1
|
Khoo PS, Ilyas RA, Aiman A, Wei JS, Yousef A, Anis N, Zuhri MYM, Abral H, Sari NH, Syafri E, Mahardika M. Revolutionizing wastewater treatment: A review on the role of advanced functional bio-based hydrogels. Int J Biol Macromol 2024; 278:135088. [PMID: 39197608 DOI: 10.1016/j.ijbiomac.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Water contamination poses a significant challenge to environmental and public health, necessitating sustainable wastewater treatment solutions. Adsorption is one of the most widely used techniques for purifying water, as it effectively removes contaminants by transferring them from the liquid phase to a solid surface. Bio-based hydrogel adsorbents are gaining popularity in wastewater treatment due to their versatility in fabrication and modification methods, which include blending, grafting, and crosslinking. Owning to their unique structure and large surface area, modified hydrogels containing reactive groups like amino, hydroxyl, and carboxyl, or functionalized hydrogels with inorganic nanoparticles particularly graphene nanomaterials, have demonstrated promising adsorption capabilities for both inorganic and organic contaminants. Bio-based hydrogels have excellent physicochemical properties and are non-toxic, environmentally friendly, and biodegradable, making them extremely effective at removing contaminants like heavy metal ions, dyes, pharmaceutical pollutants, and organic micropollutants. The versatility of hydrogels allows for various forms to be used, such as films, beads, and nanocomposites, providing flexibility in handling different contaminants like dyes, radionuclides, and heavy metals. Additionally, researchers also have shown the potential for recycling and regenerating post-treatment hydrogels. This approach not only addresses the challenges of wastewater treatment but also offers sustainable and effective solutions for mitigating water pollution.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - R A Ilyas
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Alif Aiman
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Jau Sh Wei
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Ahmad Yousef
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Nurul Anis
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - M Y M Zuhri
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Centre for Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, University Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia.
| | - Nasmi Herlina Sari
- Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, West Nusa Tenggara 83125, Indonesia.
| | - Edi Syafri
- Department of Agricultural and Computer Engineering, Politeknik Pertanian Negeri Payakumbuh, Limapuluh Kota, West Sumatra 26271, Indonesia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
2
|
Feng J, Song T, Zhang Y, Wang S, Zhang R, Huang L, Zhang C, Liu P. Synchronous removal of gaseous toluene and benzene and degradation process shifts in microbial fuel cell-biotrickling filter system. BIORESOURCE TECHNOLOGY 2024; 400:130650. [PMID: 38570099 DOI: 10.1016/j.biortech.2024.130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Illustrating the biodegradation processes of multi-component volatile organic compounds (VOCs) will expedite the implication of biotechnology in purifying industrial exhaust. Here, performance shifts of microbial fuel cell and biotrickling filter combined system (MFC-BTF) are investigated for removing single and dual components of toluene and benzene. Synchronous removal of toluene (95 %) and benzene (97 %) are achieved by MFC-BTF accompanied with the output current of 0.41 mA. Elevated content of extracellular polymeric substance facilitates the mass transfer of benzene with the presence of toluene. Strains of Bacteroidota, Proteobacteria and Chloroflexi contribute to the removal of dual components VOCs. Empty bed reaction time and the VOCs concentration are the important factors influencing their dissolution in the system. The biodegradation of toluene and benzene proceeds with 2-hydroxymuconic semialdehyde and o-hydroxybenzoic acid as the main intermediates. These results provide a comprehensive understanding of multi-component VOCs removal by MFC-BTF and guide the system design, optimization, and scale-up.
Collapse
Affiliation(s)
- Jianan Feng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianqing Song
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanxin Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shanshan Wang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruiqin Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Long Huang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changshen Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Panpan Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Kim MR, Jeon W, Kim S. 1Non-thermal plasma coupled with a wet scrubber for removing odorous VOC. CHEMOSPHERE 2023; 332:138870. [PMID: 37156289 DOI: 10.1016/j.chemosphere.2023.138870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Odorous volatile organic compounds (VOCs) deteriorate the quality of life and affect human health. In this study, a process was developed to remove an odorous VOC using a combined non-thermal plasma (NTP) and wet scrubber (WS) system. The low removal efficiency of WSs and the large amount of ozone generated by NTP were resolved. Compared to the decomposition effects when using a WS and NTP separately, the NTP + WS system improved the removal efficiency of ethyl acrylate (EA) and significantly reduced ozone emissions. The maximum EA removal efficiency was 99.9%. Additionally, an EA removal efficiency of over 53.4% and a 100% ozone removal efficiency were achieved even at discharge voltages lower than 4.5 kV. Ozone catalysis was confirmed to occur in the NTP + WS system. Furthermore, we verified the removal of by-products such as residual ozone and formaldehyde, which is a representative organic intermediate of EA. This study demonstrates that the NTP + WS system is a green technology for removing odorous VOCs.
Collapse
Affiliation(s)
- Min-Ryeong Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan, 44413, South Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Woojin Jeon
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan, 44413, South Korea
| | - Suhan Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan, 44413, South Korea.
| |
Collapse
|
4
|
Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes (Basel) 2022. [DOI: 10.3390/pr10122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biotrickling filtration is a well-established technology for the treatment of air polluted with odorous and volatile organic compounds (VOCs). Besides dozens of successful industrial applications of this technology, there are still gaps in a full understanding and description of the mechanisms of biotrickling filtration. This review focuses on recent research results on biotrickling filtration of air polluted with single and multiple VOCs, as well as process modeling. The modeling offers optimization of a process design and performance, as well as allows deeper understanding of process mechanisms. An overview of the developments of models describing biotrickling filtration and conventional biofiltration, as primarily developed and in many aspects through similar processes, is presented in this paper.
Collapse
|
5
|
Effects of Water Content and Irrigation of Packing Materials on the Performance of Biofilters and Biotrickling Filters: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biofilters (BFs) and biotrickling filters (BTFs) are two types of bioreactors used for treatment of volatile organic compounds (VOCs). Both BFs and BTFs use packing materials in which various microorganisms are immobilised. The water phase in BFs is stationary and used to maintain the humidity of packing materials, while BTFs have a mobile liquid phase. Optimisation of irrigation of packing materials is crucial for effective performance of BFs and BTFs. A literature review is presented on the influence of water content of packing materials on the biofiltration efficiency of various pollutants. Different configurations of BFs and BTFs and their influence on moisture distribution in packing materials were discussed. The review also presents various packing materials and their irrigation control strategies applied in recent biofiltration studies. The sources of this review included recent research articles from scientific journals and several review articles discussing BFs and BTFs.
Collapse
|
6
|
Abstract
Biological processes have high removal efficiencies and low operational costs, but the secondary effluent of coking wastewater (CWW), even at a low concentration, is difficult for microorganisms to degrade directly. In this study, glucose was used as a carbon source and co-metabolic substrate for microbial acclimation in order to enhance the advanced treatment of coking wastewater (CWW). The removal performance of the pollutants, especially recalcitrant compounds, was studied and the changes in the microbial community structure after activated sludge acclimation were analyzed. The effect of glucose addition on the secondary biochemical effluent of coking wastewater (SBECW) treatment by the acclimated sludge was further studied by a comparison between the performance of two parallel reactors seeded with the acclimated sludge. Our results showed that the concentrations of chemical oxygen demand (COD), total organic carbon (TOC), and UV absorption at 254 nm (UV254) of the wastewater decreased in the acclimation process. Refractory organic matter, such as polycyclic aromatic hydrocarbons and nitrogen-containing heterocyclics, in the SBECW was effectively degraded by the acclimated sludge. High-throughput sequencing revealed that microbes with a strong ability to degrade recalcitrant compounds were enriched after acclimation, such as Thauera (8.91%), Pseudomonas (3.35%), and Blastocatella (10.76%). Seeded with the acclimated sludge, the reactor with the glucose addition showed higher COD removal efficiencies than the control system without glucose addition (p < 0.05). Collectively, glucose addition enhanced the advanced treatment of coking wastewater (CWW).
Collapse
|
7
|
Huan C, Lyu Q, Tong X, Li H, Zeng Y, Liu Y, Jiang X, Ji G, Xu L, Yan Z. Analyses of deodorization performance of mixotrophic biotrickling filter reactor using different industrial and agricultural wastes as packing material. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126608. [PMID: 34280718 DOI: 10.1016/j.jhazmat.2021.126608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, to efficiently remove malodorous gas and reduce secondary pollution under mixotrophic conditions, pine bark, coal cinder, straw and mobile bed biofilm reactor (MBBR) fillers were used as packing materials in a biological trickling filter (BTF) to simultaneously treat high-concentration H2S and NH3. The results showed that the removal rate of BTF-A filled with pine bark was the highest, which was 86.31% and 94.06% under the H2S and NH3 loading rates of 53.59 g/m³·h while the empty bed residence time (EBRT) was 40.5 s. The theoretical maximum load was obtained by fitting the kinetic curve, and the value were 90.09 g H2S m-³·h-1 and 172.41 g NH3 m-³·h-1. Meanwhile, after treating with 720 ppm of NH3, the average concentration of NO3- in the BTF circulating fluid was only 127.58 mg/L, indicating the better performance of secondary pollutants control. Microbiological analysis showed that Dokdonella, Micropruina, Candidatus_Alysiosphaera, Nakamurella and Thiobacillus possessed high abundance at the genus level, and their entire percentage in four BTF reactors were 62.87%, 46.32%, 47.98%, and 57.35% respectively. It is worthwhile that the genera Comamonas and Trichococcus with heterotrophic nitrification and aerobic denitrification capabilities and proportion of 3.66%, 1.45%, 5.43%, and 3.23% were observed in four reactors.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinyu Tong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Haihong Li
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Liu F, Hu X, Zhao X, Gao Y. Effect of carrier particle size on enrichment and shift in nitrifier community behaviors for treating increased strength wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1959-1968. [PMID: 33797157 DOI: 10.1002/wer.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In activated sludge systems, adding carriers can improve nitrifier enrichment. Different attachment area induced by different particle sizes of carriers may result in different nitrifier community. This research investigated the effect of different particle sizes of coal ash on nitrifier enrichment treating increased strength wastewater. Results indicated efficient nitrifying coal ash was obtained with smaller coal ash. The ammonia removal rates reached over 98%, which outclassed that in negative control (63.28%), and no nitrite accumulated in these systems under high nitrogen concentration of 1123.35 mg N/L. The high-throughput sequencing assays indicated carriers changed the microbial community structure significantly, thus facilitated the nitrification capacity. Increase abundance of nitrifier has a negative correlation with particle size of carriers. Nitrosomonas became the biggest beneficiary, which maximum composed 50.29% in fillers system and only 13.69% in negative control, whereas the number of Nitrobacter (less than 3.04%) became much lower than ammonia-oxidizing bacteria (AOB). However, the shift of microbial structures, large number of Dokdonella for instance, may guarantee the complete nitrification in systems with smaller carriers. Batch experiments showed a high dissolved oxygen (DO) concentration (4 mg/L) and slightly alkaline condition (pH 8.0) had a positive effect on nitrifying coal ash. PRACTITIONER POINTS: The increase size of nitrifier has a negative correlation with particle size of coal ash. The smaller coal ash reduces the adverse effect of high nitrogen on nitrification. The ammonia removal rate reached 99.82% with influent of 1123.35 mg NH 4 + - N /L in the smallest carriers system.
Collapse
Affiliation(s)
- Fang Liu
- Department of Environmental Engineering, School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, China
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang, China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resource & Civil Engineering, Northeastern University, Shenyang, China
| | - Yong Gao
- Department of Environmental Engineering, School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
9
|
Mao L, Tsui TH, Zhang J, Dai Y, Tong YW. Mixing effects on decentralized high-solid digester for horticultural waste: Startup, operation and sensitive microorganisms. BIORESOURCE TECHNOLOGY 2021; 333:125216. [PMID: 33933829 DOI: 10.1016/j.biortech.2021.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
This work studied the use of a horizontal high-solid digester for the decentralized anaerobic treatment of horticultural waste (fallen leaves), where the effect of intermittent mixing by a modified double helical ribbon impeller was investigated. Before experimental verification, the flow pattern and theoretical mixing time were first characterized by CFD simulation. Subsequently, three mixing time intervals (i.e., 3 min/3 hr; 18 min/3 hr; 108 min/3 hr) and one control setup (i.e., without mixing) were compared for their performance during start-up and semi-continuous operation. It was found that minimal mixing was necessary for an efficient digester's start-up but increased mixing intensity for semi-continuous operation. The results were further interpreted by correlating the digester performance and microbial communities. Those microorganisms sensitive to increased mixing intensity were highlighted and analysed.
Collapse
Affiliation(s)
- Liwei Mao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiaotong University, 3 YinlianRoad, Shanghai 201306, China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
10
|
Guo J, Cong Q, Zhang J, Zhang L, Meng L, Liu M, Ma F. Nitrous oxide emission in a laboratory anoxic-oxic process at different influent pHs: Generation pathways and the composition and function of bacterial community. BIORESOURCE TECHNOLOGY 2021; 328:124844. [PMID: 33609882 DOI: 10.1016/j.biortech.2021.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This study focused on the nitrous oxide (N2O) generation from the biological nitrogen removal process under different pH levels. To explore a pH optimum, the online N2O emission and the bacterial composition and function in the anoxic-oxic process were investigated. The mean gaseous N2O emission accounted for 0.329%, 0.103%, 0.085%, and 0.793% of the influent total nitrogen at pH of 5, 6, 8, and 9, respectively. Incomplete oxidation in oxic tanks was the primary source of N2O, while N2O in the anoxic tank was mainly generated by nitrifier denitrification. No direct correlations were observed between N2O emission and potential nitrifiers and denitrifiers. The impacts of pH on N2O generation were more likely related to the response of bacterial enzymes and nitrogen compounds, rather than the feedback of bacterial community structure itself. Above all, an influent pH range of 6-8 is recommended for nitrogen removal and N2O mitigation in anoxic-oxic process.
Collapse
Affiliation(s)
- Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Qiwei Cong
- Weihai Water Group Co. LTD, Weihai 264200, China; School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jun Zhang
- Storage Center of Jilin Petrochemical Company, Jilin 132000, China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Lingwei Meng
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Mingwei Liu
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Wu H, Yang M, Tsui TH, Yin Z, Yin C. Comparative evaluation on the utilization of applied electrical potential in a conductive granule packed biotrickling filter for continuous abatement of xylene: Performance, limitation, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111145. [PMID: 32801108 DOI: 10.1016/j.jenvman.2020.111145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the use of electrically conductive granules as packing material in biotrickling filter (BTF) systems as to provide insights on the specific microbial abundance and functions during the treatment of xylene-containing waste gas. In addition, the effect of applied potential on attached biofilm on conductive granules during xylene degradation was briefly investigated. During stable operation period, the conductive granules packed BTF achieved reactor performance of no less than 80% with a maximum EC of 137.7 g/m3 h. Under applied potential of 1V, the BTF system showed deterioration of xylene removal by ranging from 21 to 76%, which also affected the distribution and relative abundance of the major microorganisms such as Xanthobacter, Acidovorax, Rhodococcus, Hydrogenophaga, Arthrobacter, Brevundimonas, Pseudoxanthomonas, Devosia, Shinella, Sphingobium, Dokdonella, Pseudomonas and Bosea. The acclimation of applied potential led to the enrichment of autotrophic bacteria and strains, which are correlated to improved nitrogen cycling. In general, applying electrical potential is feasible to shape the microbiological structure of biofilms to selectively adjust their biochemical functions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, Yanbian University, Yanji, 133002, China; Department of Environmental Engineering, Yanshan University, Qinhuangdao, 066000, China
| | - Mengxin Yang
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - To-Hung Tsui
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhenxing Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| | - Chengri Yin
- Department of Chemistry, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
12
|
Ying S, Kong X, Cai Z, Man Z, Xin Y, Liu D. Interactions and microbial variations in a biotrickling filter treating low concentrations of hydrogen sulfide and ammonia. CHEMOSPHERE 2020; 255:126931. [PMID: 32402879 DOI: 10.1016/j.chemosphere.2020.126931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
A lab-scale biotrickling filter (BTF) packed with porcelain Rasching ring and ceramsite was applied for co-treating of low concentrations of hydrogen sulfide (H2S) and ammonia (NH3), as major pollutants typically found in e.g., intensive livestock production facilities. In this study, the outlet gas concentrations of H2S and NH3 were used for indicators if the treated gas reached odor-free condition. Overall, excellent removal efficiencies were obtained for both H2S and NH3 in the BTF during Stage I (H2S alone) and Stage II (H2S and NH3). Specifically, the H2S outlet concentration was below the detection limit (∼3.6 ppbv) and the NH3 outlet concentration was less than 0.4 ppmv when the inlet concentrations of H2S and NH3 were around 1.8 ppmv and 35.3 ppmv, respectively. In this case, the running empty bed residence time was 10.2 s. During Stage II, the outlet H2S concentration was decreased significantly when the inlet NH3 concentration was increased, likely due to the influence by pH. Meanwhile, the outlet nitrous oxide (N2O) concentration was kept low (<2% NH3) during the experiment, suggesting a proper operation of the BTF. After the inlet gas shifted from H2S alone at Stage I to H2S and NH3 at Stage II, the main sulfur-oxidizing bacteria (SOB) species in the BTF switched from Acidithiobacillus to Thiobacillus.
Collapse
Affiliation(s)
- Shihao Ying
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Xianwang Kong
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Zhen Cai
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Zun Man
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Yicong Xin
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, China.
| |
Collapse
|
13
|
Abdolahnejad A, Mokhtari M, Ebrahimi AA, Nikaeen M, Shahi MA, Hajizadeh Y. Improved degradation of n-hexane vapours using a hybrid system, a photoreactor packed with TiO 2 coated-scoria granules and a multilayer biofilter. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:1017-1027. [PMID: 32030171 PMCID: PMC6985411 DOI: 10.1007/s40201-019-00416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Biofiltration of hydrophobic and/or recalcitrant volatile organic compounds such as n-hexane is imperfect. In the present study, we applied a hybrid system consisting of a photoreactor packed with scoria granules coated with TiO2 and a biofilter to improve the removal efficiency of n-hexane from the air stream. The experimental results showed that the hybrid system provided higher removal efficiencies than the single biofilter process with an inlet n-hexane concentration range of 0.11-1 g-3 for empty bed residence times (EBRTs) of 30-120 s in the hybrid system. The removal efficiency of the single biofilter in EBRTs of 30, 60 and 120 s was 10.06%, 21.45%, and 45.98%, respectively. When the photoreactor was included as a pretreatment system (with residence time of 7-27 s) and the overall EBRTs of the system was adjusted to 30, 60 and 120 s, the removal efficiency of the hybrid system was increased to 39.79%, 63.08%, and 92.6%, respectively. The mass ratio of carbon dioxide produced as an indicator for n-hexane degradation in the hybrid system and the biofilter alone was 1.9 and 1.28, respectively. Bacterial community analysis with sequence analysis of 16S rDNA in the biofilter biomass revealed that Pseudomonas and Bacillus as predominant bacterial species were responsible for n-hexane biodegradation. Therefore, the application of the hybrid system is advantageous in enhanced n-hexane removal from the air stream.
Collapse
|
14
|
Yang Z, Li J, Liu J, Cao J, Sheng D, Cai T. Evaluation of a pilot-scale bio-trickling filter as a VOCs control technology for the chemical fibre wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:71-76. [PMID: 31176181 DOI: 10.1016/j.jenvman.2019.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/19/2019] [Accepted: 05/24/2019] [Indexed: 05/20/2023]
Abstract
The performance of lab- and pilot-scale bio-trickling filters (BTFs) for the treatment of emissions from a chemical fibre wastewater treatment plant was investigated. These systems were installed mainly to demonstrate the effectiveness of bio-trickling technologies in purifying exhaust gases containing different kinds of volatile organic compounds (VOCs). Results showed that 12 days more were necessary for the pilot-scale BTF to start up successfully than the lab-scale one. Both the lab- and pilot-scale BTFs exhibited contaminant removal efficiency higher than 90% at an empty bed residence time of 59 s, corresponding to gas flow of 0.2 m3 h-1 and 550 m3 h-1, respectively. The reduction of the microelement in the nutrient solution had little effect on the performance of the pilot-scale BTF. The abundance and diversity of the microorganism analysis showed that the diversity of the contaminants had a significant influence on the microorganism distribution in the BTF. Economic feasibility study showed that BTF might be an efficient solution for VOCs control with a lower cost than adsorption technology and regenerative catalytic oxidation.
Collapse
Affiliation(s)
- Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Jian Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Jingyang Cao
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Dinghe Sheng
- Luoyang Branch of China Petrochemical Corporation, Luoyang, 471012, China
| | - Tingjian Cai
- Luoyang Branch of China Petrochemical Corporation, Luoyang, 471012, China
| |
Collapse
|
15
|
A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42768-019-00013-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Zhang F, Shao J, Yang H, Guo D, Chen Z, Zhang S, Chen H. Effects of biomass pyrolysis derived wood vinegar on microbial activity and communities of activated sludge. BIORESOURCE TECHNOLOGY 2019; 279:252-261. [PMID: 30735935 DOI: 10.1016/j.biortech.2019.01.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 05/14/2023]
Abstract
The effects of wood vinegar (WVG) on microbial activity and communities of activated sludge were investigated in a sequencing batch reactor (SBR) process. Results showed that the optimal WVG concentration was 4 μL/L when the pollutants removal efficiency and microbial activity were promoted by a WVG dilution factor of 1000. WVG could reduce the increase in microbial species richness, which led to a more notable variety of microbial species diversity. The enhanced microbial activity and communities were addressed to the promotion of 7 main classes of microbes in Proteobacteria, Bacteroidetes, Acidobacteria, and Nitrospirae phyla. The growth of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and main genera of denitrifying bacteria (DNB), phosphorus-accumulating organisms (PAOs), and glycogen-accumulating organisms (GAOs) could be promoted by WVG, which improved the sewage treatment effectiveness in a SBR.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingai Shao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihua Chen
- School of Environment, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Zhang Y, Liu J, Deng W, Qin Y, Xing Y, Li J. Research on pressure drop solution and pilot-scale application of bio-trickling filter for the treatment of butan-2-yl ethanoate. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air. Processes (Basel) 2019. [DOI: 10.3390/pr7040187] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due to increasingly stringent legal regulations as well as increasing social awareness, the removal of odorous volatile organic compounds (VOCs) from air is gaining importance. This paper presents the strategy to compare selected biological methods intended for the removal of different air pollutants, especially of odorous character. Biofiltration, biotrickling filtration and bioscrubbing technologies are evaluated in terms of their suitability for the effective removal of either hydrophilic or hydrophobic VOCs as well as typical inorganic odorous compounds. A pairwise comparison model was used to assess the performance of selected biological processes of air treatment. Process efficiency, economic, technical and environmental aspects of the treatment methods are taken into consideration. The results of the calculations reveal that biotrickling filtration is the most efficient method for the removal of hydrophilic VOCs while biofilters enable the most efficient removal of hydrophobic VOCs. Additionally, a simple approach for preliminary method selection based on a decision tree is proposed. The presented evaluation strategies may be especially helpful when considering the treatment strategy for air polluted with various types of odorous compounds.
Collapse
|
19
|
Rybarczyk P, Szulczyński B, Gębicki J, Hupka J. Treatment of malodorous air in biotrickling filters: A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Wu H, Yan H, Quan Y, Zhao H, Jiang N, Yin C. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:409-419. [PMID: 29883876 DOI: 10.1016/j.jenvman.2018.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Pollution caused by volatile organic compounds (VOCs) and odorous pollutants in the air can produce severe environmental problems. In recent years, the emission control of VOCs and odorous pollutants has become a crucial issue owing to the adverse effect on humans and the environment. For treating these compounds, biotrickling filter (BTF) technology acts as an environment friendly and cost-effective alternative to conventional air pollution control technologies. Besides, low concentration of VOCs and odorous pollutants can also be effectively removed using BTF systems. However, the VOCs and odorants removal performance by BTF may be limited by the hydrophobicity, toxicity, and low bioavailability of these pollutants. To solve these problems, this review summarizes the design, mechanism, and common analytical methods of recent BTF advances. In addition, the operating conditions, mass transfer, packing materials and microorganisms (which are the critical parameters in a BTF system) were evaluated and discussed in view of improving the removal performance of BTFs. Further research on these specific topics, together with the combination of BTF technology with other technologies, should improve the removal performance of BTFs.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huayu Yan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huazhang Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Nanzhe Jiang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China.
| |
Collapse
|
21
|
Eregowda T, Matanhike L, Rene ER, Lens PNL. Performance of a biotrickling filter for the anaerobic utilization of gas-phase methanol coupled to thiosulphate reduction and resource recovery through volatile fatty acids production. BIORESOURCE TECHNOLOGY 2018; 263:591-600. [PMID: 29783195 DOI: 10.1016/j.biortech.2018.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The anaerobic removal of continuously fed gas-phase methanol (2.5-30 g/m3.h) and the reduction of step-fed thiosulphate (1000 mg/L) was investigated in a biotrickling filter (BTF) operated for 123 d at an empty bed residence time (EBRT) of 4.6 and 2.3 min. The BTF performance during steady step-feed and special operational phases like intermittent liquid trickling in 6 and 24 h cycles and operation without pH regulation were evaluated. Performance of the BTF was not affected and nearly 100% removal of gas-phase methanol was achieved with an ECmax of 21 g/m3.h. Besides, >99% thiosulphate reduction was achieved, in all the phases of operation. The production of sulphate, H2S and volatile fatty acids (VFA) was monitored and a maximum of 2500 mg/L of acetate, 200 mg/L of propionate, 150 mg/L of isovalerate and 100 mg/L isobutyrate was produced.
Collapse
Affiliation(s)
- Tejaswini Eregowda
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Luck Matanhike
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P. O. Box 541, Tampere, Finland
| |
Collapse
|
22
|
Wu H, Fu Y, Guo C, Li Y, Jiang N, Yin C. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater. BIORESOURCE TECHNOLOGY 2018; 260:130-134. [PMID: 29625284 DOI: 10.1016/j.biortech.2018.03.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yu Fu
- College of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China
| | - Chunyu Guo
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yanbo Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Nanzhe Jiang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China; Analytical and Testing Center, Yanbian University, Yanji 133002, China.
| |
Collapse
|
23
|
Wu H, Guo C, Yin Z, Quan Y, Yin C. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene. BIORESOURCE TECHNOLOGY 2018; 257:201-209. [PMID: 29501953 DOI: 10.1016/j.biortech.2018.02.108] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Toluene has high toxicity and mutagenicity, thus, the removal of toluene from air is necessary. In this study, two biotrickling filters (BTFs) were constructed and packed with conductive packing material to treat toluene waste gas. BTF-O exhibited good toluene removal performance even under high toluene inlet concentration, and over 80% of removal efficiency was observed. The elimination capacity reached 120.1 g/m3 h corresponding to an inlet concentration of 2.259 g/m3 under 61.5 s of empty bed retention time. During toluene biodegradation, the output voltage was observed in BTF-O and BTF-E, moreover BTF-E also showed slight power storage capacity. The applied voltage inhibited toluene removal and affected the bacterial community. The predominant bacterial genera in BTF-O were Acidovorax, Rhodococcus, Hydrogenophaga, Brevundimonas, Arthrobacter, Pseudoxanthomonas, Devosia, Gemmobacter, Rhizobium, Dokdonella and Pseudomonas. Genera Xanthobacter and Pelomonas accounted for the main bacterial community in BTF-E.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chunyu Guo
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Zhenhao Yin
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Yanji 133002, China; Analytical and Testing Center, Yanbian University, Yanji 133002, China.
| |
Collapse
|
24
|
Zhou J, Li H, Chen X, Wan D, Mai W, Sun C. Cometabolic degradation of low-strength coking wastewater and the bacterial community revealed by high-throughput sequencing. BIORESOURCE TECHNOLOGY 2017; 245:379-385. [PMID: 28898834 DOI: 10.1016/j.biortech.2017.08.119] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Cometabolism technology was employed to degrade low-strength coking wastewater (CWW) in Sequencing Batch Reactor (SBR). The bacterial community compositions were monitored by high-throughput sequencing. Cometabolic substrate effectively improved the chemical oxygen demand (COD) removal efficiency in glucose-added system (A1) compared to glucose-free system (A0). Meanwhile, A1 exhibited larger biomass, better settlement performance, and higher dehydrogenase activity (DHA). More importantly, high-throughput sequencing revealed that dominant populations in A1 were quite different with A0. Thauera (9.27%), Thermogutta (7.58%), and Defluviimonas (4.6%) began to enrich in A1 after cometabolic substrate supplement. Especially, Thauera, as the most dominant populations in Al, could degrade a wide spectrum of aromatic compounds, which may contribute to the better system performance. This work would provide a novel option to treat low-strength CWW, discern the relationship between bacterial community and CWW quality, and further explore the cometabolic degradation through bacterial community structures.
Collapse
Affiliation(s)
- Jia Zhou
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Dongjin Wan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenning Mai
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Changqing Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Quan Y, Wu H, Yin Z, Fang Y, Yin C. Effect of static magnetic field on trichloroethylene removal in a biotrickling filter. BIORESOURCE TECHNOLOGY 2017; 239:7-16. [PMID: 28500890 DOI: 10.1016/j.biortech.2017.04.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
A laboratory-scale biotrickling filter combined with a magnetic field (MF-BTF) and a single BTF (S-BTF) were set up to treat trichloroethylene (TCE) gas. The influences of phenol alone and NaAc-phenol as co-substrates and different MF intensities were investigated. At low MF intensity, MF-BTF displayed better performance with 0.20g/L of phenol, 53.6-337.1mg/m3 of TCE, and empty bed residence times of 202.5s. The performances followed the order MF-BTF (60.0mT)>MF-BTF (30.0mT)>S-BTF (0mT)>MF-BTF (130.0mT), and the removal efficiencies (REs) and maximum elimination capacities (ECs) corresponded to: 92.2%-45.5%, 2656.8mg/m3h; 89.8%-37.2%, 2169.1mg/m3h; 89.8%-29.8%, 1967.7mg/m3h; 76.0%-20.8%, 1697.1mg/m3h, respectively. High-throughput sequencing indicated that the bacterial diversity was lower, whereas the relative abundances of Acinetobacter, Chryseobacterium, and Acidovorax were higher in MF-BTF. Results confirmed that a proper MF could improve TCE removal performance in BTF.
Collapse
Affiliation(s)
- Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China; Department of Environmental Science, Agricultural College, Yanbian University, Yanji 133002, China
| | - Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Zhenhao Yin
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Yingyu Fang
- Analytical and Testing Center, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
26
|
Feng S, Li D, Low ZX, Liu Z, Zhong Z, Hu Y, Wang Y, Xing W. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Sun Z, Yang B, Wang L, Ding C, Li Z. Toluene-styrene secondary acclimation improved the styrene removal ability of biotrickling filter. CHEMICAL SPECIATION & BIOAVAILABILITY 2017. [DOI: 10.1080/09542299.2017.1301219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technogy, Yancheng, China
| |
Collapse
|
28
|
Lewkowska P, Cieślik B, Dymerski T, Konieczka P, Namieśnik J. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. ENVIRONMENTAL RESEARCH 2016; 151:573-586. [PMID: 27591529 DOI: 10.1016/j.envres.2016.08.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
Odors emitted from municipal wastewater treatment plants belong to a group of pollutants, which is the main cause of people complaining about atmospheric air quality. The limitation of emissions of unpleasant odors generated by wastewater treatment plants by using appropriate deodorization methods is omitted on numerous occasions. This can have a negative influence on public trust and the quality of atmospheric air. The article presents basic information on the characteristics of odors from wastewater treatment lines and wastewater processing and management lines in a model biological wastewater treatment plant conducting the biogas recovery process and also information is provided on deodorization methods, such as odor masking, biofiltration, thermal disposal and diffusion through activated sludge dedicated to neutralization of odors in biological treatment plants. The main focus is on the field olfactometry technique, which is one of the tools used in environmental protection. Its application facilitates performance of tests concerning the assessment of olfactory properties of odorants in polluted air.
Collapse
Affiliation(s)
- Paulina Lewkowska
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bartłomiej Cieślik
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Tomasz Dymerski
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Piotr Konieczka
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Jacek Namieśnik
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, ul. Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|