1
|
Xiao X, Shan Z, Pan T, Huang Z, Ruan W. Characteristics of volatile fatty acids production and microbial succession under acid fermentation via anaerobic membrane bioreactor treating kitchen waste slurry. BIORESOURCE TECHNOLOGY 2025; 429:132502. [PMID: 40209914 DOI: 10.1016/j.biortech.2025.132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
In this study, two anaerobic membrane bioreactors (AnMBRs) were proceeded to produce volatile fatty acids (VFAs) from kitchen waste slurry under acidic conditions of pH 5 and 6. Higher fermentation potential and VFA quality were obtained at pH 6, with VFA production, yield and CODVFAs/CODeffluent ratio of 42.0 g/L, 0.4 g/g-CODinfluent and 80 % respectively. The alkali dosages during the stable operation at pH 5 and 6 were 0.03 g-NaOH/g-VFAs and 0.08 g-NaOH/g-VFAs respectively, far lower than that at pH 9 (0.4 g-NaOH/g-VFAs). The microbial community presented marked differences between pH 5 and 6. In addition, chemical cleaning and sludge discharge alleviated membrane fouling and ensured the stable membrane operation at pH 6, while these control strategies had no obvious improvement for fouling at pH 5 due to higher H+ toxicity. In short, pH 6 was more suitable for VFA production than pH 5 with AnMBR treating kitchen waste slurry.
Collapse
Affiliation(s)
- Xiaolan Xiao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhongqing Shan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Tingyu Pan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
2
|
Banerjee A, Singh S, Bhaskar T, Venkata Mohan S, Ghosh D. Anaerobic conversion of de-oiled yeast biomass fractionation waste to biomethane and biohydrogen for resource efficiency in biorefineries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125337. [PMID: 40245733 DOI: 10.1016/j.jenvman.2025.125337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
High-value intracellular bio-compounds are extracted from microbial biomass through cell fractionation processes, which generate discharge streams. These discharges are rich in organic carbon and nitrogen that are derived from the soluble and insoluble protein and carbohydrate polymers. The present study investigated the anaerobic conversion of such a tertiary waste stream generated during the production of glucan-chitin complex through fractionation of de-oiled yeast biomass (a type of spent microbial biomass, which is the solid leftover residue of yeast lipid production process). Fed-batch anaerobic processes of methanogenesis and acidogenesis were investigated for the generated discharge streams. An average COD removal of 47 % with 294 and 323.51 mg VFA/g COD, with a maximum yield of 133.61 mL CH4/g COD and 53.45 mL H2/g COD in methanogenic and acidogenic fermentation was achieved. Considering CH4 production and COD removal, methanogenesis performed better, while in terms of VFA production and subsequent COD removal, acidogenesis was suitable. The investigation indicated the relevance of anaerobic processes for the conversion of de-oiled biomass fractionation discharge streams and suggested a route for integrating aerobic downstream waste to anaerobic fermentation systems, subsequently eliminating a greywater footprint of 5233.04 g/L and opening a prospect for an industrial symbiosis system. The findings highlighted the potential of these systems in process integration for fermentation-based process chains to achieve circularity and resource efficiency in production.
Collapse
Affiliation(s)
- Ayan Banerjee
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Shalini Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, Telangana, India.
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - S Venkata Mohan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, Telangana, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, Maharashtra, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
3
|
Duan Y, Wang Z, Ganeshan P, Sar T, Xu S, Rajendran K, Sindhu R, Binod P, Pandey A, Zhang Z, Taherzadeh MJ, Awasthi MK. Anaerobic digestion in global bio-energy production for sustainable bioeconomy: Potential and research challenges. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 208:114985. [DOI: 10.1016/j.rser.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Chen J, Tang X, Wu X, Li B, Tang X, Lin X, Li P, Chen H, Huang F, Deng X, Xie X, Wei C, Zou Y, Qiu G. Relating the carbon sources to denitrifying community in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 361:142329. [PMID: 38763396 DOI: 10.1016/j.chemosphere.2024.142329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21-4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.
Collapse
Affiliation(s)
- Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China.
| | - Biping Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Pengfei Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Society of Environmental Sciences, Guangzhou, 510000, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Zhong H, Wang Q, Wu M, Zhao P, Song W, Wang X. Anaerobic acidification membrane bioreactor operating at acidic condition for treating concentrated municipal wastewater: Performance and implication. BIORESOURCE TECHNOLOGY 2024; 399:130644. [PMID: 38552856 DOI: 10.1016/j.biortech.2024.130644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
To address the low-carbon treatment requirements for municipal wastewater, a novel anaerobic acidification membrane bioreactor (AAMBR) was developed for recovering organic matter in terms of volatile fatty acids (VFAs). While the AAMBR successfully generated VFAs from municipal wastewater through forward osmosis (FO) membrane concentration, its operation was limited to a single pH value of 10.0. Here, performance of the AAMBR operating at acidic condition was evaluated and compared with that at alkaline condition. The findings revealed that the AAMBR with pH 5.0 efficiently transformed organic matter into acetic acid, propionic acid, and butyric acid, resulting in a VFAs yield of 0.48 g/g-CODfeed. In comparison with the AAMBR at pH 10.0, this study achieved a similar VFAs yield, a lower fouling tendency, a lower loss of nutrients and a lower controlling cost. In conclusion, this study demonstrated that a pH of 5.0 is optimal for the AAMBR treating municipal wastewater.
Collapse
Affiliation(s)
- Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qiming Wang
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, PR China
| | - Mengfei Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
6
|
Zhao Y, Wei R, He D, Niu D, Zhou T. Enhanced volatile fatty acid production from food waste via anaerobic fermentation: effect of irons with different sizes. ENVIRONMENTAL TECHNOLOGY 2024; 45:50-60. [PMID: 35792808 DOI: 10.1080/09593330.2022.2099309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACTFood waste is an excellent organic matter for anaerobic fermentation. This study provided a cost-effective and highly efficient volatile fatty acid (VFA) production strategy by the addition of zero-valent iron (ZVI). Results showed that VFA concentration of 44.6 g/L was obtained with the optimized conditions of 200-mesh iron powder at a dosage of 20.0 g, fermentation time of 11 d, total solids (TS) of 10 wt.%, and fermentation temperature of 37 ℃. Further, the iron of different particle sizes (iron scraps, 200-mesh iron powder, and 800-mesh iron powder) had a differential influence on total organic carbon (TOC), total nitrogen (TN), and VFA concentrations. For the reactor containing 200-mesh iron powder, the conversion rate of organic compound into VFA increased with the increase of dosage, which reached 58.4% at the 40.0 g dosage. The mechanism revealed that the VFA production was enhanced by micro-electrolysis, which can rapidly inactivate bacteria and increase the conversion of macromolecular organics into micromolecular organics.
Collapse
Affiliation(s)
- Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Ran Wei
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Dongwei He
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Dongjie Niu
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Tian Z, Li G, Xiong Y, Cao X, Pang H, Tang W, Liu Y, Bai M, Zhu Q, Du C, Li M, Zhang L. Step-feeding food waste fermentation liquid as supplementary carbon source for low C/N municipal wastewater treatment: Bench scale performance and response of microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118434. [PMID: 37385198 DOI: 10.1016/j.jenvman.2023.118434] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Municipal wastewater treatment often lacks carbon source, while carbon-rich organics in food waste are deficiently utilized. In this study, the food waste fermentation liquid (FWFL) was step-fed into a bench-scale step-feed three-stage anoxic/aerobic system (SFTS-A/O), to investigate its performance in nutrients removal and the response of microbial community as a supplementary carbon source. The results showed that the total nitrogen (TN) removal rate increased by 21.8-109.3% after step-feeding FWFL. However, the biomass of the SFTS-A/O system was increased by 14.6% and 11.9% in the two phases of the experiment, respectively. Proteobacteria was found to be the dominant functional phyla induced by FWFL, and the increase of its abundance attributed to the enrichment of denitrifying bacteria and carbohydrate-metabolizing bacteria was responsible for the biomass increase. Azospira belonged to Proteobacteria phylum was the dominant denitrifying genera when step-fed with FWFL, its abundance was increased from 2.7% in series 1 (S1) to 18.6% in series 2 (S2) and became the keystone species in the microbial networks. Metagenomics analysis revealed that step-feeding FWFL enhanced the abundance of denitrification and carbohydrates-metabolism genes, which were encode mainly by Proteobacteria. This study constitutes a key step towards the application of FWFL as a supplementary carbon source for low C/N municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Xiaoxin Cao
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Hongtao Pang
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Miaoxin Bai
- Inner Mongolia Enterprise Key Laboratory of Damaged Environment Appraisal, Evaluation and Restoration, Hohhot, 010020, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Maotong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
8
|
Tong Y, Li Y, Qin W, Wu S, Xu W, Jin P, Zheng Z. New insight into the metabolic mechanism of a novel lipid-utilizing and denitrifying bacterium capable of simultaneous removal of nitrogen and grease through transcriptome analysis. Front Microbiol 2023; 14:1258003. [PMID: 37965562 PMCID: PMC10642853 DOI: 10.3389/fmicb.2023.1258003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Issues related to fat, oil, and grease from kitchen waste (KFOG) in lipid-containing wastewater are intensifying globally. We reported a novel denitrifying bacterium Pseudomonas CYCN-C with lipid-utilizing activity and high nitrogen-removal efficiency. The aim of the present study was aim to explore the metabolic mechanism of the simultaneous lipid-utilizing and denitrifying bacterium CYCN-C at transcriptome level. Methods We comparatively investigated the cell-growth and nitrogen-removal performances of newly reported Pseudomonas glycinae CYCN-C under defined cultivation conditions. Transcriptome analysis was further used to investigate all pathway genes involved in nitrogen metabolism, lipid degradation and utilization, and cell growth at mRNA levels. Results CYCN-C could directly use fat, oil, and grease from kitchen waste (KFOG) as carbon source with TN removal efficiency of 73.5%, significantly higher than that (60.9%) with sodium acetate. The change levels of genes under defined KFOG and sodium acetate were analyzed by transcriptome sequencing. Results showed that genes cyo, CsrA, PHAs, and FumC involved in carbon metabolism under KFOG were significantly upregulated by 6.9, 0.7, 26.0, and 19.0-folds, respectively. The genes lipA, lipB, glpD, and glpK of lipid metabolic pathway were upregulated by 0.6, 0.4, 21.5, and 1.3-folds, respectively. KFOG also improved the denitrification efficiency by inducing the expression of the genes nar, nirB, nirD, and norR of denitrification pathways. Conclusion In summary, this work firstly provides valuable insights into the genes expression of lipid-utilizing and denitrifying bacterium, and provides a new approach for sewage treatment with reuse of KFOG wastes.
Collapse
Affiliation(s)
- Yaobin Tong
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
| | - Yiyi Li
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Wenpan Qin
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Shengchun Wu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Weiping Xu
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| |
Collapse
|
9
|
Hwan Kang K, Yang M, Raza S, Son H, Park YK, Wang J, Kim YM. Mitigation of N 2O emissions via enhanced denitrification in a biological landfill leachate treatment using external carbon from fermented sludge. CHEMOSPHERE 2023; 335:139114. [PMID: 37270035 DOI: 10.1016/j.chemosphere.2023.139114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
The effects of an external carbon source (C-source) on the mitigation of N2O gas (N2O(g)) emissions from landfill leachate were investigated via enhanced denitrification using anaerobically fermented sewage sludge. Anaerobic fermentation of sewage sludge was conducted under thermophilic conditions with progressively increasing organic loading rates (OLR). Optimal conditions for fermentation were determined based on the efficiency of hydrolysis and the concentrations of sCOD and volatile fatty acids (VFAs) as follows: at an OLR of 40.48 ± 0.77 g COD/L·d with 1.5 days of solid retention time (SRT), 14.68 ± 0.59% of efficiency of hydrolysis, 14.42 ± 0.30 g sCOD/L and 7.85 ± 0.18 g COD/L of VFAs. Analysis of the microbial community in the anaerobic fermentation reactor revealed that degradation of sewage sludge might be potentially affected by proteolytic microorganisms producing VFAs from proteinaceous materials. Sludge-fermentate (SF) retrieved from the anaerobic fermentation reactor was used as the external C-source for denitrification testing. The specific nitrate removal rate (KNR) of the SF-added condition was 7.54 mg NO3-N/g VSS·hr, which was 5.42 and 2.43 times higher than that of raw landfill leachate (LL) and a methanol-added condition, respectively. In the N2O(g) emission test, the liquid phase N2O (N2O-N(l)) of 20.15 mg N/L was emitted as N2O(g) of 19.64 ppmv under only LL-added condition. On the other hand, SF led to the specific N2O(l) reduction rate (KN2O) of 6.70 mg N/g VSS hr, resulting in mitigation of 1.72 times the N2O(g) emission compared to under the only-LL-added condition. The present study revealed that N2O(g) emissions from biological landfill leachate treatment plants can be attenuated by simultaneous reduction of NO3-N and N2O(l) during enhanced denitrification via a stable supply of an external C-source retrieved from anaerobically fermented organic waste.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minseok Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heejong Son
- Busan Water Authority, Gimhae-si, Gyeongsangnam-do, 50804, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
The Effects of Nanoparticles- Zerovalent Iron on Sustainable Biomethane Production through Co-Digestion of Olive Mill Wastewater and Chicken Manure. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The impacts of nanoparticles-zerovalent iron (NP-ZVI) on anaerobic co-digestion (AcoD) were assessed. The production of biogas and methane (CH4), as well as the removal efficiency of volatile solids (VS) and contaminants were investigated in the AcoD of chicken manure (CM) and olive mill wastewater (OMWW) with the addition of NP-ZVI at different concentrations (10–50 mg/g VS) and different sizes resulting from various mixing volume ratios (MVR) of NaBH4:FeSO4.7H2O. The results show that NP-ZVI ≤ 30 mg/g VS at MVR-2:1, MVR-4:1, and MVR-6:1 improves the AcoD. In contrast to 40–50 mg/g VS of NP-ZVI, which caused an inhibitory impact in all of the AcoD stages, as well as a decrease in the contaminant’s removal efficiency, the concentration of 10–30 mg NP-ZVI/g VS at MVR-4:1 achieved a maximum improvement of CH4 by 21.09%, 20.32%, and 22.87%, respectively, and improved the biogas by 48.14%, 55.0%, and 80.09%, respectively, vs. the 0 additives. Supplementing AcoD with NP-ZVI at a concentration of 30 mg/g VS at MVR-4:1 resulted in maximum enhancement of the contaminant removal efficiency, with a total oxygen demand (TCOD) of up to 73.99%, turbidity up to 79.07%, color up to 53.41%, total solid (TS) up to 59.57%, and volatile solid (VS) up to 74.42%. It also improved the hydrolysis and acidification percentages by up to 86.67% and 51.3%, respectively.
Collapse
|
11
|
Jiang F, Li Q, Wang S, Shen T, Wang H, Wang A, Xu D, Yuan L, Lei L, Chen R, Yang B, Deng Y, Fan W. Recovery of metagenome-assembled microbial genomes from a full-scale biogas plant of food waste by pacific biosciences high-fidelity sequencing. Front Microbiol 2023; 13:1095497. [PMID: 36699587 PMCID: PMC9869026 DOI: 10.3389/fmicb.2022.1095497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background Anaerobic digestion (AD) is important in treating of food waste, and thousands of metagenome-assembled genomes (MAGs) have been constructed for the microbiome in AD. However, due to the limitations of the short-read sequencing and assembly technologies, most of these MAGs are grouped from hundreds of short contigs by binning algorithms, and the errors are easily introduced. Results In this study, we constructed a total of 60 non-redundant microbial genomes from 64.5 Gb of PacBio high-fidelity (HiFi) long reads, generated from the digestate samples of a full-scale biogas plant fed with food waste. Of the 60 microbial genomes, all genomes have at least one copy of rRNA operons (16S, 23S, and 5S rRNA), 54 have ≥18 types of standard tRNA genes, and 39 are circular complete genomes. In comparison with the published short-read derived MAGs for AD, we found 23 genomes with average nucleotide identity less than 95% to any known MAGs. Besides, our HiFi-derived genomes have much higher average contig N50 size, slightly higher average genome size and lower contamination. GTDB-Tk classification of these genomes revealed two genomes belonging to novel genus and four genomes belonging to novel species, since their 16S rRNA genes have identities lower than 95 and 97% to any known 16S rRNA genes, respectively. Microbial community analysis based on the these assembled genomes reveals the most predominant phylum was Thermotogae (70.5%), followed by Euryarchaeota (6.1%), and Bacteroidetes (4.7%), and the most predominant bacterial and archaeal genera were Defluviitoga (69.1%) and Methanothrix (5.4%), respectively. Analysis of the full-length 16S rRNA genes identified from the HiFi reads gave similar microbial compositions to that derived from the 60 assembled genomes. Conclusion High-fidelity sequencing not only generated microbial genomes with obviously improved quality but also recovered a substantial portion of novel genomes missed in previous short-read based studies, and the novel genomes will deepen our understanding of the microbial composition in AD of food waste.
Collapse
Affiliation(s)
- Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Qiang Li
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Ting Shen
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lihua Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Rong Chen
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Boyuan Yang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yu Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,*Correspondence: Yu Deng, ; Wei Fan,
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China,*Correspondence: Yu Deng, ; Wei Fan,
| |
Collapse
|
12
|
Miao L, Wang Y, Zhang M, Feng Y, Wang L, Zhang H, Zhu W. Effects of hydrolyzed polymaleic anhydride addition combined with vermicomposting on maturity and bacterial diversity in the final vermicompost from the biochemical residue of kitchen waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8998-9010. [PMID: 35648348 DOI: 10.1007/s11356-022-20795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
A large amount of kitchen waste is produced all over the world. Biochemical disposal is an effective method for the reduction and safe utilization of kitchen waste. However, high salinity, low maturity and poor biocompatibility were encountered when utilizing the biochemical residue of kitchen waste (BRKW) as a kind of soil amendment. To reduce the high salinity, accelerate the maturity and improve the biocompatibility in the BRKW, this study used the BRKW as the main feedstock for earthworms after hydrolyzed polymaleic anhydride (HPMA) was added and focused on revealing the effect of HPMA addition combined with the vermicomposting process on the growth of earthworms and on the basic physicochemical properties and the microbial diversity of the derived vermicompost. The results showed that HPMA addition can promote earthworm growth and reproduction. The pH, electric conductivity, organic matter content, C/N and NH4+-N/NO3--N were decreased in the final vermicompost, while total nitrogen, total phosphorus and total potassium contents, and the seed germination index were increased. Scanning electron microscopy analysis showed that there was more disintegration in the final vermicompost. Meanwhile, adding the HPMA also helped to decrease the total number of fungi while increasing the populations of nitrogen-fixing bacteria, phosphorus-solubilizing bacteria and potassium-solubilizing bacteria as well as amount of total bacteria and actinomycetes. The vermicomposting process increased the bacterial phyla that promote the degradation of OM, such as Actinobacteria, Firmicutes and Acidobacteria, decreased the pathogenic Enterobacter and increased the bacterial genera that promote the maturity and quality, such as Cellvibrio and Pseudomonas. Thus, HPMA addition combined with vermicomposting can promote the growth of beneficial bacteria that promote the degradation of lignocelluloses and accelerate maturity while inhibiting some potential bacterial pathogens, which helps guarantee the safety of vermicomposting products from BRKW. Hence, employing HPMA to promote BRKW vermicomposting can possibly reduce salt content and improve the maturity and biocompatibility of the final vermicompost. This approach may help realize the safe utilization of BRKW and further promote the biochemical disposal of kitchen waste.
Collapse
Affiliation(s)
- Lijuan Miao
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yifan Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingyue Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuning Feng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lang Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hangjun Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqin Zhu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
13
|
Sapmaz T, Manafi R, Mahboubi A, Lorick D, Koseoglu-Imer DY, Taherzadeh MJ. Potential of food waste-derived volatile fatty acids as alternative carbon source for denitrifying moving bed biofilm reactors. BIORESOURCE TECHNOLOGY 2022; 364:128046. [PMID: 36182012 DOI: 10.1016/j.biortech.2022.128046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Fossil-based materials such as methanol are frequently used in the denitrification process of advanced biological wastewater treatment as external carbon source. Volatile fatty acids (VFAs) produced by anaerobic digestion of food waste, are sustainable compounds with the potential to act as carbon sources for denitrification, reducing carbon footprint and material costs. In this study, the effectiveness of food waste-derived VFAs (AD-VFA) was investigated in the post-denitrification process in comparison with synthetic VFA and methanol as carbon sources. Acetic acid had the highest rate of disappearance among single tested VFAs with a denitrification rate of 0.44 g NOx-N removed/m2/day, indicating a preferential utilization pattern. While AD-VFA had a denitrification rate of 0.61 mg NOx-N removed/m2/day, sVFA had a rate of 0.57 mg NOx-N removed/m2/day, indicating that impurities in AD-VFA did not play substantial role in denitrification. AD-VFA proved to be promising carbon source alternative for denitrification in wastewater treatment plants.
Collapse
Affiliation(s)
- Tugba Sapmaz
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Swedish Centre for Resource Recovery, University of Borås, 501 90 Boras, Sweden.
| | - Reza Manafi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Boras, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Boras, Sweden
| | - Dag Lorick
- Gryaab AB, Norra Fagelrovagen, SE 41834 Gothenburg, Sweden
| | - Derya Y Koseoglu-Imer
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | | |
Collapse
|
14
|
Al Bkoor Alrawashdeh K, Al-Zboon KK, Rabadi SA, Gul E, AL-Samrraie LA, Ali R, Al-Tabbal JA. Impact of Iron oxide nanoparticles on sustainable production of biogas through anaerobic co-digestion of chicken waste and wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.974546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As The effect of iron oxide nanoparticles (IONPs) on the anaerobic co-digestion (AD) of olive mill wastewater and chicken manure was investigated. In mesophilic conditions, biogas yield, methane (CH4) content, the removal efficiency of TS, VS., acidification and hydrolysis percentage, and contaminant removal efficiency were investigated. Supplementing AD with IONPs at a concentration of 20 mg/g VS. > IONPs and INOPs >30 mg/g VS. causes an inhibitor impact on biogas, methane generation, and hydrolysis. Furthermore, implantation with 20–30 mg of IONPs/kg VS. has induced an equivalent favorable impact, with hydrolysis percentages reaching roughly 7.2%–15.1% compared to the control test, in addition to a 1.3%–4.2% enhancement in methane generation yield. The maximum acidification concentration after five days of the incubation of 1,084, 9,463, and 760 g/L was attained with IONPs dosages of 25, 30, and 20 mg/g VS., respectively, compared to 713 g/L obtained with the control test. The results have illustrated that supplementing AD with a specific concentration of IONPs (20–30 mg/g VS.) has a significant effect and enhances the inhibitor removal efficiency, most possibly due to the small surface area of IONP particles. The resultant increase in the active surface area enhances the enzyme diffusion within the substrate. This study provides new data specifying the enhancement of iron oxide nanoparticles (IONPs) and identifies the impact of IONP doses at various concentrations on the AD of olive mill wastewater and chicken waste.
Collapse
|
15
|
Continuous Production of Volatile Fatty Acids (VFAs) from Swine Manure: Determination of Process Conditions, VFAs Composition Distribution and Fermentation Broth Availability Analysis. WATER 2022. [DOI: 10.3390/w14121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For pollution control and waste utilization, a promising future direction is to obtain high-value carbon sources from organic waste. In this experiment, swine manure was efficiently converted into high concentration volatile fatty acids through continuous hydrolysis-acidification bioreactors. This study determined the process conditions, the composition distribution of volatile fatty acids and the availability of fermentation broth. The results showed that the reactor with a hydraulic retention time of 1.5 days had the optimal production performance of volatile fatty acids. The highest hydrolysis degree (62.2%) and acidification degree (42.5%) were realized in this reactor at the influent soluble chemical oxygen demand of 5460 mg/L. Furthermore, when the influent soluble chemical oxygen demand was 7660 mg/L, volatile fatty acids of 6065 mg-COD/L could be produced stably, and the proportion of volatile fatty acids in soluble chemical oxygen demand was the largest (75%). Additionally, the fermentation broth rich in volatile fatty acids could be applied to deep nitrogen and phosphorus removal. This work provides a productive approach to resource recovery from swine manure.
Collapse
|
16
|
Shin SG, Kim SI, Hwang S. Startup of Demo-Scale Anaerobic Digestion Plant Treating Food Waste Leachate: Process Instability and Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116903. [PMID: 35682486 PMCID: PMC9180266 DOI: 10.3390/ijerph19116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023]
Abstract
A demo-scale (600 m3 working volume) anaerobic digester treating food waste leachate was monitored during its startup period. The operation strategy was adjusted twice (i.e., three distinct phases) during the operation to recover the process from instability. During the first phase, the organic loading rate (OLR) > 2.7 kg chemical oxygen demand (COD)/m3∙day corresponded to volatile fatty acid (VFA) accumulation along with a decreasing pH, resulting in the drop in biogas yield to 0.43 ± 0.9 m3/kg CODin. During phase 2, fast recovery of this process was aimed at using a sequencing batch operation. One batch cycle (5 to 2 days) consisted of the combined drawing and feeding step (5 h), the reacting step (91 to 17 h), and the settling step (24 h). The duration of the reacting step was determined for each cycle such that (1) the biogas production ceased before the cycle end and (2) the residual VFA concentration was < 1 g/L. In total, 11 cycles were operated with a gradual increase in biogas yield to 0.55 m3/kg CODin with the absence of any sign of system disturbance. After phase 2, the digester was fed at the designed OLR of 4.1 ± 0.3 kg COD/m3∙day. The biogas yield was elevated to 0.58 ± 0.2 m3/kg CODin during phase 3 with the residual VFA concentration maintained at 2.2 ± 0.6 g/L. Methanogen populations, as determined by real-time PCR, did not change significantly throughout the period. These results imply that the adaptation of this process to the OLR of ca. 4 kg COD/m3∙day was not due to the increase in methanogen population but due to the elevation of its activity. Overall, this study suggests that the sequencing batch operation with adjustable cycle duration can be one successful recovery strategy for biogas plants under system instability.
Collapse
Affiliation(s)
- Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52828, Korea;
- Department of Energy System Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52828, Korea
| | - Su In Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Korea;
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Korea;
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence:
| |
Collapse
|
17
|
Sapmaz T, Mahboubi A, Taher MN, Beler-Baykal B, Karagunduz A, Taherzadeh MJ, Koseoglu-Imer DY. Waste-derived volatile fatty acid production and ammonium removal from it by ion exchange process with natural zeolite. Bioengineered 2022; 13:14751-14769. [PMID: 36250716 PMCID: PMC9578453 DOI: 10.1080/21655979.2022.2109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Volatile fatty acids (VFAs) produced during anaerobic digestion (AD) of organic waste are a promising alternative carbon source for various biological processes; however, their applications are limited due to the presence of impurities such as ammonium (NH4+). This study investigates the potential for removal of ammonium using a naturally occurring zeolite (clinoptilolite) from chicken manure (CKM) derived VFA effluent recovered from an anaerobic membrane bioreactor (MBR). Experiments were conducted for both synthetic and actual VFA (AD-VFA) solutions, and the effects of different parameters were investigated with batch and continuous studies. It was observed that the Langmuir-type isotherm provided the best fit to the equilibrium data in the isotherm investigations carried out with the AD-VFA solution. The maximum adsorption capacity (qm) was found as 15.7 mg NH4+/g clinoptilolite. The effect of some operational parameters on process performance such as pH, initial NH4+ loading and potassium ion (K+) concentration was investigated. The pH had a negligible effect on ammonium removal for a pH range of 3-7, while the removal efficiency of ammonium decreased with the increase of initial NH4+ loading and K+ concentration. At the optimum conditions determined in batch experiments, the ammonium removal from synthetic and AD-VFA solutions were compared and average ammonium removal efficiencies of 93 and 94% were found in 12 h equilibrium time for synthetic and AD-VFA solutions, respectively. Overall findings indicated that clinoptilolite has excellent potential for ion exchange when combined with biological processes such as acidogenic fermentation of VFAs to purify the solution from high-ammonium content.
Collapse
Affiliation(s)
- Tugba Sapmaz
- Department of Environmental Sciences and Engineering, Istanbul Technical University, Istanbul, Turkey,Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden,CONTACT Tugba Sapmaz Department of Environmental Sciences and Engineering, Istanbul Technical University, Maslak Campus 34469 Sarıyer, Istanbul, Turkey
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mustafa N. Taher
- Department of Environmental Sciences and Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Bilsen Beler-Baykal
- Department of Environmental Sciences and Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| | | | - Derya Y. Koseoglu-Imer
- Department of Environmental Sciences and Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
18
|
Dharma Patria R, Rehman S, Vuppaladadiyam AK, Wang H, Lin CSK, Antunes E, Leu SY. Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics. BIORESOURCE TECHNOLOGY 2022; 352:127083. [PMID: 35364238 DOI: 10.1016/j.biortech.2022.127083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Bioenergy and biochemicals can be sustainably produced through fermentation and anaerobic digestion (AD). However, this bioconversion processes could be more economical if the hydrolysis rates of substrates in bioreactors can be accelerated. In this review, the feasibilities of including enzymatic hydrolysis (EH) in various bioconversion systems were studied to facilitate the biological synergy. The reaction kinetics of EH in bioconversion systems comparing pretreated lignocellulosic biomass (LCB) and food waste (FW) substrates were reviewed. Possible strategies to improve the hydrolysis efficiency were explored, including co-cultivation during enzyme production and replacement of pure enzyme with on-site produced fungal mash during EH. Key insights into improvement of current AD and fermentation technologies were summarized and further formed into suggestions of future directions in techno-economic feasibility of biorefinery using mixture of the first-generation food crop feedstock with FW; and/or co-digestion of FW with LCB.
Collapse
Affiliation(s)
- Raffel Dharma Patria
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Arun K Vuppaladadiyam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Australia
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
19
|
Fu X, Hou R, Yang P, Qian S, Feng Z, Chen Z, Wang F, Yuan R, Chen H, Zhou B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153061. [PMID: 35026271 DOI: 10.1016/j.scitotenv.2022.153061] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The carbon source is essential as an electron donor in the heterotrophic denitrification process. When there is a lack of organic carbon sources in the system, an external carbon source is needed to improve denitrification efficiency. This review compiles the effects of liquid, solid and gaseous carbon sources on denitrification. Sodium acetate has better denitrification efficiency and is usually the first choice for external carbon sources. Fermentation by-products have been demonstrated to have the same denitrification efficiency as sodium acetate. Compared with cellulose-rich materials, biodegradable polymers have better and more stable denitrification performance in solid-phase nitrification, but their price is higher than the former. Methane as a gaseous carbon source is studied mainly by aerobic methane oxidation coupled with denitrification, which is feasible using methane as a carbon source. Liquid carbon sources are better controlled and utilized than solid carbon sources and gaseous carbon sources. In addition, high carbon to nitrogen ratio and hydraulic retention time can promote denitrification, while high dissolved oxygen (DO>2.0 mg L-1) will inhibit the denitrification process. At the same time, high temperature is conducive to the decomposition of carbon sources by microorganisms. This review also considers the advantages and disadvantages of different carbon sources and cost analysis to provide a reference for looking for more economical and effective external carbon sources in the future.
Collapse
Affiliation(s)
- Xinrong Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Shengtao Qian
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, 100875, Beijing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
20
|
Mahmoud A, Hamza RA, Elbeshbishy E. Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151578. [PMID: 34774960 DOI: 10.1016/j.scitotenv.2021.151578] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The addition of external carbon source for nitrogen removal from wastewater is an essential step in wastewater treatment. In this study, various external carbon sources from the fermentation of primary sludge (PS), thickened waste activated sludge (TWAS), food waste (FW), bakery processing & kitchen waste (BP + KW), fat, oil, & grease (FOG), and whey powder (WP) were successfully employed for wastewater denitrification. Methanol and acetate were also used as controls due to their common use as external carbon sources for wastewater denitrification. The denitrification performance and kinetics such as the specific denitrification rate (SDNR), denitrification potential (PDN), and the biomass yield were studied at a constant TVFA as COD/N ratio of 5 for all substrates. Complete denitrification was achieved with a NO3--N removal efficiency of 98-99%, and no NO2- accumulation was observed at the end of the experiments for all substrates. The results revealed that the liquid fermentation filtrates exhibited higher SDNRs than methanol and acetate. This indicates the high organic matter utilization efficiency and better denitrification ability of fermentation filtrates over conventional carbon sources. WP exhibited the highest SDNR of 17.6 mg NOx - N/g VSS/h, which is approximately four times that of methanol (4.6 mg NOx - N/g VSS/h). The other carbon sources had SDNRs two to three times higher than that of methanol. However, the fermentation filtrates exhibited higher biomass yields of 0.26-0.37 mg VSS/mg COD compared to methanol of 0.21 mg VSS/mg COD, which could lead to higher sludge handling costs. Moreover, methanol exhibited higher PDN of 0.25 g N/g COD compared to all the fermentation filtrates.
Collapse
Affiliation(s)
- Ali Mahmoud
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rania Ahmed Hamza
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
21
|
Zhang M, Wang X, Zhang D, Zhao G, Zhou B, Wang D, Wu Z, Yan C, Liang J, Zhou L. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2022; 349:126855. [PMID: 35176462 DOI: 10.1016/j.biortech.2022.126855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/12/2023]
Abstract
The high ammonium and high salt (HAHS) wastewater generated from the anaerobic digestate of food waste is usually difficult to be treated by biological process because of its low C/N ratio. Herein, food waste hydrolysate (FWH) is rich in readily biodegradable organic matter, was utilized as carbon source to enhance the nitrogen removal of HAHS in the activated-sludge system. Results showed that compared with the control average total nitrogen removal efficiency increased from 73.4% to 94.9% and effluent declined from 281.4 mg/L to 53.9 mg/L by adding FWH at the C/N ratio of 6, satisfying the sewage discharge standard regulated by China. Besides, FWH utilization led to higher selectivity of the species responsible for nitrogen removal in related to glucose-adding group, which were dominated by Flavobacteriaceae, Melioribacteraceae, PHOS-HE36, and Rhodobacteraceae after a long-term operation. In general, FWH is an alternative carbon source to enhance nitrogen removal in HAHS wastewater treatment.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangliang Zhao
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenjiang Wu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
22
|
Hao M, Chen H, He Y, Wang X, Zhang Y, Lao H, Song H, Chen W, Xue G. Recycling sludge-derived hydrochar to facilitate advanced denitrification of secondary effluent: Role of extracellular electron transfer. CHEMOSPHERE 2022; 291:132683. [PMID: 34710461 DOI: 10.1016/j.chemosphere.2021.132683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Sludge-derived hydrochar (SDHC) was recycled to enhance the denitrification of secondary effluent. Under different carbon to nitrogen (C/N) ratios, the nitrogen removal efficiency (NRE) and carbon source efficiency (CSE) of denitrification coupled with SDHC (DN-SDHC) were distinctly higher than that of denitrification alone (DN). Moreover, at the C/N ratios of 3.0-3.2 and 5.8-5.9, the nitrogen removal rate (NRR) of DN-SDHC was 3.6- and 1.5-fold that of DN, respectively. The characterization of SDHC before and after used in denitrification indicated that the metal ions and functional groups did not participate in denitrification. Although SDHC has no redox capacity to donate electron for denitrification, its higher conductivity enabled the acceleration of extracellular electron transfer from carbon source to denitrifiers. The abundance of denitrifying community and functional genes was synchronously promoted by SDHC. Especially, the significant increase of nosZ gene encoding nitrous oxide reductase was conducive to mitigating the emission of N2O greenhouse gas.
Collapse
Affiliation(s)
- Mingxin Hao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongbiao Lao
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Hualong Song
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Wei Chen
- Shaoxing Water Treatment Development Company, Shaoxing, 312000, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai, 201620, China.
| |
Collapse
|
23
|
Volatile Fatty Acids (VFA) Production from Wastewaters with High Salinity—Influence of pH, Salinity and Reactor Configuration. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hydrocarbon-based economy is moving at a large pace to a decarbonized sustainable bioeconomy based on biorefining all types of secondary carbohydrate-based raw materials. In this work, 50 g L−1 in COD of a mixture of food waste, brine and wastewater derived from a biodiesel production facility were used to produce organic acids, important building-blocks for a biobased industry. High salinity (12–18 g L−1), different reactors configuration operated in batch mode, and different initial pH were tested. In experiment I, a batch stirred reactor (BSR) at atmospheric pressure and a granular sludge bed column (GSBC) were tested with an initial pH of 5. In the end of the experiment, the acidification yield (ηa) was similar in both reactors (22–24%, w/w); nevertheless, lactic acid was in lower concentrations in BSR (6.3 g L−1 in COD), when compared to GSBC (8.0 g L−1 in COD), and valeric was the dominant acid, reaching 17.3% (w/w) in the BSR. In experiment II, the BSR and a pressurized batch stirred reactor (PBSR, operated at 6 bar) were tested with initial pH 7. The ηa and the VFA concentration were higher in the BSR (46%, 22.8 g L−1 in COD) than in the PBSR (41%, 20.3 g/L in COD), and longer chain acids were more predominant in BSR (24.4% butyric, 6.7% valeric, and 6.2% caproic acids) than in PBSR (23.2%, 6.2%, and 4.2%, respectively). The results show that initial pH of 7 allows achieving higher ηa, and the BSR presents the most suitable reactor among tested configurations to produce VFA from wastes/wastewaters with high salinity.
Collapse
|
24
|
Chen X, Tang R, Qi S, A R, Ali IM, Luo H, Wang W, Hu ZH. Inhibitory effect of oil and fat on denitrification using food waste fermentation liquid as carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149111. [PMID: 34303253 DOI: 10.1016/j.scitotenv.2021.149111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Food waste fermentation liquid (FWFL) can be used as carbon source to enhance nitrogen removal in wastewater treatment. However, the influence of lipid, a common component of food waste, on denitrification remains unclear. In this study, the effect of oil and fat on denitrification process and the underlying mechanisms were investigated using synthetic oil- and fat-bearing carbon source and verified with real FWFL. In the batch experiment, oil and fat had no obvious influence on denitrification, but in the semi-continuous experiment, the denitrification rate in the oil- and fat-added assays decreased to 44% and 38% of that in the control, respectively, after 45 batches. Oil and fat caused sludge floatation, and the floating sludge thickness increased with the continuous operation. Oil/fat-sludge aggregates were observed in the floating sludge and limited gas release. Microbial community analysis indicated that oil and fat did not affect denitrifying bacteria abundance. Limitation of mass transfer might be the main reason for the inhibition of oil and fat on denitrification. In the real FWFL experiment, the denitrification rate in the original and emulsified oil-bearing FWFL decreased to 24% and 56% of that in the demulsifying FWFL, respectively, after 45 batches. These findings indicate the necessity of removing lipids when FWFL is used as denitrification carbon source.
Collapse
Affiliation(s)
- Xihong Chen
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Qi
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rong A
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ibrahim Mohamed Ali
- Department of Soil and Water, Faculty of Agriculture, Benha University, Egypt
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
25
|
Gianico A, Gallipoli A, Gazzola G, Pastore C, Tonanzi B, Braguglia CM. A novel cascade biorefinery approach to transform food waste into valuable chemicals and biogas through thermal pretreatment integration. BIORESOURCE TECHNOLOGY 2021; 338:125517. [PMID: 34273629 DOI: 10.1016/j.biortech.2021.125517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
A novel biorefinery platform integrating thermal pretreatment and solid-liquid separation unit is here proposed to fully exploit food waste (FW) potential for production of valuable chemicals and energy through semi-continuous anaerobic bioconversion. The liquid fraction deriving from raw or pretreated FW, was fermented into volatile fatty acids (VFAs, from acetic to caproic acid) while the residual fraction was converted into biomethane. Thermal pretreatment effectively extracted a portion of the macromolecular organics, especially starch, to the liquid phase, promoting acidogenic fermentation and chain elongation pathways (0.43 gVFA g-1VSfed and 0.58 gVFA g-1VSfed with raw and pretreated extract, respectively). In parallel, anaerobic digestion of solid residue in 10 L reactors showed process stability and higher conversion rate for the pretreated residue (0.31 against 0.26 Nm3CH4 kg-1VSfed). The mass-transfer balance coupled with the economic assessment, calculated in terms of direct gross added value, indicated promising revenues by integrating the thermal upstream treatment.
Collapse
Affiliation(s)
- Andrea Gianico
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| | - Agata Gallipoli
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy.
| | - Giulio Gazzola
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| | - Carlo Pastore
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Via F. de Blasio 5, Bari 70132, Italy
| | - Barbara Tonanzi
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| | - Camilla M Braguglia
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| |
Collapse
|
26
|
Wang H, Chen N, Feng C, Deng Y. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146521. [PMID: 34030330 DOI: 10.1016/j.scitotenv.2021.146521] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrate, as the most stable form of nitrogen pollution, widely exists in aquatic environment, which has great potential threat to ecological environment and human health. Heterotrophic denitrification, as the most economical and effective method to treat nitrate wastewater, has been widely and deeply studied. From the perspective of heterotrophic denitrification, this review discusses nitrate removal in the aquatic environment, and the behaviors of different carbon source types were classified and summarized to explain the cyclical evolution of carbon and nitrogen in global biochemical processes. In addition, the denitrification process, electron transfer as well as denitrifying and hydrolyzing microorganisms among different carbon sources were analyzed and compared, and the commonness and characteristics of the denitrification process with various carbon sources were revealed. This study provides theoretical support and technical guidance for further improvement of denitrification technologies.
Collapse
Affiliation(s)
- Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
27
|
Wu Y, Wu J, Shen Q, Zheng X, Chen Y. Anaerobic fermentation metabolism of Moorella thermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity. WATER RESEARCH 2021; 197:117081. [PMID: 33813170 DOI: 10.1016/j.watres.2021.117081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Engineered nanoparticles are observed to be released into the environment and ended up in wastewater treatment plants. It has been reported that these nanoparticles in sewage might have a toxic effect on microorganisms, and thus affect anaerobic microbial fermentation. However, the mechanisms involved in nanoparticles-induced effects on the anaerobic acidification process and its related bacterial metabolism are still unclear. This work indicated that copper nanoparticles (Cu NPs) were able to cause cell membrane oxidative damage and inhibit the growth and metabolism of Moorella thermoacetica (a model acetogen). The OD600 and acetic acid production of M. thermoacetica in the presence of 1 mg/L of Cu NPs were decreased to 29.2% and 40.7% of the control, respectively. The key mechanism of the inhibitory effect was governed by the fact that Cu NPs significantly reduced the glucose consumption, and led to the decreased pyruvate metabolism levels. Additionally, Cu NPs inhibited the gene expressions and catalytic activities of the key enzymes related to acetic acid production. It was identified that the relative activities of phosphofructokinase, pyruvate kinase, phosphotransacetylase, and acetate kinase of M. thermoacetica in the presence of 1 mg/L of Cu NPs decreased to only 70.1%, 69.3%, 50.1%, and 65.2% of the control, respectively. These results demonstrated that the release of Cu NPs in the environment could pose risks to anaerobic fermentation processes via regulating microbial transcriptional response and enzyme activity.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuting Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
28
|
Abstract
With the development of economy and the improvement of people’s living standard, landfill leachate has been increasing year by year with the increase in municipal solid waste output. How to treat landfill leachate with high efficiency and low consumption has become a major problem, because of its high ammonia nitrogen and organic matter content, low carbon to nitrogen ratio and difficult degradation. In order to provide reference for future engineering application of landfill leachate treatment, this paper mainly reviews the biological treatment methods of landfill leachate, which focuses on the comparison of nitrogen removal processes combined with microorganisms, the biological nitrogen removal methods combined with ecology and the technology of direct application of microorganisms. In addition, the mechanism of biological nitrogen removal of landfill leachate and the factors affecting the microbial activity during the nitrogen removal process are also described. It is concluded that the treatment processes combined with microorganisms have higher nitrogen removal efficiency compared with the direct application of microorganisms. For example, the nitrogen removal efficiency of the combined process based on anaerobic ammonium oxidation (ANAMMOX) technology can reach more than 99%. Therefore, the treatment processes combined with microorganisms in the future engineering application of nitrogen removal in landfill leachate should be paid more attention to, and the efficiency of nitrogen removal should be improved from the aspects of microorganisms by considering factors affecting its activity.
Collapse
|
29
|
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 127:80-89. [PMID: 33932853 DOI: 10.1016/j.wasman.2021.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semi-continuous stirred tank reactor. Three combinations of HRT and OLR were tested to distinguish the effect of each parameter. Three fermentation profiles with distinct microbial communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of carboxylates) was produced at an HRT of 8.5 days and OLR around 12 gCOD L-1d-1. Operating at an HRT two days longer, yet with similar OLR, stimulated chain elongation (up to 13.6 gCOD L-1 of n-caproic acid). This was reflected by a microbial community twice as diverse at longer HRT as indicated by first and second order Hill number (1D = 24 ± 4, 2D = 12 ± 3) and by a higher relative abundance of genera related to secondary fermentation, such as the VFA-elongating Caproiciproducens spp., and secondary lactic acid fermenter Secundilactobacillus spp.. Operating at a higher OLR (20 gCOD L-1d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) harbouring a less diverse community (1D = 8.0 ± 0.7, 2D = 5.7 ± 0.9) rich in acid-resistant homofermentative Lactobacillus spp. These findings demonstrate that a flexible product portfolio can be achieved by small adjustments in two key operating conditions. This improves the economic potential of acidogenic fermentation for food waste valorisation.
Collapse
Affiliation(s)
- Vicky De Groof
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Marta Coma
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tom Arnot
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - David J Leak
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ana B Lanham
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation & Research Centre (WIRC), University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
30
|
Saadoun L, Campitelli A, Kannengiesser J, Stanojkovski D, El Alaoui El Fels A, Mandi L, Ouazzani N. Potential of medium chain fatty acids production from municipal solid waste leachate: Effect of age and external electron donors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:503-512. [PMID: 33129653 DOI: 10.1016/j.wasman.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
A large quantity of leachate is generated during municipal solid waste collection operation and in landfills due to the large amount of organic waste and high humidity. The content of medium chain fatty acids (MCFAs) in the leachate is a low cost feedstock for bio-based chemical and fuel production processes. The aim of this study is to investigate the MCFA production potential of three leachate ages through chain elongation process under uncontrolled pH batch test. Moreover, the effect of using different external electron donors (ethanol, methanol and a mixture of both) is studied. The experiment consists of characterizing the samples then adding external electron donors with a specific ratio to leachate samples under mesophilic temperature. For this investigation, also a statistical analysis is done, which shows the production of MCFAs is highly influenced by leachate age. The results indicate that the production of even-numbered acids increase from 600 to 1,000 mg/L by the end of the ethanol chain elongation experiment for young leachate. However, a higher MCFA production of more than 1,000 mg/L is achieved by using the mixture of methanol and ethanol as electron donor. Furthermore, all methanol chain elongation experiments lead to an odd-numbered production of MCFAs, such as pentanoic and heptanoic acids. These results confirm the potential improvement of MCFA production from leachate through choosing the optimal leachate age and electron donor. Overall, producing MCFAs from leachate is a good example of circular bio-economy because waste is used to produce biochemicals, which closes the material cycle.
Collapse
Affiliation(s)
- Lamia Saadoun
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, P.O. Box 2390, Cadi Ayyad University, Marrakech, Morocco; National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech, Morocco
| | - Alessio Campitelli
- Technical University of Darmstadt, Institute IWAR, Department of Material Flow Management and Resource Economy, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Jan Kannengiesser
- Technical University of Darmstadt, Institute IWAR, Department of Material Flow Management and Resource Economy, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Daniel Stanojkovski
- Technical University of Darmstadt, Institute IWAR, Department of Material Flow Management and Resource Economy, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| | - Abdelhafid El Alaoui El Fels
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, P.O. Box 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Laila Mandi
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, P.O. Box 2390, Cadi Ayyad University, Marrakech, Morocco; National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech, Morocco
| | - Naaila Ouazzani
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, P.O. Box 2390, Cadi Ayyad University, Marrakech, Morocco; National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech, Morocco.
| |
Collapse
|
31
|
Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Fernández-Domínguez D, Astals S, Peces M, Frison N, Bolzonella D, Mata-Alvarez J, Dosta J. Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. BIORESOURCE TECHNOLOGY 2020; 314:123729. [PMID: 32622279 DOI: 10.1016/j.biortech.2020.123729] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The impact of temperature (20, 35, 45, 55, 70 °C) on volatile fatty acid (VFA) production from biowaste collected at a mechanical-biological treatment plant was analysed. Additionally, relevant streams of the treatment plant were characterised to assess seasonality effects and conceive the integration of a fermentation unit. Batch fermentation tests at 35 °C showed the highest VFA yields (0.49-0.59 gCODVFA/gVS). The VFA yield at 35 °C was 2%, 6%, 10% and 14% higher than at 55, 45, 20 and 70 °C, respectively. The VFA profile was not affected by the fermentation temperature nor seasonality and was dominated by acetic, propionic and butyric acid (75-86% CODVFA). The concentration of non-VFA soluble COD and ammoniacal nitrogen in the fermentation liquor increased with temperature. The fermentation unit in the treatment plant was conceived after the pulper and hydrocyclones and before the anaerobic digester, while the fermenter temperature depends on the VFA application.
Collapse
Affiliation(s)
- David Fernández-Domínguez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Miriam Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220 Aalborg, Denmark
| | - Nicola Frison
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, 08001 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
33
|
Lukitawesa, Patinvoh RJ, Millati R, Sárvári-Horváth I, Taherzadeh MJ. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered 2020; 11:39-52. [PMID: 31880192 PMCID: PMC7571609 DOI: 10.1080/21655979.2019.1703544] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Volatile fatty acids (VFAs) are intermediate products in anaerobic digestion. The effect of substrate loading or inoculum to substrate ratio (ISR), the addition of methanogen inhibitor, O2 presence, control the reactor’s pH, and inoculum adaptation on the VFAs production from food waste through acidogenesis process was investigated in this study. Addition of 2-bromoethane sulfonic (BES) as methanogen inhibitor suppressed VFA consumption by methanogens at ISR 1:1. At higher substrate loading (ISR 1:3), methane production can be suppressed even without the addition of BES. However, at high substrate loading, controlling the pH during acidogenesis is important to achieve high VFAs yield. Acclimatization of inoculum is also one of the strategies to achieve high VFA yield. The highest VFAs yield obtained in this work was 0.8 g VFA/g VS added at ISR 1:3, controlled pH at 6, with the presence of initial O2 (headspace unflushed).
Collapse
Affiliation(s)
- Lukitawesa
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Regina J Patinvoh
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden.,Department of Chemical and Polymer Engineering, Faculty of Engineering, Lagos State University, Lagos, Nigeria
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | |
Collapse
|
34
|
Wang H, Chen N, Feng C, Deng Y, Gao Y. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution. CHEMOSPHERE 2020; 253:126693. [PMID: 32464770 DOI: 10.1016/j.chemosphere.2020.126693] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Nitrate pollution presents a serious threat to the environment and public health. As an excellent heterotrophic denitrification carbon source, banana peel (a kind of agricultural waste) provides a feasible alternative to deal with the persistent high concentrations of nitrate pollution. Although the feasibility and economy of banana peel for denitrification have already been reported, the long-term stability and mechanism were still unclear. The coupling mechanism of organic matters and microorganism in the denitrification process was systematically investigated through a 17-cycle experiment. The results showed that significant NO3--N removal load and rate of 164.42 mg/g and 4.69 mg/(L·h) after long-term tests could be obtained. Organic matter analysis and 16S rRNA sequencing showed that the evolution of organic matter was dominated by Anaerolineaceae (fermenting bacteria), and, in the final step, the humification of organic matter was realized. Moreover, the presence of Lentimicrobium (denitrifying bacteria) was indispensable for the continuous removal of high concentrations of nitrate. The main functional gene of nitrogen transformation in this reaction system was NirS (haem-containing). This lab-scale heterotrophic denitrification process could contribute to a better understanding of the carbon and nitrogen cycles in the biogeochemical cycles to some extent, and it also provides a reference for the construction of highly efficient nitrate degradation reactors, based on agricultural wastes.
Collapse
Affiliation(s)
- Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yu Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
35
|
Zhang L, Loh KC, Dai Y, Tong YW. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:75-84. [PMID: 32388405 DOI: 10.1016/j.wasman.2020.04.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Acidogenic fermentation of food waste for production of volatile fatty acids (VFAs) contributes to both food waste minimization and resource recovery. To gain knowledge on functional bacterial communities and facilitate continuous production of VFAs, this research firstly studied the effects of initial pH values (i.e. 5, 6 and 7) and temperatures (i.e. 35 °C and 55 °C) on VFAs production, distribution, and bacterial communities during acidogenic fermentation of food waste. The optimal conditions were determined as pH 7 and 35 °C, corresponding to the highest total VFAs yield of 11.8 g COD/L with major components of acetic, propionic and butyric acid. Bioinformatic analysis showed that the relative abundance of the dominant bacterial classes (e.g. Clostridia, Bacteroidia and Bacilli) were changed by the initial pH values in both mesophilic and thermophilic reactors. NMDS analysis confirmed a significant difference between mesophilic and thermophilic communities. Finally, the feasibility of continuous production and recovery of VFAs was validated using a two-phase leachate bed bioreactor at the optimal conditions. Average concentration and yield of the total VFAs in the continuous operation were 6.3 g COD/L and 0.29 g VFA/g VSadded, respectively. The findings in this study could provide pivotal technical supports for potential pilot- and commercial-scale biorefinery plants for VFAs production from food waste.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 Singapore, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 Singapore, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 Singapore, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore.
| |
Collapse
|
36
|
MBR-Assisted VFAs Production from Excess Sewage Sludge and Food Waste Slurry for Sustainable Wastewater Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082921] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The significant amount of excess sewage sludge (ESS) generated on a daily basis by wastewater treatment plants (WWTPs) is mainly subjected to biogas production, as for other organic waste streams such as food waste slurry (FWS). However, these organic wastes can be further valorized by production of volatile fatty acids (VFAs) that have various applications such as the application as an external carbon source for the denitrification stage at a WWTP. In this study, an immersed membrane bioreactor set-up was proposed for the stable production and in situ recovery of clarified VFAs from ESS and FWS. The VFAs yields from ESS and FWS reached 0.38 and 0.34 gVFA/gVSadded, respectively, during a three-month operation period without pH control. The average flux during the stable VFAs production phase with the ESS was 5.53 L/m2/h while 16.18 L/m2/h was attained with FWS. Moreover, minimal flux deterioration was observed even during operation at maximum suspended solids concentration of 32 g/L, implying that the membrane bioreactors could potentially guarantee the required volumetric productivities. In addition, the techno-economic assessment of retrofitting the membrane-assisted VFAs production process in an actual WWTP estimated savings of up to 140 €/h for replacing 300 kg/h of methanol with VFAs.
Collapse
|
37
|
Wu KC, Yau YH, Sze ETP. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. MARINE POLLUTION BULLETIN 2020; 153:111007. [PMID: 32275554 DOI: 10.1016/j.marpolbul.2020.111007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Food waste constitutes the largest component of municipal solid waste in many urbanized societies. The current practice of disposing of biodegradable food waste mixed with other solid wastes to landfills is not sustainable and is environmentally undesirable. Moreover, the leakage of nutrient-rich food waste leachate (FWL) impacts the environment by eutrophication of the water body. Two robust microalgal species, Dunaliella tertiolecta (D. tertiolecta) and Cyanobacterium aponinum (C. aponinum), have been selected previously for the treatment of FWL because they can tolerate diluted FWL. However, growth suppression by some inhibiting factors, such as total suspended solids and organic nitrogen, limited biomass productivity, and substantial dilution (5-10% v/v FWL) was required. To alleviate this suppression, anaerobic bacterial digestion was proposed to pretreat FWL and convert certain nutrients such as organic nitrogen to ammonium. The pretreatment was optimized in neutral to slightly alkaline media, where a byproduct of biomethane up to 4.67 L methane/kg COD was produced. In addition, digestate after anaerobic ammonification can provide sufficient inorganic nutrients for subsequent microalgal biofuel production. Through batch cultivation, 50% (v/v) of anaerobic bacterial pretreated FWL digestate can be fed to D. tertiolecta, with biomass productivity of up to 0.88 g/L/day, and biomass productivity can be increased to 0.34 g/L/day for C. aponinum at 30% FWL digestate. Regarding the nutrient removal efficiency, 98.99% of total nitrogen and 65% of total phosphorus can be removed by D. tertiolecta, whereas more than 80% of total nitrogen and 65% of total phosphorus can be removed by C. aponinum. The use of anaerobic bacterial ammonification pretreatment can significantly improve the performance of subsequent microalgal treatments and has been shown to be a sustainable green technology for biofuel production and FWL recycling.
Collapse
Affiliation(s)
- Kam-Chau Wu
- School of Science and Technology, The Open University of Hong Kong, Hong Kong
| | - Yiu-Hung Yau
- School of Science and Technology, The Open University of Hong Kong, Hong Kong
| | - Eric Tung-Po Sze
- School of Science and Technology, The Open University of Hong Kong, Hong Kong.
| |
Collapse
|
38
|
Xu H, Guo L, Guo S, Wang Y, She Z, Gao M, Zhao Y, Jin C. Effect of magnetic powder on denitrification using the sludge alkaline fermentation liquid as a carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7712-7719. [PMID: 31879873 DOI: 10.1007/s11356-019-07461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
This work evaluates the impact of the different concentrations of Fe3O4 on nitrate removal and organic matters utilization in the sequencing batch reactors (SBRs) using the sludge alkaline digestion supernatant as external sludge carbon source. Results indicated that the optimal concentration of Fe3O4 was 1 g/L for enhancing denitrification with NO3--N removal efficiency of 93.13% (up to a 11.93% increase) and without NO2--N accumulation after 18 days. The changes of soluble chemical oxygen demand (SCOD), protein, and carbohydrate during denitrification process were analyzed to gauge the utilization of sludge fermentation products by denitrifiers. The SCOD was consumed for organisms involved in NO3--N removal and the Fe3O4 could promote the utilization of carbohydrate better than protein by denitrifiers during denitrification process. Denitrification rate (VDN) and the nitrate-to-nitrite transformation ratio (NTR), as the kinetics parameters, were also investigated in different concentrations of Fe3O4.
Collapse
Affiliation(s)
- Haiqing Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shiliang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
39
|
Li D, Yin F, Ma X. Achieving valorization of fermented activated sludge using pretreated waste wood feedstock for volatile fatty acids accumulation. BIORESOURCE TECHNOLOGY 2019; 290:121791. [PMID: 31323509 DOI: 10.1016/j.biortech.2019.121791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Production of volatile fatty acids (VFAs) via anaerobic fermentation is a potential alternative responding to the current demand for sustainable development to replace conventional fossil routes. In this study, the dynamics of VFAs production and microbial community succession from activated sludge using pretreated waste wood feedstock as carbon sources was reported. VFAs production achieved to the highest value of about 3000 mg COD/L at 10 g COD/L. The maximum acidification rate was determined as 45%. Meanwhile, VFAs composition proportion can be regulated by adjusting pH. Microbial community analysis indicated that Corynebacterium, Actinomyces and Bacteroides were the dominant bacteria genus. In terms of waste wood feedstock conversion, 0.32 g of VFAs was obtained per 1 g of wood powder. The results demonstrated that pretreated wood followed by the acidogenic sludge co-fermentation could contribute to provide an effective green method for developing biomass into value-added chemicals.
Collapse
Affiliation(s)
- Dongna Li
- College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China; Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Harbin 150040, PR China
| | - Fen Yin
- College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Packaging & Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| |
Collapse
|
40
|
New direction in biological nitrogen removal from industrial nitrate wastewater via anammox. Appl Microbiol Biotechnol 2019; 103:7459-7466. [PMID: 31388729 DOI: 10.1007/s00253-019-10070-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Anaerobic ammonium oxidation (anammox) is an important scientific discovery in the field of wastewater treatment. This process is a sustainable option in nitrogen removal due to its energy-efficient and cost-effective advantage. Great effort has been made recently to remove ammonium from industrial and municipal wastewater via the anammox process with a preceding partial nitrification (PN) converting part of NH4+ to NO2-. Anammox process is seldom involved in the nitrate removal. Nitrate (NO3-), one of the main nitrogen compounds produced from various industries, is typically converted to nitrogen gas via denitrification process where a large amount of carbon source is consumed. Within this context, we reviewed the current technologies for high-strength nitrate wastewater treatment. It is found that nitrite accumulation often occurs during nitrate reduction, and its accumulating level would be increased at certain conditions (i.e., low C/N ratio and high pH). Hence, this provides a great opportunity to employ the anammox process to further convert nitrite in a more sustainable way. In this review, we highlight a new approach for industrial nitrate wastewater treatment via partial denitrification coupled with anammox process (PD-A). We also discuss the conditions to achieve successful PD-A process, economic and environmental benefits, and potential challenges as well as the future perspectives in practical application.
Collapse
|
41
|
Su JF, Gao YC, Huang TL, Bai XC, Lu JS, He L. Simultaneous removal of Cd 2+, NO 3-N and hardness by the bacterium Acinetobacter sp. CN86 in aerobic conditions. Bioprocess Biosyst Eng 2019; 42:1333-1342. [PMID: 31250105 DOI: 10.1007/s00449-019-02132-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
This study investigated the factors influencing the simultaneous removal of Cd2+, NO3-N and hardness from water by the bacterial strain CN86. Optimum conditions were determined experimentally by varying the type of organic matter used, initial Cd2+ concentration, and pH. Under the optimum conditions, the maximum removal ratios of Cd2+, NO3-N and hardness were 100.00, 89.85 and 71.63%, respectively. The mechanism of Cd2+ removal is a combination of co-precipitation with calcium carbonate and pH. Further confirmation that Cd2+ can be removed by strain CN86 was provided by XRD and XPS analyses. Meteorological chromatography analysis showed that N2 was produced as an end product. These results demonstrate that the bacterial strain CN86 is a suitable candidate for simultaneously removing Cd2+, NO3-N, and hardness during in wastewater treatment.
Collapse
Affiliation(s)
- Jun Feng Su
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China. .,School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Chou Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xue Chen Bai
- China United Northwest Institute for Engineering Design and Research Co., Ltd (CUCED), Xi'an, 710077, China
| | - Jin Suo Lu
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.,School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei He
- China United Northwest Institute for Engineering Design and Research Co., Ltd (CUCED), Xi'an, 710077, China
| |
Collapse
|
42
|
Li RH, Wang WJ, Li B, Zhang JY, Liu J, Zhang GJ, Guo XC, Zhang XH, Li XY. Acidogenic phosphorus recovery from the wastewater sludge of the membrane bioreactor systems with different iron-dosing modes. BIORESOURCE TECHNOLOGY 2019; 280:360-370. [PMID: 30780096 DOI: 10.1016/j.biortech.2019.02.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A novel acidogenic phosphorus recovery (APR) process was developed in combination with Fe(III)-based chemical phosphorus removal and a membrane bioreactor (MBR) for enhanced wastewater treatment and effective P recovery. Two different system configurations were evaluated: Fe-dosing MBR (Fe-MBR), with the Fe-dosing into the MBR, and Fe-enhanced primary sedimentation followed by the MBR (FeP-MBR). The results show that both systems performed well for enhanced nutrient (N and P) removals and P recovery, with approximately 50% of the total P recovered from the municipal wastewater in the form of vivianite. Compared to the Fe-MBR system, FeP-MBR achieved more efficient P recovery under low food-waste loading conditions, maintained a higher ratio of biomass in activated sludge and experienced a slower rate of membrane fouling. Important functional bacteria were identified, including Prevotella and Selenomonas, which are active in hydrolysis and acidogenesis of sludge, and Aeromonas and Sulfurospirillum, which are involved in dissimilatory iron reduction.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei-Jun Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jia-Yu Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jie Liu
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Gui-Juan Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xue-Chao Guo
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xi-Hui Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|
43
|
Shao M, Guo L, She Z, Gao M, Zhao Y, Sun M, Guo Y. Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4633-4644. [PMID: 30565112 DOI: 10.1007/s11356-018-3944-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
External carbon source was usually added to enhance denitrification efficiency for nitrogen removal in wastewater treatment. In this study, waster sludge alkaline fermentation liquid was successfully employed as an alternative carbon source for biological denitrification. The denitrification performance was studied at different C/Ns (carbon-to-nitrogen ratios) and HRTs (hydraulic retention times). A C/N of 7 and an HRT of 8 h were the optimal conditions for denitrification. The nitrate removal efficiency of 96.4% and no obvious nitrite accumulation in the effluent were achieved under the optimal conditions with a low soluble chemical oxygen demand (SCOD) level. The sludge carbon source utilization was analyzed and showed that the volatile fatty acids (VFAs) were prior utilized than proteins and carbohydrates. The excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) was adopted to analyze the compositional and variations of dissolved organic matters (DOM). Moreover, a high denitrification rate (VDN) and potential (PDN) with low heterotroph anoxic yield (YH) was exhibited at the optimal C/N and HRT condition, indicating the better denitrification ability and organic matter utilization efficiencies.
Collapse
Affiliation(s)
- Mengyu Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China.
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mei Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
44
|
Wainaina S, Parchami M, Mahboubi A, Horváth IS, Taherzadeh MJ. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. BIORESOURCE TECHNOLOGY 2019; 274:329-334. [PMID: 30529480 DOI: 10.1016/j.biortech.2018.11.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Volatile fatty acids (VFAs) are the key intermediates from anaerobic digestion (AD) process that can be a platform to synthesize products of higher value than biogas. However, some obstacles still exist that prevent large-scale production and application of VFAs, key among them being the difficulty in recovering the acids from the fermentation medium and low product yields. In this study, a novel anaerobic immersed membrane bioreactor (iMBR) with robust cleaning capabilities, which incorporated frequent backwashing to withstand the complex AD medium, was designed and applied for production and in situ recovery of VFAs. The iMBR was fed with food waste and operated without pH control, achieving a high yield of 0.54 g VFA/g VSadded. The continuous VFA recovery process in the iMBR was investigated for 40 days at OLRs of 2 gVS/L/d and 4 gVS/L/d without significant change in the permeate flux at a maximum suspended solids concentration of 31 g/L.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | | | |
Collapse
|
45
|
Tang J, Wang XC, Hu Y, Pu Y, Huang J, Ngo HH, Zeng Y, Li Y. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 271:125-135. [PMID: 30265952 DOI: 10.1016/j.biortech.2018.09.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 05/27/2023]
Abstract
Enhancement of nitrogen and phosphate removal using thermophilic fermentation slurry from food waste (FSFW) as external carbon source was investigated. Based on the batch tests, the soluble and particulate fractions of the FSFW acted as easily and slowly biodegradable carbon sources, respectively, and the fermented slurry showed the combined nutrients removal properties of soluble and solid organics. During the long-term operation of a sequencing batch reactor (SBR) with FSFW for wastewater treatment, the sludge particle size increased obviously, the bacterial metabolic capacity improved significantly, and some functional microorganisms were enriched selectively, which significantly promoted the nitrogen removal efficiency (approximately 90%) by enhancing the anoxic denitrification and simultaneous nitrification and denitrification (SND) processes. Moreover, high phosphate removal efficiency (above 98%) was achieved through the aerobic and anoxic phosphate accumulation processes. Thus, using the FSFW as supplementary carbon source is a suitable solution for both food waste disposal and wastewater treatment.
Collapse
Affiliation(s)
- Jialing Tang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China.
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Yunhui Pu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yonggang Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| |
Collapse
|
46
|
Li RH, Cui JL, Li XD, Li XY. Phosphorus Removal and Recovery from Wastewater using Fe-Dosing Bioreactor and Cofermentation: Investigation by X-ray Absorption Near-Edge Structure Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14119-14128. [PMID: 30452241 DOI: 10.1021/acs.est.8b03355] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new phosphorus (P) removal and recovery process that integrates an FeCl3-dosing, membrane bioreactor (MBR), and side-stream cofermentation was developed for wastewater treatment. The Fe and P species and their transformation mechanisms via aerobic and anaerobic conditions were investigated with X-ray absorption near edge structure (XANES) spectroscopy. In the new treatment system, 98.4% of the total P in domestic wastewater was removed and retained in activated sludge in the MBR. During the subsequent acidogenic cofermentation with food waste, P in the MBR sludge was released and eventually recovered as vivianite, achieving an overall P recovery efficiency of 61.9% from wastewater. The main pathways for P removal and recovery with iron dosing and acidogenic fermentation were determined by XANES analysis. The results showed that Fe-enhanced P removal with the MBR was mainly achieved by precipitation as ferric phosphate (24.2%) and adsorption onto hydrous iron oxides (60.3%). During anaerobic fermentation, transition from Fe(III)-P to Fe(II)-P complex occurred in the sludge, leading to Fe(II) dissolution and P release. The pH decrease and microbial Fe reduction were crucial conditions for effective P extraction from the MBR sludge. The efficiency of P recovery increased with an increase in the fermentation time and organic load and a decrease of pH in the solution.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Environmental Engineering Research Centre, Department of Civil Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
| | - Jin-Li Cui
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong , China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering , Guangzhou University , Guangzhou , China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong , China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
| |
Collapse
|
47
|
Strazzera G, Battista F, Garcia NH, Frison N, Bolzonella D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:278-288. [PMID: 30121464 DOI: 10.1016/j.jenvman.2018.08.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 05/28/2023]
Abstract
Volatile fatty acids (VFAs) are a class of largely used compounds in the chemical industry, serving as starting molecules for bioenergy production and for the synthesis of a variety of products, such as biopolymers, reduced chemicals and derivatives. Because of the huge amounts of food waste generated from household and processing industry, 47 and 17 million tons per year respectively only in the EU-28 Countries, food wastes can be the right candidate for volatile fatty acids production. This review investigates all the major topics involved in the optimization of VFAs production from food wastes. Regarding the best operative conditions for the anaerobic fermenter controlled pH in the neutral range (6.0-7.0), short HRT (lower than 10 days), thermophilic temperatures and an organic loading rate of about 10 kgVS/m3d, allowed for an increase in the VFAs concentration between 10 and 25%. It was also found that additions of mineral acids, from 0.5 to 3.0%, and thermal pretreatment in the range 140-170 °C increase the organic matter solubilisation. Applications of VFAs considered in this study were biofuels and bioplastics production as well as nutrients removal in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Giuseppe Strazzera
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Natalia Herrero Garcia
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
48
|
Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. BIORESOURCE TECHNOLOGY 2018; 268:773-786. [PMID: 30030049 DOI: 10.1016/j.biortech.2018.07.042] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 05/28/2023]
Abstract
Bio-based volatile fatty acid (VFA) production from waste-stream is getting attention due to increasing market demand and wide range usage area as well as its cost-effective and environmentally friendly approach. The aim of this paper is to give a comprehensive review of bio-based VFA production and recovery methods and to give an opinion on future research outlook. Effects of operation conditions including pH, temperature, retention time, type of substrate and mixed microbial cultures on VFA production and composition were reviewed. The recovery methods in terms of gas stripping with absorption, adsorption, solvent extraction, electrodialysis, reverse osmosis, nanofiltration, and membrane contractor of VFA were evaluated. Furthermore, strategies to enhance bio-based VFA production and recovery from waste streams, specifically, in-line VFA recovery and bioaugmentation, which are currently not used in common practice, are seen as some of the approaches to enhance bio-based VFA production.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
49
|
Li RH, Li B, Li XY. An integrated membrane bioreactor system with iron-dosing and side-stream co-fermentation for enhanced nutrient removal and recovery: System performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2018; 260:248-255. [PMID: 29627652 DOI: 10.1016/j.biortech.2018.03.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
An integrated membrane bioreactor (MBR) system was developed for enhanced nutrient (N and P) removal and effective P recovery in wastewater treatment. The system consisted of an iron-dosing MBR and side-stream fermentation for P removal and recovery and side-stream denitrification for N removal. Around 98.1% of the total phosphorus (TP) in wastewater was removed by ferric iron-induced precipitation and membrane filtration in the aerobic MBR, and nearly 53.4% of the TP could be recovered via anaerobic fermentation from the MBR sludge. In addition, the fermenter that allowed acidogenic co-fermentation with food waste provided sufficient soluble organics for biological denitrification, and an overall 91.8% total N removal was achieved through the side-stream denitrification. High-throughput sequencing was applied to analyse the microbial communities in the integrated system, and important functional bacteria were identified for nitrification, denitrification, acidogenic fermentation and dissimilatory iron reduction through the different components of the system.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
50
|
Han X, Zhou Z, Mei X, Ma Y, Xie Z. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community. BIORESOURCE TECHNOLOGY 2018; 250:699-707. [PMID: 29220815 DOI: 10.1016/j.biortech.2017.11.090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed.
Collapse
Affiliation(s)
- Xiaomeng Han
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd., Shanghai 200082, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Xiaojie Mei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yan Ma
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd., Shanghai 200082, China
| | - Zhenfang Xie
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd., Shanghai 200082, China
| |
Collapse
|