.1016/j.biortech.2020.123175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
This work presents examples of non-sterile mixed culture fermentation of food waste with a cultivated indigenous consortium (IC) gained from food waste, which produces lactic and acetic acids, combined with Saccharomyces cerevisiae, which produces ethanol. All results are flanked by microbial analysis to monitor changes in microbial community. At pH 6 and inoculated with yeast or IC, or both mixed sugars conversion was equal to 71%, 51%, or 67%, respectively. Under pH unregulated conditions metabolic yields were 71%, 67%, or up to 81%. While final titer of acetic acid was not affected by pH (100-200 mM), ethanol and lactic acid titers were. Using mixed culture and pH 6, sugars were almost equally used for formation of ethanol and lactic acid (400-500 mM). However, under pH unregulated conditions 80% of the substrate was converted into ethanol (900-1000 mM).
Collapse
Affiliation(s)
- Jan Christoph Peinemann
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany
| | - Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, 6 Naedong-ro 139beon-gil, Naedong-myeon, Jinju, South Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, 6 Naedong-ro 139beon-gil, Naedong-myeon, Jinju, South Korea
| | - Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany; Institute for Food and Environmental Research, Papendorfer Weg 3, 14806 Bad Belzig, Germany.
| |
Collapse
|
16
|
Utilizing Gelatinized Starchy Waste from Rice Noodle Factory as Substrate for L(+)-Lactic Acid Production by Amylolytic Lactic Acid Bacterium Enterococcus faecium K-1. Appl Biochem Biotechnol 2020; 192:353-366. [PMID: 32382944 DOI: 10.1007/s12010-020-03314-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
To valorize starchy waste from rice noodle factory, bioconversion of gelatinized starchy waste (GSW) to value-added product as L(+)-lactic acid, the monomer for polylactate synthesis, was investigated using amylolytic lactic acid bacterium, Enterococcus faecium K-1. Screening for appropriate nitrogen source to replace expensive organic nitrogen sources revealed that corn steep liquor (CSL) was the most suitable regarding high efficacy for L(+)-LA achievement and low-cost property. The successful applying statistic experimental design, Plackett-Burman design incorporated with central composite design (CCD), predicted the maximum L(+)-LA of 93.07 g/L from the optimized medium (OM) containing 125.7 g/L GSW and 207.3 g/L CSL supplemented with CH3COONa, MgSO4, MnSO4, K2HPO4, CaCl2, (NH4)2HC6H5O7, and Tween80. Minimizing the medium cost by removal of all inorganic salts and Tween80 from OM was not an effect on L(+)-LA yield. Fermentation using the optimized medium without minerals (OM-Mi) containing only GSW (125.7 g/L) and CSL (207.3 g/L) in a 10-L fermenter was also successful. Thinning GSW with α-amylase from Lactobacillus plantarum S21 increased L(+)-LA productivity in the early stage of 24-h fermentation. Not only showing the feasible bioconversion process for GSW utilizing as a substrate for L(+)-LA production, this research also demonstrated the efficient model for industrial starchy waste valorization.
Collapse
|
17
|
Zhao L, Cheng L, Deng Y, Li Z, Hong Y, Li C, Ban X, Gu Z. Study on rapid drying and spoilage prevention of potato pulp using solid-state fermentation with Aspergillus aculeatus. BIORESOURCE TECHNOLOGY 2020; 296:122323. [PMID: 31698224 DOI: 10.1016/j.biortech.2019.122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Effects of solid-state fermentation on rapid drying and spoilage prevention of potato pulp were evaluated. Pectin hydrolyzing and antibacterial ability of pectinase-secreting Aspergillus aculeatus and Bacillus subtilis were compared. A. aculeatus grew better in potato pulp, with highest pectinase yield of 342.71 ± 5.09 U/mL and rapid pH reduction to 3.76 ± 0.01. Next generation sequencing showed that the abundance of genera Candida and Enterobacter, which probably caused undesirable fermentation and spoilage, were significantly reduced after inoculation with A. aculeatus. In addition, fermentation with A. aculeatus significantly reduced water holding capacity from 16.63 ± 0.36 g/g to 7.78 ± 0.12 g/g, which resulted in lower viscosity and water binding capacity, and concomitantly significantly decreased moisture content from 76.05 ± 0.24% to 12.95 ± 0.19% after filtration and airflow drying. These results suggested that solid-state fermentation might be a promising technology for efficient processing and utilization of potato pulp.
Collapse
Affiliation(s)
- Liyao Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
|
19
|
Diversity and Biotechnological Potential of Xylan-Degrading Microorganisms from Orange Juice Processing Waste. WATER 2019. [DOI: 10.3390/w11020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The orange juice processing sector produces worldwide massive amounts of waste, which is characterized by high lignin, cellulose and hemicellulose content, and which exceeds 40% of the fruit’s dry weight (d.w.). In this work, the diversity and the biotechnological potential of xylan-degrading microbiota in orange juice processing waste were investigated through the implementation of an enrichment isolation strategy followed by enzyme assays for the determination of xylanolytic activities, and via next generation sequencing for microbial diversity identification. Intracellular rather than extracellular endo-1,4-β-xylanase activities were detected, indicating that peripheral cell-bound (surface) xylanases are involved in xylan hydrolysis by the examined microbial strains. Among the isolated microbial strains, bacterial isolates belonging to Pseudomonas psychrotolerans/P. oryzihabitans spectrum (99.9%/99.8% similarity, respectively) exhibited activities of 280 U/mg protein. In contrast, almost all microbial strains isolated exerted low extracellular 1,4-β-xylosidase activities (<5 U/mg protein), whereas no intracellular 1,4-β-xylosidase activities were detected for any of them. Illumina data showed the dominance of lactic and acetic acid bacteria and of the yeasts Hanseniaspora and Zygosaccharomyces. This is the first report on indigenous xylanolytic microbiota isolated from orange juice processing waste, possessing the biotechnological potential to serve as biocatalysts for citrus biomass valorization through the production of high-added value products and energy recovery.
Collapse
|
20
|
|
21
|
Bonk F, Bastidas-Oyanedel JR, Yousef AF, Schmidt JE. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. BIORESOURCE TECHNOLOGY 2017; 238:416-424. [PMID: 28458175 DOI: 10.1016/j.biortech.2017.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
Carboxylic acid production from food waste by mixed culture fermentation is an important future waste management option. Obstacles for its implementation are the need of pH control, and a broad fermentation product spectrum leading to increased product separation costs. To overcome these obstacles, the selective production of lactic acid (LA) from model food waste by uncontrolled pH fermentation was tested using different reactor configurations. Batch experiments, semi-continuously fed reactors and a percolation system reached LA concentrations of 32, 16 and 15gCODLA/L, respectively, with selectivities of 93%, 84% and 75% on COD base, respectively. The semi-continuous reactor was dominated by Lactobacillales. Our techno-economic analysis suggests that LA production from food waste can be economically feasible, with LA recovery and low yields remaining as major obstacles. To solve both problems, we successfully applied in-situ product extraction using activated carbon.
Collapse
Affiliation(s)
- Fabian Bonk
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates; UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Ahmed F Yousef
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
García C, Rendueles M, Díaz M. Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess Biosyst Eng 2017; 40:1111-1122. [PMID: 28451809 DOI: 10.1007/s00449-017-1773-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Pseudomonas taetrolens has recently been revealed as an effective microbial producer of lactobionic acid from carbohydrates contained in dairy byproducts. In terms of food industrial applications, the implementation of lactobionic acid biosynthesis coupled with the classic bacterial production of lactic acid appears an important goal. This research paper studies the simultaneous fermentation of residual cheese whey by P. taetrolens and Lactobacillus casei to co-produce lactic and lactobionic acids. Experimental data showed the importance of the interactions established between the two microorganisms. Changes in physiology, viability, growth, and productive capacity were tested experimentally. Lactobacillus was not seen to suffer any appreciable stress, but considerable variations were observed in the Pseudomonas behavior presumably owing to inhibitory lactic metabolites, interaction that can be classified as microbial amensalism. As to production, lactic acid remained without significant changes in mixed fermentations, whereas the production of lactobionic acid decreased sharply due to the competitive exclusion of Pseudomonas.
Collapse
Affiliation(s)
- Cristina García
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071, Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, 33071, Oviedo, Spain.
| |
Collapse
|
23
|
Nunes LV, de Barros Correa FF, de Oliva Neto P, Mayer CRM, Escaramboni B, Campioni TS, de Barros NR, Herculano RD, Fernández Núñez EG. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture. World J Microbiol Biotechnol 2017; 33:79. [PMID: 28341908 DOI: 10.1007/s11274-017-2240-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L-1) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L-1) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L-1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.
Collapse
Affiliation(s)
- Luiza Varela Nunes
- Grupo de Engenharia de Bioprocessos, Departamento de Ciências Biológicas, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Fabiane Fernanda de Barros Correa
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Pedro de Oliva Neto
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Cassia Roberta Malacrida Mayer
- Laboratório de Química de Alimentos e Nanobiotecnologia, Departamento de Biotecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus-Assis, Avenida Dom Antonio 2100, Bairro Parque Universitário, Assis, SP, 19806-900, Brazil
| | - Bruna Escaramboni
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Tania Sila Campioni
- Laboratório de Biotecnologia Industrial, Departamento de Biotecnologia, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil
| | - Natan Roberto de Barros
- Instituo de Química - Araraquara, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Araraquara, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Rondinelli Donizetti Herculano
- Instituo de Química - Araraquara, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Araraquara, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Grupo de Engenharia de Bioprocessos, Departamento de Ciências Biológicas, Universidade Estadual Paulista 'Júlio de Mesquita Filho' Campus-Assis, Avenida Dom Antônio, 2100, Assis, SP, 19806-900, Brazil.
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
24
|
Tang J, Wang XC, Hu Y, Zhang Y, Li Y. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. BIORESOURCE TECHNOLOGY 2017; 224:544-552. [PMID: 27939870 DOI: 10.1016/j.biortech.2016.11.111] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Effect of acidic pH (4, 5, 6 and uncontrolled) on lactic acid (LA) fermentation from food waste was investigated by batch fermentation experiments using methanogenic sludge, fresh food waste and anaerobic activated sludge as inocula. Results showed that due to the increase of hydrolysis, substrate degradation rate and enzyme activity, the optimal LA concentration and yield were obtained at pH 5, regardless of the inoculum used. The highest LA concentration (28.4g/L) and yield (0.46g/g-TS) were obtained with fresh food waste as inoculum. Moreover, after the substrate was completely utilized, the lactic acid bacteria population sharply decreased, and the LA produced was converted to volatile fatty acids (VFAs) at pH 6 within a short period. The VFA components varied with the inoculum supplied. Microbial community analysis using high-throughput pyrosequencing revealed that diversity decreased and a high abundance of Lactobacillus (83.4-98.5%) accumulated during fermentation with all inocula.
Collapse
Affiliation(s)
- Jialing Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Yisong Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Yongmei Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; Taiyuan University of Technology, Shanxi Province, Taiyuan 030054, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| |
Collapse
|