1
|
Liu X, Ahmad S, Ma J, Wang D, Tang J. Comparative study on the toxic effects of secondary nanoplastics from biodegradable and conventional plastics on Streptomyces coelicolor M145. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132343. [PMID: 37639795 DOI: 10.1016/j.jhazmat.2023.132343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Because of the excellent properties, plastics have been widely used in the past decades and caused serious environmental issues. As an excellent substitute for conventional plastics, the biodegradable plastics have attracted increasing attention. However, biodegradable plastics may produce more micro/nanoplastics in the short time compared with conventional plastics, and cause more serious ecological risks. In this study, the short-term toxicity of nanoplastics released from biodegradable and conventional plastics on Streptomyces coelicolor M145 was investigated. After 30 days of degradation, the biodegradable microplastics, polylactic acid (PLA) and polyhydroxyalkanoates (PHA) released more secondary nanoplastics than conventional microplastics, polystyrene (PS). After exposure, PLA and PHA nanoplastics showed significant toxicity to M145. The survival rate of M145 cells was 16.1% after treatment with PLA nanoplastics for 7 days (PLA-7). The toxicity of PHA was lower than that of PLA. This might have been due to the agglomeration of PHA nanoplastics in the solution. Compared with the controls, the PS secondary nanoplastics showed no significant toxicity to M145. After the treatment, the production of antibiotics, actinorhodin (ACT) and undecylprodigiosin (RED), significantly increased. The yields of ACT and RED reached their maximum values after treatment with PLA-7, which were 4.2-fold and 2.1-fold higher than those of the controls, respectively. The addition of biodegradable nanoplastics significantly increased the expression of these key pathway-specific regulatory genes, leading to increased antibiotic production. This study provides toxicological insights into the impacts of conventional and biodegradable microplastics on S. coelicolor.
Collapse
Affiliation(s)
- Xiaomei Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingkang Ma
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Araújo RG, Zavala NR, Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Parra-Arroyo L, Rodríguez-Hernández JA, Martínez-Prado MA, Sosa-Hernández JE, Martínez-Ruiz M, Chen WN, Barceló D, Iqbal HM, Parra-Saldívar R. Recent Advances in Prodigiosin as a Bioactive Compound in Nanocomposite Applications. Molecules 2022; 27:4982. [PMID: 35956931 PMCID: PMC9370345 DOI: 10.3390/molecules27154982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.
Collapse
Affiliation(s)
- Rafael G. Araújo
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Natalia Rodríguez Zavala
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico
| | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza 66455, Mexico
| | - Mario E. Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - María Adriana Martínez-Prado
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637457, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, UPES, Dehradun 248007, India
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, Monterrey 64849, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Liu X, Ma J, Guo S, Shi Q, Tang J. The combined effects of nanoplastics and dibutyl phthalate on Streptomyces coelicolor M145. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154151. [PMID: 35231524 DOI: 10.1016/j.scitotenv.2022.154151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The environmental and human health risks posed by nanoplastics have attracted considerable attention; however, research on the combined toxicity of nanoplastics and plasticizers is limited. This study analyzed the combined effects of nanoplastics and dibutyl phthalate (DBP) on Streptomyces coelicolor M145 (herein referred to as M145) and its mechanism. The results demonstrated that when the concentration of both nanoplastics and DBP was 1 mg/L, the co-addition was not toxic to M145. When the DBP concentration increased to 5 mg/L, the combined toxicity of 1 mg/L nanoplastics and 5 mg/L DBP reduced when compared to the 5 mg/L DBP treatment group. Similarly, the combined toxicity of 10 mg/L nanoplastics and 1 mg/L DBP on M145 was also lower than that of only 10 mg/L nanoplastics. The co-addition of 10 mg/L nanoplastics and 5 mg/L DBP resulted in the lowest survival rate (41.3%). The key reason for differences in cytotoxicity were variations in the agglomeration of nanoplastics and the adsorption of DBP on nanoplastics. The combination of 10 mg/L nanoplastics and 5 mg/L DBP maximized the production of antibiotics; actinorhodin and undecylprodigiosin yields were 3.5 and 1.8-fold higher than that of the control, respectively. This indicates that the excessive production of antibiotics may be a protective mechanism for bacteria. This study provides a new perspective for assessing the risk of co-exposure to nanoplastics and organic contaminants on microorganisms in nature.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingkang Ma
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Saisai Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Lee HS, Lee HJ, Kim SH, Cho JY, Suh MJ, Ham S, Bhatia SK, Gurav R, Kim YG, Lee EY, Yang YH. Novel phasins from the Arctic Pseudomonas sp. B14-6 enhance the production of polyhydroxybutyrate and increase inhibitor tolerance. Int J Biol Macromol 2021; 190:722-729. [PMID: 34506862 DOI: 10.1016/j.ijbiomac.2021.08.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023]
Abstract
Phasin (PhaP), one of the polyhydroxyalkanoate granule-associated protein, enhances cell growth and polyhydroxybutyrate (PHB) biosynthesis by regulating the number and size of PHB granules. However, few studies have applied phasins to various PHB production conditions. In this study, we identified novel phasin genes from the genomic data of Arctic soil bacterium Pseudomonas sp. B14-6 and determined the role of phaP1Ps under different PHB production conditions. Transmission electron microscopy and gel permeation chromatography revealed small PHB granules with high-molecular weight, while differential scanning calorimetry showed that the extracted PHB films had similar thermal properties. The phasin protein derived from Pseudomonas sp. B14-6 revealed higher PHB production and exhibited higher tolerance to several lignocellulosic biosugar-based inhibitors than the phasin protein of Ralstonia eutropha H16 in a recombinant Escherichia coli strain. The increased tolerance to propionate, temperature, and other inhibitors was attributed to the introduction of phaP1Ps, which increased PHB production from lignocellulosic hydrolysate (2.39-fold) in the phaP1Ps strain. However, a combination of phasin proteins isolated from two different sources did not increase PHB production. These findings suggest that phasin could serve as a powerful means to increase robustness and PHB production in heterologous strains.
Collapse
Affiliation(s)
- Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
6
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis. Molecules 2021; 26:molecules26092510. [PMID: 33923072 PMCID: PMC8123281 DOI: 10.3390/molecules26092510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
Collapse
|
8
|
Liu X, Ma J, Yang C, Wang L, Tang J. The toxicity effects of nano/microplastics on an antibiotic producing strain - Streptomyces coelicolor M145. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142804. [PMID: 33131862 DOI: 10.1016/j.scitotenv.2020.142804] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
The toxic effects of nano/microplastics on microorganisms are still unclear. In this study, Streptomyces coelicolor (S. coelicolor) M145 was selected to study the toxicity and mechanism of nano/microplastics (20 nm, 100 nm, 1 μm and 1 mm) at concentration of 0.1, 1 and 10 mg/L on microorganisms. Results showed that the cytotoxicity, reactive oxygen species (ROS) level, permeability, and antibiotic production of M145 cells changed significantly after the addition of nano/microplastics, and the trends were size and concentration dependent. After M145 was exposed to 10 mg/L of 20 nm nanoplastics, its fatality rate was 64.8%, which was the highest among the particle size of 20 nm to 1 mm at a concentration of 0.1-10 mg/L. And the ROS level and cell permeability also reached their highest values, which was about 2.7 folds and 2.2 folds of control, respectively. After this treatment, the maximum yields of actinorhodin and undecylprodigiosin were 6.7 and 5.3 mg/L, respectively. Transcriptome analysis indicated that nanoplastics could inhibit the transport capacity, primary metabolism, and oxidative phosphorylation of M145, and that the inhibition extend was negatively related to the particle size. Moreover, the toxicity of microplastics to M145 was significantly less than that of nanoplastics. This study provides a new perspective for understanding the toxicity of nano/microplastics on microorganisms in nature.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingkang Ma
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chengliang Yang
- BCIG Environmental Remediation Co., Ltd, Tianjin 300042, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Park YL, Choi TR, Kim HJ, Song HS, Lee HS, Park SL, Lee SM, Kim SH, Park S, Bhatia SK, Gurav R, Sung C, Seo SO, Yang YH. NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes. J Microbiol Biotechnol 2021; 31:250-258. [PMID: 33148940 PMCID: PMC9705875 DOI: 10.4014/jmb.2009.09017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Serom Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 0509, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 1662, Republic of Korea,S.O. Seo Fax: +82-2-2164-4316 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 0509, Republic of Korea,Corresponding authors Y.H. Yang Fax: +82-2-3437-8360 E-mail:
| |
Collapse
|
10
|
Effects of a Δ-9-fatty acid desaturase and a cyclopropane-fatty acid synthase from the novel psychrophile Pseudomonas sp. B14-6 on bacterial membrane properties. J Ind Microbiol Biotechnol 2020; 47:1045-1057. [PMID: 33259029 DOI: 10.1007/s10295-020-02333-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Psychrophilic bacteria, living at low and mild temperatures, can contribute significantly to our understanding of microbial responses to temperature, markedly occurring in the bacterial membrane. Here, a newly isolated strain, Pseudomonas sp. B14-6, was found to dynamically change its unsaturated fatty acid and cyclic fatty acid content depending on temperature which was revealed by phospholipid fatty acid (PLFA) analysis. Genome sequencing yielded the sequences of the genes Δ-9-fatty acid desaturase (desA) and cyclopropane-fatty acid-acyl-phospholipid synthase (cfa). Overexpression of desA in Escherichia coli led to an increase in the levels of unsaturated fatty acids, resulting in decreased membrane hydrophobicity and increased fluidity. Cfa proteins from different species were all found to promote bacterial growth, despite their sequence diversity. In conclusion, PLFA analysis and genome sequencing unraveled the temperature-related behavior of Pseudomonas sp. B14-6 and the functions of two membrane-related enzymes. Our results shed new light on temperature-dependent microbial behaviors and might allow to predict the consequences of global warming on microbial communities.
Collapse
|
11
|
Song HS, Choi TR, Bhatia SK, Lee SM, Park SL, Lee HS, Kim YG, Kim JS, Kim W, Yang YH. Combination Therapy Using Low-Concentration Oxacillin with Palmitic Acid and Span85 to Control Clinical Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9100682. [PMID: 33049970 PMCID: PMC7599641 DOI: 10.3390/antibiotics9100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
The overuse of antibiotics has led to the emergence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). MRSA is difficult to kill with a single antibiotic because it has evolved to be resistant to various antibiotics by increasing the PBP2a (mecA) expression level, building up biofilm, introducing SCCmec for multidrug resistance, and changing its membrane properties. Therefore, to overcome antibiotic resistance and decrease possible genetic mutations that can lead to the acquisition of higher antibiotic resistance, drug combination therapy was applied based on previous results indicating that MRSA shows increased susceptibility to free fatty acids and surfactants. The optimal ratio of three components and the synergistic effects of possible combinations were investigated. The combinations were directly applied to clinically isolated strains, and the combination containing 15 μg/mL of oxacillin was able to control SCCmec type III and IV isolates having an oxacillin minimum inhibitory concentration (MIC) up to 1024 μg/mL; moreover, the combination with a slightly increased oxacillin concentration was able to kill SCCmec type II. Phospholipid analysis revealed that clinical strains with higher resistance contained a high portion of 12-methyltetradecanoic acid (anteiso-C15:0) and 14-methylhexadecanoic acid (anteiso-C17:0), although individual strains showed different patterns. In summary, we showed that combinatorial therapy with a low concentration of oxacillin controlled different laboratory and highly diversified clinical MRSA strains.
Collapse
Affiliation(s)
- Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
- Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 511 Sangdo-dong, Seoul 156-743, Korea;
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
- Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, Korea
- Correspondence:
| |
Collapse
|
12
|
Liu X, Tang J, Wang L, Liu R. Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137582. [PMID: 32146398 DOI: 10.1016/j.scitotenv.2020.137582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 05/24/2023]
Abstract
The toxic effects of multi-nanomaterial systems are receiving increasing attention owing to their inevitable release of various nanomaterials. Knowledge of the bioavailability of the new carbon material ball-milled biochar (BMB) and its synergistic toxicity with metal oxide nanoparticles in bacteria is currently limited. In this study, the interactions of BMB with copper oxide nanoparticles (CuO NPs) and their synergistic toxicity towards Streptomyces coelicolor M145 were analyzed. Results showed that the cytotoxicity, ROS level and permeability of cells changed greatly with the pyrolysis temperatures of biochar and the concentrations of CuO NPs. The greatest cytotoxicity (up to 63.1%) was achieved by adding 20 mg/L CuO NPs to BMB700. The ROS level and cell permeability of this treatment was also the highest, about 4.2 folds and 2.9 folds greater than that of control, respectively. The combination of 10 mg/L BMB700 with 10 mg/L CuO NPs can maximize production of antibiotics, with the yield of undecylprodigiosin (RED) and actinorhodin (ACT) 3.0 times and 4.2 times higher than that in the control, respectively, and the change trend of related genes was consistent with that of antibiotics production. Mechanism analysis showed that the different adsorption capacity of BMB of different pyrolysis temperatures on copper ions played a vital role in the synergistic toxicity, and the increase in cell membrane permeability caused by cell collisions with particles was also an important reason for cytotoxicity. Overall, the synergistic toxicity of BMB with other NPs varies the pyrolysis temperatures, when considering the synergistic toxicity of these materials, the preparation conditions need to be taken into account so as to assess their environmental risks more accurately. On the other hand, this research may provide a new approach for the antibiotic industry to increase its output.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
13
|
Selective Production of Acetic Acid via Catalytic Fast Pyrolysis of Hexoses over Potassium Salts. Catalysts 2020. [DOI: 10.3390/catal10050502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucose and fructose are widely available and renewable resources. They were used to prepare acetic acid (AA) under the catalysis of potassium acetate (KAc) by thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The TGA result showed that the KAc addition lowered the glucose’s thermal decomposition temperatures (about 30 °C for initial decomposition temperature and 40 °C for maximum mass loss rate temperature), implying its promotion of glucose’s decomposition. The Py-GC/MS tests illustrated that the KAc addition significantly altered the composition and distribution of hexose pyrolysis products. The maximum yield of AA was 52.1% for the in situ catalytic pyrolysis of glucose/KAc (1:0.25 wt/wt) mixtures at 350 °C for 30 s. Under the same conditions, the AA yield obtained from fructose was 48% and it increased with the increasing amount of KAc. When the ratio reached to 1:1, the yield was 53.6%. In comparison, a study of in situ and on-line catalytic methods showed that KAc can not only catalyze the primary cracking of glucose, but also catalyze the cracking of a secondary pyrolysis stream. KAc plays roles in both physical heat transfer and chemical catalysis.
Collapse
|
14
|
Lu ZY, Zhong JJ. Effect of furfural addition on validamycin-A production in fermentation of Streptomyces hygroscopicus 5008. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Rajesh Banu J, Rao CV, Kim YG, Yang YH. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. BIORESOURCE TECHNOLOGY 2020; 300:122724. [PMID: 31926792 DOI: 10.1016/j.biortech.2019.122724] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is an inexpensive renewable source that can be used to produce biofuels and bioproducts. The recalcitrance nature of biomass hampers polysaccharide accessibility for enzymes and microbes. Several pretreatment methods have been developed for the conversion of lignocellulosic biomass into value-added products. However, these pretreatment methods also produce a wide range of secondary compounds, which are inhibitory to enzymes and microorganisms. The selection of an effective and efficient pretreatment method discussed in the review and its process optimization can significantly reduce the production of inhibitory compounds and may lead to enhanced production of fermentable sugars and biochemicals. Moreover, evolutionary and genetic engineering approaches are being used for the improvement of microbial tolerance towards inhibitors. Advancements in pretreatment and detoxification technologies may help to increase the productivity of lignocellulose-based biorefinery. In this review, we discuss the recent advancements in lignocellulosic biomass pretreatment technologies and strategies for the removal of inhibitors.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill-171005 (H.P), India
| | - Anil Kumar Patel
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Deepak Pant
- Department of Chemistry, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 06978 Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Construction and application of a "superplasmid" for enhanced production of antibiotics. Appl Microbiol Biotechnol 2019; 104:1647-1660. [PMID: 31853567 DOI: 10.1007/s00253-019-10283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
More than two-third of known antibiotics are produced by actinomycetes of the genus Streptomyces. Unfortunately, the production rate from Streptomyces natural antibiotic is extremely slow and thus cannot satisfy industrial demand. In this study, the production of antibiotics by Streptomyces is enhanced by a "superplasmid" which including global regulatory factors afsR, cyclic adenosine receptor protein (CRP), RNA polymerase beta subunits (rpoB) with point mutation and acetyl coenzyme A carboxylase gene (accA2BE), these elements are controlled by the PermE* promoter and then transfer into Streptomyces coelicolor M145, Streptomyces mutabilis TRM45540, Streptomyces hygroscopicus XM201, and Streptomyces hygroscopicus ATCC29253 by conjugation to generate exconjugants. NMR, HPLC, and LC-MS analyses revealed that the superplasmid led to the overproduction of actinorhodin (101.90%), undecylprodigiosin (181.60%) in S. coelicolor M145:: pLQ003, of rapamycin (110%), hygrocin A (163.4%) in S. hygroscopicus ATCC29253:: pLQ003, and of actinomycin D (11.78%) in S. mutabilis TRM45540:: pLQ003, and also to the downregulation of geldanamycin in S. hygroscopicus XM201, but we found that mutant strains in mutant strains of S. hygroscopicus XM201 with regulatory factors inserted showed several peaks that were not found in wild-type strains. The results of the present work indicated that the regulator net working in Streptomyces was not uniform, the superplasmid we constructed possibly caused this overproduction and downregulation in different Streptomyces.
Collapse
|
17
|
Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019; 10:437-458. [PMID: 31570035 PMCID: PMC6802927 DOI: 10.1080/21655979.2019.1673937] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/07/2022] Open
Abstract
Anaerobic digestion (AD) is a well-established technology used for producing biogas or biomethane alongside the slurry used as biofertilizer. However, using a variety of wastes and residuals as substrate and mixed cultures in the bioreactor makes AD as one of the most complicated biochemical processes employing hydrolytic, acidogenic, hydrogen-producing, acetate-forming bacteria as well as acetoclastic and hydrogenoclastic methanogens. Hydrogen and volatile fatty acids (VFAs) including acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acid and other carboxylic acids such as succinic and lactic acids are formed as intermediate products. As these acids are important precursors for various industries as mixed or purified chemicals, the AD process can be bioengineered to produce VFAs alongside hydrogen and therefore biogas plants can become biorefineries. The current review paper provides the theory and means to produce and accumulate VFAs and hydrogen, inhibit their conversion to methane and to extract them as the final products. The effects of pretreatment, pH, temperature, hydraulic retention time (HRT), organic loading rate (OLR), chemical methane inhibitions, and heat shocking of the inoculum on VFAs accumulation, hydrogen production, VFAs composition, and the microbial community were discussed. Furthermore, this paper highlights the possible techniques for recovery of VFAs from the fermentation media in order to minimize product inhibition as well as to supply the carboxylates for downstream procedures.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Lukitawesa
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mukesh Kumar Awasthi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | | |
Collapse
|
18
|
A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries. SUSTAINABILITY 2019. [DOI: 10.3390/su11236765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since 2015, the sustainable development goals of the United Nations established a route map to achieve a sustainable society, pushing the industry to aim for sustainable processes. Biorefineries have been studied as the technological scheme to process integrally renewable resources. The so-called “bioactive” compounds (BACs) have been of high interest, given their high added value and potential application in pharmaceutics and health, among others. However, there are still elements to be addressed to consider them as economic drivers of sustainable processes. First, BACs can be produced from many sources and it is important to identify feedstocks for this purpose. Second, a sustainable production process should also consider valorizing the remaining components. Finally, feedstock availability plays an important role in affecting the process scale, logistics, and feasibility. This work consists of a review on the feedstocks for the sustainable production of BACs in biorefineries, covering the type of BAC, composition, and availability. Some example biorefineries are proposed using wheat straw, hemp and grapevine shoots. As a main conclusion, multiple raw materials have the potential to obtain BACs that can become economic drivers of biorefineries. This is an interesting outlook, as the integral use of the feedstocks may not only allow obtaining different types of BACs, but also other fiber products and energy for the process self-supply.
Collapse
|
19
|
Bhatia SK, Gurav R, Choi TR, Han YH, Park YL, Park JY, Jung HR, Yang SY, Song HS, Kim SH, Choi KY, Yang YH. Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. BIORESOURCE TECHNOLOGY 2019; 289:121704. [PMID: 31276990 DOI: 10.1016/j.biortech.2019.121704] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Rhodococcus sp. YHY01 was studied to utilize various lignin derived aromatic compounds. It was able to utilize p-coumaric acid, cresol, and 2,6 dimethoxyphenol and resulted in biomass production i.e. 0.38 g dcw/L, 0.25 g dcw/L and 0.1 g dcw/L, and lipid accumulation i.e. 49%, 40%, 30%, respectively. The half maximal inhibitory concentration (IC50) value for p-coumaric acid (13.4 mM), cresol (7.9 mM), and 2,6 dimethoxyphenol (3.4 mM) was analyzed. Dimethyl sulfoxide (DMSO) solubilized barley straw lignin fraction was used as a carbon source for Rhodococcus sp. YHY01 and resulted in 0.130 g dcw/L with 39% w/w lipid accumulation. Major fatty acids were palmitic acid (C16:0) 51.87%, palmitoleic acid (C16:l) 14.90%, and oleic acid (C18:1) 13.76%, respectively. Properties of biodiesel produced from barley straw lignin were as iodine value (IV) 27.25, cetane number (CN) 65.57, cold filter plugging point (CFPP) 14.36, viscosity (υ) 3.81, and density (ρ) 0.86.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yeong Hoon Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Jun Young Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Soo-Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea.
| |
Collapse
|
20
|
Mechanism of CuO nano-particles on stimulating production of actinorhodin in Streptomyces coelicolor by transcriptional analysis. Sci Rep 2019; 9:11253. [PMID: 31375702 PMCID: PMC6677739 DOI: 10.1038/s41598-019-46833-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022] Open
Abstract
In this research, antibiotic-producing bacteria, Streptomyces coelicolor (S. coelicolor) M145, was exposed to copper oxide (CuO) particles to investigate the effects of nano-particles (NPs) on antibiotic production. Results showed that a higher yield of antibiotics was obtained with smaller particle sizes of CuO NPs. When exposed to 10 mg/L of 40 nm CuO NPs, the maximum amount of actinorhodin (ACT) obtained was 2.6 mg/L after 144 h, which was 2.0-fold greater than that of control. However, the process was inhibited when the concentration of CuO NPs was increased to higher than 20 mg/L. Transcriptome analysis showed that all the genes involved in the ACT cluster were significantly up-regulated after exposure to 10 mg/L NPs, which could be the direct cause of the increase of ACT production. Additionally, some genes related to the generation of acetyl-coA were up-regulated. In this way, CuO NPs led to an increase of secondary metabolites. The mechanism related to these changes indicated that nano-particle‒induced ROS and Cu2+ played synergetic roles in promoting ACT biosynthesis. This is a first report suggesting that CuO NPs had a significant effect on antibiotic production, which will be helpful in understanding the mechanism of antibiotic production in nature.
Collapse
|
21
|
Liu X, Tang J, Wang L, Liu Q, Liu R. A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:308-317. [PMID: 31102898 DOI: 10.1016/j.jenvman.2019.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Ball-milled biochar has recently attracted a lot of attention due to the simplicity of its preparation and low cost. However, it is unknown if the biochar is environmentally safe. Here, the toxic effect of ball-milled biochar on Streptomyces was compared to that of pristine biochar and two other carbon nanomaterials of different shapes-graphene oxide and multi-walled carbon nanotubes. The effect of these different materials on antibiotic production was characterized. The results showed that even at concentrations of up to 10 mg/L, pristine biochar had a negligible effect on toxicity and antibiotic production in Streptomyces. However, after ball milling, the physical and chemical properties of biochar changed dramatically. Cells were severely damaged, and there was a significant increase in antibiotic production after the addition of ball-milled biochar. Exposure to 10 mg/L of ball-milled biochar caused massive cell disruption; the survival rate of Streptomyces coelicolor M145 cells was only 68.2% as compared to 90% after treatment with 10 mg/L graphene oxide and multi-walled carbon nanotubes. The secretion of the antibiotics- the red intracellular pigment undecylprodigiosin (RED) and blue diffusible pigment actinorhodin (ACT) was enhanced with the highest level in treatment with ball milled biochar, as compared to that with the other two carbon nanomaterials. This effect can be attributed to increased expression of pathway-specific regulatory genes redD, redZ and actⅡ-ORF4. Ball-milled biochar can be developed as an effective additive to increase antibiotic yield. However, we should restrict the large-scale use of ball-milled biochar before fully understanding its impact on the environment and human health.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
22
|
Liu X, Tang J, Wang L, Giesy JP. Al 2O 3 nanoparticles promote secretion of antibiotics in Streptomyces coelicolor by regulating gene expression through the nano effect. CHEMOSPHERE 2019; 226:687-695. [PMID: 30959453 DOI: 10.1016/j.chemosphere.2019.03.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Toxic effects of nanoparticles (NPs) on microorganisms have attracted substantial attention; however, there are few reports on whether NPs can affect the secondary metabolism of microbes. To investigate the toxic effects of Al2O3 NPs on cell growth and antibiotic secretion, Streptomyces coelicolor M145 was exposed to Al2O3 NPs with diameters of 30 and 80 nm and bulk Al2O3 at concentrations up to 1000 mg/L. The results indicated that differences in the toxicity of Al2O3 NPs were related to the particle size. In treatment with Al2O3 NPs, the maximum yields of undecylprodigiosin (RED) and actinorhodin (ACT) were 3.7- and 4.6-fold greater than that of the control, respectively, and the initial time of antibiotic production was much shorter. ROS quenching experiment by N-acetylcysteine (NAC) confirmed that ROS were responsible for the increased RED production. From 0 to 72 h, ROS had a significant impact on ACT production; however, after 72 h, the ROS content began to decrease until it disappeared. During ongoing exposure (0-144 h), ACT production continued to increase, indicating that in addition to ROS, nano effect of Al2O3 NPs also played roles in this process. Transcriptional analysis demonstrated that Al2O3 NPs could increase the expression levels of antibiotic biosynthetic genes and two-component systems (TCSs) and inhibit the expression levels of primary metabolic pathways. This study provides a new perspective for understanding the mechanisms of antibiotic production in nature and reveals important implications for exploring other uses of NPs in biomedical applications or regulation of antibiotics in nature.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Bhatia SK, Gurav R, Choi TR, Jung HR, Yang SY, Moon YM, Song HS, Jeon JM, Choi KY, Yang YH. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. BIORESOURCE TECHNOLOGY 2019; 271:306-315. [PMID: 30290323 DOI: 10.1016/j.biortech.2018.09.122] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Pretreatment of lignocellulosic biomass results in the formation of byproducts (furfural, hydroxymethylfurfural [HMF], vanillin, acetate etc.), which affect microbial growth and productivity. Furfural (0.02%), HMF (0.04%), and acetate (0.6%) showed positive effects on Ralstonia eutropha 5119 growth and polyhydroxyalkanoate (PHA) production, while vanillin exhibited negative effects. Response optimization and interaction studies between the variables glucose, ammonium chloride, furfural, HMF, and acetate using the response surface methodology resulted in maximum PHA production (2.1 g/L) at optimal variable values of 15.3 g/L, 0.43 g/L, 0.04 g/L, 0.05 g/L, and 2.34 g/L, respectively. Different lignocellulosic biomass hydrolysates (LBHs), including barley biomass hydrolysate (BBH), Miscanthus biomass hydrolysate (MBH), and pine biomass hydrolysate (PBH), were evaluated as potential carbon sources for R. eutropha 5119 and resulted in 1.8, 2.0, and 1.7 g/L PHA production, respectively. MBH proved the best carbon source, resulted in higher biomass (Yx/s, 0.31 g/g) and PHA (Yp/s, 0.14 g/g) yield.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Soo-Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yu-Mi Moon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
24
|
Liu X, Tang J, Wang L, Giesy JP. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:123-130. [PMID: 29677594 DOI: 10.1016/j.ecoenv.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 05/26/2023]
Abstract
UNLABELLED Toxic effects of widely used CuO nanoparticles (NPs) on the genus Streptomyces has been seldom studied. This work investigated toxicities of several sizes of CuO nanoparticles (NPs) to Streptomyces coelicolor M145 (S. coelicolor M145). Compared with NPs, toxicity of micrometer-sized CuO on M145 was trivial. In 0.9% NaCl, when the concentration of CuO NPs was 100 mg/L, survival of bacteria increased from 18.3% in 20 nm particles to 31.1% in 100 nm particles. With increasing concentrations of CuO, the level of ROS gradually increased and there were significant differences (p < 0.05) in ROS exposed to 20, 40 and 100 nm (80 nm) CuO NPs. In TSBY medium, toxicity of CuO NPs was less and mainly attributed to release of Cu2+, analysis by confocal laser scanning microscope (CLSM) showed that size of the mycelium did not change although some individual bacteria died. This was likely due to Cu2+ released from NPs entering cells through the membrane, while in 0.9% NaCl, lesions on membranes was caused by NPs outside the bacteria. This research indicated that toxicity of CuO NPs to S. coelicolor, is related to both size of NPs and is dependent on characteristics of the medium. CAPSULE This is the first time to measure the toxicity of nano materials to Streptomyces, and toxic CuO NPs to Streptomyces have been shown to differ depending on medium.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris. 3 Biotech 2018; 8:296. [PMID: 29963356 DOI: 10.1007/s13205-018-1322-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023] Open
Abstract
Xanthan gum is an exo-polysaccharide industrially produced by fermentation using simple sugars. In this study, broomcorn stem was introduced as a low-cost- and widely available carbon source for xanthan gum fermentation. Broomcorn stem was hydrolyzed using sulphuric acid to liberate reducing sugar which was then used as a carbon source for biosynthesis of xanthan gum by Xanthomonas campesteris. Effects of hydrolysis time (15, 30, 45 and 60 min), sulphuric acid concentration (2, 4, 6 and 8% v/v) and solid loading (3, 4, 5 and 6% w/v) on the yield of reducing sugar and consequent xanthan production were investigated. Maximum reducing sugar yield (55.2%) and xanthan concentration (8.9 g/L) were obtained from hydrolysis of 4% (w/v) broomcorn stem with 6% (v/v) sulphuric acid for 45 min. The fermentation product was identified and confirmed as xanthan gum using Fourier transform infrared spectroscopy analysis. Thermogrvimetric analysis showed that thermal stability of synthesized xanthan gum was similar to those reported in previous studies. The molecular weight of the produced xanthan (2.23 × 106 g/mol) was determined from the intrinsic viscosity. The pyruvate and acetyl contents in xanthan gum were 4.21 and 5.04%, respectively. The chemical composition results indicated that this biopolymer contained glucose, mannose and glucoronic acid with molecular ratio of 1.8:1.5:1.0. The kinetics of batch fermentation was also investigated. The kinetic parameters of the model were determined by fermentation results and evaluated. The results of this study are noteworthy for the sustainable xanthan gum production from low-value agricultural waste.
Collapse
|
26
|
Bhatia SK, Yoon JJ, Kim HJ, Hong JW, Gi Hong Y, Song HS, Moon YM, Jeon JM, Kim YG, Yang YH. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. BIORESOURCE TECHNOLOGY 2018; 257:92-101. [PMID: 29486411 DOI: 10.1016/j.biortech.2018.02.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 05/24/2023]
Abstract
Ralstonia eutropha is a well-known microbe reported for polyhydroxyalkonate (PHA) production, and unable to utilize sucrose as carbon source. Two strains, Ralstonia eutropha H16 and Ralstonia eutropha 5119 were co-cultured with sucrose hydrolyzing microbes (Bacillus subtilis and Bacillus amyloliquefaciens) for PHA production. Co-culture of B. subtilis:R. eutropha 5119 (BS:RE5) resulted in best PHA production (45% w/w dcw). Optimization of the PHA production process components through response surface resulted in sucrose: NH4Cl:B. subtilis: R. eutropha (3.0:0.17:0.10:0.190). Along with the hydrolysis of sucrose, B. subtilis also ferments sugars into organic acid (propionic acid), which acts as a precursor for HV monomer unit. Microbial consortia of BS:RE5 when cultured in optimized media led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV) with 66% w/w of dcw having 16 mol% HV fraction. This co-culture strategy overcomes the need for metabolic engineering of R. eutropha for sucrose utilization, and addition of precursor for copolymer production.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, South Korea
| | - Jeong-Jun Yoon
- Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan 31056, South Korea
| | - Hyun-Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Ju Won Hong
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yoon Gi Hong
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Hun-Seok Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yu-Mi Moon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
27
|
Bhatia SK, Bhatia RK, Choi YK, Kan E, Kim YG, Yang YH. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 2018; 38:1209-1229. [PMID: 29764204 DOI: 10.1080/07388551.2018.1471445] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| | - Ravi Kant Bhatia
- c Department of Biotechnology , Himachal Pradesh University , Shimla , India
| | - Yong-Keun Choi
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Eunsung Kan
- d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Yun-Gon Kim
- e Department of Chemical Engineering , Soongsil University , Seoul , South Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| |
Collapse
|
28
|
Kashiwagi N, Ogino C, Kondo A. Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. BIORESOURCE TECHNOLOGY 2017; 245:1655-1663. [PMID: 28651868 DOI: 10.1016/j.biortech.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Bioproduction using microbes from biomass feedstocks is of interest in regards to environmental problems and cost reduction. Streptomyces as an industrial microorganism plays an important role in the production of useful secondary metabolites for various applications. This strain also secretes a wide range of extracellular enzymes which degrade various biopolymers in nature, and it consumes these degrading substrates as nutrients. Hence, Streptomyces can be employed as a cell factory for the conversion of biomass-derived substrates into various products. This review focuses on the following two points: (1) Streptomyces as a producer of enzymes for degrading biomass-derived polysaccharides and polymers; and, (2) wild-type and engineered strains of Streptomyces as a host for chemical production from biomass-derived substrates.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
29
|
Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng 2017; 41:229-235. [DOI: 10.1007/s00449-017-1861-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
30
|
Bhatia SK, Kim J, Song HS, Kim HJ, Jeon JM, Sathiyanarayanan G, Yoon JJ, Park K, Kim YG, Yang YH. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. BIORESOURCE TECHNOLOGY 2017; 233:99-109. [PMID: 28260667 DOI: 10.1016/j.biortech.2017.02.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea
| | - Junyoung Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Hun-Seok Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea
| | - Jeong-Jun Yoon
- IT Convergence Materials R&BD Group, Chungcheong Regional Division, Korea Institute of Industrial Technology (KITECH), 35-3 Hongchon-ri, Ipjang-myun, Seobuk-gu, Chonan-si, Chungnam 330-825, South Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City 339-701, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 511 Sangdo-dong, Seoul 156-743, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 143-701, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
31
|
Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, Yoon JJ, Ahn J, Park K, Yang YH. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3 Biotech 2016; 6:223. [PMID: 28330295 PMCID: PMC5065882 DOI: 10.1007/s13205-016-0539-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022] Open
Abstract
Various chemicals, i.e., furfural, vanillin, 4-hydroxybenzaldehyde and acetate produced during the pretreatment of biomass affect microbial fermentation. In this study, effect of vanillin, 4-hydroxybenzaldehyde and acetate on antibiotic production in Streptomyces coelicolor is investigated. IC50 value of vanillin, 4-hydroxybenzaldehyde and acetate was recorded as 5, 11.3 and 115 mM, respectively. Vanillin was found as a very effective molecule, and it completely abolished antibiotic (undecylprodigiosin and actinorhodin) production at 1 mM concentration, while 4-hydroxybenzaldehyde and acetate have little effect. Microscopic analysis with field emission scanning electron microscopy (FESEM) showed that addition of vanillin inhibits mycelia formation and increases differentiation of S. coelicolor cells. Vanillin increases expression of genes responsible for sporulation (ssgA) and decreases expression of antibiotic transcriptional regulator (redD and actII-orf4), while it has no effect on genes related to the mycelia formation (bldA and bldN) and quorum sensing (scbA and scbR). Vanillin does not affect the glycolysis process, but may affect acetate and pyruvate accumulation which leads to increase in fatty acid accumulation. The production of antibiotics using biomass hydrolysates can be quite complex due to the presence of exogenous chemicals such as furfural and vanillin, and needs further detailed study.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea
- Institute for Ubiquitous Information Technology and Applications Konkuk University, Seoul, 143-701, South Korea
| | - Bo-Rahm Lee
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea
| | - Ganesan Sathiyanarayanan
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea
| | - Hun Seok Song
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea
| | - Junyoung Kim
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea
| | - Jong-Min Jeon
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea
| | - Jeong-Jun Yoon
- IT Convergence Materials R&BD Group, Chungcheong Regional Division, Korea Institute of Industrial Technology (KITECH), 35-3 Hongchon-ri, Ipjang-myun, Seobuk-gu, Chonan-si, Chungnam, 330-825, South Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Gwahangno, Yuseong-Gu, Daejeon, 305-806, South Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong, South Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, 143-701, South Korea.
- Institute for Ubiquitous Information Technology and Applications Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|