1
|
Qin Z, Li L, Zeng W, Li H, Zhou J, Xu S. High efficiency production of 5-hydroxyectoine using metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 413:131493. [PMID: 39284374 DOI: 10.1016/j.biortech.2024.131493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
The 5-hydroxyectoine is a natural protective agent with long-lasting moisturising and radiation resistance properties. It can be naturally synthesized by some extremophiles using the "bacterial milking" process, but this can corrode bioreactors and downstream purification may cause environmental pollution. In this study, an engineered Escherichia coli (E. coli) strain was constructed for the 5-hydroxyectoine production. First, three ectoine hydroxylases were characterised and the enzyme from Halomonas elongata was the most effective. The L-2,4-diaminobutyrate transaminase mutant was introduced into the engineered strain, which could accumulate 2.8 g/L 5-hydroxyectoine in shake flasks. By activating the glyoxylate cycle and balancing the α-ketoglutarate distribution, the 5-hydroxyectoine titer was further increased to 3.4 g/L. Finally, the optimized strain synthesized 58 g/L 5-hydroxyectoine via a semi-continuous feeding process in a NaCl-free medium. Overall, this study reported the highest titer of 5-hydroxyectoine synthesized by E. coli and established a low-salt fermentation process through the aforementioned efforts.
Collapse
Affiliation(s)
- Zhijie Qin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lihong Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hongbiao Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Yadav N, Patel AB, Debbarma S, Priyadarshini MB, Priyadarshi H. Characterization of Bioactive Metabolites and Antioxidant Activities in Solid and Liquid Fractions of Fresh Duckweed ( Wolffia globosa) Subjected to Different Cell Wall Rupture Methods. ACS OMEGA 2024; 9:19940-19955. [PMID: 38737040 PMCID: PMC11080017 DOI: 10.1021/acsomega.3c09674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
Fresh Wolffia globosa, the smallest flowering plant well-known for its favorable nutrient composition and rich content of bioactive compounds, was subjected to boiling, freeze-thawing, and mechanical crushing to reduce its excessive (95-96%) moisture level and consequent drying time. The resultant three wolffia matrixes were filtered through a plankton net to fractionate into the residue and the filtrate. The proximate composition, bioactive metabolites, antioxidant activity, and characterization of bioactive metabolites by LC-ESI-QTOF-MS/MS and Fourier transform infrared spectroscopy were made from oven-dried residues and filtrates. Among residues, crude protein (29.84%), crude lipid (5.77%), total carotenoids (TCC; 722.8 μg/g), and vitamin C (70.02 mg/100 g) were the highest (p < 0.05) for freeze-thawing against higher ash (7.99%), total phenolic content (TPC; 191.47 mg GAE g-1 dry weight), total flavonoid content (TFC; 91.54 mg QE g-1 dry weight), DPPH activity (47.46%), and ferric reducing antioxidant power (FRAP) activity (570.19 μmol FeSO4 equiv/mg) for the crushed counterpart and Chl-b in residues from boiling. No significant variation was evident in the total tannin content (TTC). Among filtrates, higher total phenolic content (773.29 mg GAE g-1 dry weight), TFC (392.77 mg QE g-1 dry weight), TTC (22.51 mg TAE g-1), and antioxidant activity as DPPH activity (66.46%) and FRAP (891.62 μmol FeSO4 equiv/mg) were evident for boiling, while that from crushing exhibited the highest TCC (1997.38 μg/g DM). LC-ESI-QTOF-MS/MS analysis identified 72 phenolic compounds with the maximum in residue (33) and filtrate (33) from freeze-thawing, followed by crushing (18 and 19) and boiling (14 and 13) in order, respectively. The results indicated that the predrying cell rupturing method significantly impacted quantitative, as well as qualitative compositions of residues and filtrates from fresh wolffia.
Collapse
Affiliation(s)
- Nitesh
Kumar Yadav
- Department
of Aquaculture, College of Fisheries, Central
Agriculture University (Imphal), Lembucherra, Agartala, Tripura (West) 799210, India
| | - Arun Bhai Patel
- Department
of Aquaculture, College of Fisheries, Central
Agriculture University (Imphal), Lembucherra, Agartala, Tripura (West) 799210, India
| | - Sourabh Debbarma
- Department
of Aquatic Health & Environment, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| | - M. Bhargavi Priyadarshini
- Department
of Fish Processing Technology& Engineering, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| | - Himanshu Priyadarshi
- Department
of Fish Genetics and Reproduction, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| |
Collapse
|
3
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
4
|
Li S, Song C, Zhang H, Qin Y, Jiang M, Shen N. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO 3 in Actinobacillus succinogenes GXAS137. Pol J Microbiol 2023; 72:399-411. [PMID: 38000010 PMCID: PMC10725169 DOI: 10.33073/pjm-2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Collapse
Affiliation(s)
- Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Chaodong Song
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Qin
- National Non-Grain Bio-Energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
5
|
Wan S, Liu X, Sun W, Lv B, Li C. Current advances for omics-guided process optimization of microbial manufacturing. BIORESOUR BIOPROCESS 2023; 10:30. [PMID: 38647562 PMCID: PMC10992112 DOI: 10.1186/s40643-023-00647-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/25/2023] [Indexed: 04/25/2024] Open
Abstract
Currently, microbial manufacturing is widely used in various fields, such as food, medicine and energy, for its advantages of greenness and sustainable development. Process optimization is the committed step enabling the commercialization of microbial manufacturing products. However, the present optimization processes mainly rely on experience or trial-and-error method ignoring the intrinsic connection between cellular physiological requirement and production performance, so in many cases the productivity of microbial manufacturing could not been fully exploited at economically feasible cost. Recently, the rapid development of omics technologies facilitates the comprehensive analysis of microbial metabolism and fermentation performance from multi-levels of molecules, cells and microenvironment. The use of omics technologies makes the process optimization more explicit, boosting microbial manufacturing performance and bringing significant economic benefits and social value. In this paper, the traditional and omics technologies-guided process optimization of microbial manufacturing are systematically reviewed, and the future trend of process optimization is prospected.
Collapse
Affiliation(s)
- Shengtong Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Shen N, Li S, Li S, Wang Y, Zhang H, Jiang M. Reduced acetic acid formation using NaHSO 3 as a steering agent by Actinobacillus succinogenes GXAS137. J Biosci Bioeng 2023; 135:203-209. [PMID: 36628842 DOI: 10.1016/j.jbiosc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
The high production of acetic acid (AC) as a by-product leads to difficult separation and purification of succinic acid (SA) and increases production costs in SA fermentation by Actinobacillus succinogenes. NaHSO3 as a steering agent was used to reduce AC production. Herein, the optimum fermentation conditions were achieved by single-factor and orthogonal tests as follows: glucose 60 g/L; MgCO3 60 g/L; NaHSO3 0.15% (w/v); and NaHSO3 addition time, 8 h after inoculation. After optimization, the SA and AC contents were 44.42 and 5.73 g/L. The SA improved by 100.72%, the AC decreased by 21.18% compared with the unfermented. The acetate kinase activity decreased by 14.36% and acetyl-CoA content improved by 97.55% in the group of NaHSO3 addition compared with control check (CK). The mechanism of NaHSO3 is formation acetaldehyde-sodium bisulfite compound and reduction the activity of acetate kinase. These findings indicated a new way of using NaHSO3 as a steering agent to reduce AC generation and may help promote the development of SA industrial production.
Collapse
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Shuyan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yibing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| |
Collapse
|
7
|
Yang GL. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches. Int J Mol Sci 2022; 23:ijms232315231. [PMID: 36499555 PMCID: PMC9740428 DOI: 10.3390/ijms232315231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
With the growing scarcity of traditional sources of energy and the accompanying acute environmental challenges, biofuels based on biomass are favored as the most promising alternative. As one of the core raw materials for biomass energy, research on its production methods and synthesis mechanisms is emerging. In recent years, duckweed has been used as a high-quality new biomass feedstock for its advantages, including fast biomass accumulation, high starch content, high biomass conversion efficiency, and sewage remediation. This study provides a systematic review of the growth characteristics, starch metabolism pathways, and methods to improve starch accumulation in the new energy plant, duckweed. The study also presents a prospect that might be used as a reference for the development of duckweed as a new energy-providing plant.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Baek G, Lee H, Ko J, Choi HK. Exogenous melatonin enhances the growth and production of bioactive metabolites in Lemna aequinoctialis culture by modulating metabolic and lipidomic profiles. BMC PLANT BIOLOGY 2022; 22:545. [PMID: 36434529 PMCID: PMC9701026 DOI: 10.1186/s12870-022-03941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Lemna species are cosmopolitan floating plants that have great application potential in the food/feed, pharmaceutical, phytoremediation, biofuel, and bioplastic industries. In this study, the effects of exogenous melatonin (0.1, 1, and 10 µM) on the growth and production of various bioactive metabolites and intact lipid species were investigated in Lemna aequinoctialis culture. RESULTS Melatonin treatment significantly enhanced the growth (total dry weight) of the Lemna aequinoctialis culture. Melatonin treatment also increased cellular production of metabolites including β-alanine, ascorbic acid, aspartic acid, citric acid, chlorophyll, glutamic acid, phytosterols, serotonin, and sucrose, and intact lipid species; digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylinositols, and sulfoquinovosyldiacylglycerols. Among those metabolites, the productivity of campesterol (1.79 mg/L) and stigmasterol (10.94 mg/L) were the highest at day 28, when 10 µM melatonin was treated at day 7. CONCLUSION These results suggest that melatonin treatment could be employed for enhanced production of biomass or various bioactive metabolites and intact lipid species in large-scale L. aequinoctialis cultivation as a resource for food, feed, and pharmaceutical industries.
Collapse
Affiliation(s)
- GahYoung Baek
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - JuHee Ko
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Assessment of vine shoots and surplus grape must for succinic acid bioproduction. Appl Microbiol Biotechnol 2022; 106:4977-4994. [PMID: 35821430 DOI: 10.1007/s00253-022-12063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
Vine shoots and surplus grape must were assessed as feedstocks for succinic acid production with Actinobacillus succinogenes and Basfia succiniproducens. After acidic and enzymatic hydrolysis, vine shoots released 35-40 g/L total sugars. Both bacterial species produced 18-21 g/L succinic acid from this hydrolysate in 120 h. Regarding grape must fermentation, A. succinogenes clearly outperformed B. succiniproducens. Yeast extract (a source of organic nitrogen and vitamins) was the only additional nutrient needed by A. succinogenes to grow on grape must. Under mathematically optimized conditions (145.7 g/L initial sugars and 24.9 g/L yeast extract), A. succinogenes generated 88.9 ± 1.4 g/L succinic acid in 96 h, reaching a succinic acid yield of 0.66 ± 0.01 g/g and a sugar consumption of 96.64 ± 0.30%. Substrate inhibition was not observed in grape musts with 125-150 g/L initial sugars, provided that an adequate amount of yeast extract was available for bacteria. Alternative nitrogen sources to yeast extract (red wine lees, white wine lees, urea, NH4Cl, and choline chloride) were not suitable for A. succinogenes in grape must. KEY POINTS: • Vine shoots and surplus grape must were assessed for succinic acid bioproduction. • Succinic acid bioproduction was 21 g/L with vine shoots and 89 g/L with grape must. • Fermentation was efficient at high sugar loads if organic N supply was adequate.
Collapse
|
10
|
Shen N, Li S, Qin Y, Jiang M, Zhang H. Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2095303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Yan Qin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, PR China
| |
Collapse
|
11
|
Hemalatha M, Venkata Mohan S. Duckweed biorefinery - Potential to remediate dairy wastewater in integration with microbial protein production. BIORESOURCE TECHNOLOGY 2022; 346:126499. [PMID: 34883194 DOI: 10.1016/j.biortech.2021.126499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The phytoremediation potential of Duckweed in treating dairy wastewater (DWW) was studied, focusing on its utilization as nutritional biomass. The process resulted in good treatment efficiency with removal of organic carbon of 74% (COD), nitrates of 66% and phosphates of 80%. The increase in duckweed fronds with time was observed (doubling time (DT) - 0.87) resulting in an overall dry weight of 3.73 g. The lentils showed 58% of protein, 29.5% of carbohydrate (with 20% of starch), 15.6% of lipid (FAME-29.3%-saturated, 40.7%-mono- and 30%-poly-unsaturated fatty acids) and good amino acid content (34.04% essential and 65.92% non-essential). The biomass hydrolysate (mild acid pretreated) served as a substrate for microbial protein (MP) production using Bacillus subtilis, resulting in 60% of protein (0.57 g protein/g COD consumed; 0.63 g protein/g N consumed) and 21% of carbohydrate. The duckweed biomass offers multiple benefits including nutritional supplement in food/feed for livestock and poultry industries along with concurrent wastewater treatment as well serves as potential feedstock for biorefinery.
Collapse
Affiliation(s)
- Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Thakur S, Chaudhary J, Singh P, Alsanie WF, Grammatikos SA, Thakur VK. Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. BIORESOURCE TECHNOLOGY 2022; 344:126156. [PMID: 34695587 DOI: 10.1016/j.biortech.2021.126156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
As a result of environmental concerns and the depletion of biomass assets, eco-friendly, renewable biomass-based chemical extraction has recently received significant attention. Bio-based chemicals can be prepared using different renewable feedstockbio-resources through microbial fermentation. Chemicals produced from renewable feedstockscan reduce ecological consequences from improper disposal and repurpose them into valuable products. Biodegradability, biocompatibility and non-toxicity, particularly in biomedical applications, have inspired researchers towards developing novel technologies that have social benefit. Among semi-synthetic and synthetic polymeric materials, utilization of natural bio-based monomeric materials can provide opportunities for sustainable development of novel non-toxic, biodegradable and biocompatible products. The purpose of this work is to give a summary of research into the generation of natural bio-based succinic acid (SA) monomer, the development of poly(butylene succinate) (PBS) as biodegradable polymer, PBS-based nanocomposites and their innovative uses.
Collapse
Affiliation(s)
- Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Jyoti Chaudhary
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sotirios A Grammatikos
- ASEMlab - Advanced and Sustainable Engineering Materials Laboratory, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Gjøvik 2815, Norway
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India.
| |
Collapse
|
13
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Baek G, Saeed M, Choi HK. Duckweeds: their utilization, metabolites and cultivation. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:73. [PMID: 34693083 PMCID: PMC8525856 DOI: 10.1186/s13765-021-00644-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 05/21/2023]
Abstract
Duckweeds are floating plants of the family Lemnaceae, comprising 5 genera and 36 species. They typically live in ponds or lakes and are found worldwide, except the polar regions. There are two duckweed subfamilies-namely Lemnoidea and Wolffioideae, with 15 and 21 species, respectively. Additionally, they have characteristic reproduction methods. Several metabolites have also been reported in various duckweeds. Duckweeds have a wide range of adaptive capabilities and are particularly suitable for experiments requiring high productivity because of their speedy growth and reproduction rates. Duckweeds have been studied for their use as food/feed resources and pharmaceuticals, as well as for phytoremediation and industrial applications. Because there are numerous duckweed species, culture conditions should be optimized for industrial applications. Here, we review and summarize studies on duckweed species and their utilization, metabolites, and cultivation methods to support the extended application of duckweeds in future.
Collapse
Affiliation(s)
- GahYoung Baek
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Maham Saeed
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
15
|
Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. SUSTAINABILITY 2020. [DOI: 10.3390/su12208360] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in 1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste, 79% is either in landfills or the environment. The purpose of the review is to establish the current global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable plastics. This integrative and consolidated review thus builds on previous studies that have focused either on one or a few of the aspects considered in this paper. Three broad items to strongly consider are: Biodegradable plastics and other alternatives are not always environmentally superior to fossil-based plastics; less investment has been made in plastic waste management than in plastics production; and there is no single solution to plastic waste management. Some strategies to push for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one has its own challenges, and country-specific scientific evidence is necessary to justify any suggested solutions. In conclusion, governments from all countries and stakeholders should work to strengthen waste management infrastructure in low- and middle-income countries while extended producer responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in plastic waste management, as they have been found to be effective in Australia, France, Germany, and Ecuador.
Collapse
|
16
|
Szczerba H, Komoń-Janczara E, Dudziak K, Waśko A, Targoński Z. A novel biocatalyst, Enterobacter aerogenes LU2, for efficient production of succinic acid using whey permeate as a cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:96. [PMID: 32514308 PMCID: PMC7257193 DOI: 10.1186/s13068-020-01739-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Succinic acid (SA), a valuable chemical compound with a broad range of industrial uses, has become a subject of global interest in recent years. The bio-based production of SA by highly efficient microbial producers from renewable feedstock is significantly important, regarding the current trend of sustainable development. RESULTS In this study, a novel bacterial strain, LU2, was isolated from cow rumen and recognized as an efficient producer of SA from lactose. Proteomic and genetic identifications as well as phylogenetic analysis were performed, and strain LU2 was classified as an Enterobacter aerogenes species. The optimal conditions for SA production were 100 g/L lactose, 10 g/L yeast extract, and 20% inoculum at pH 7.0 and 34 °C. Under these conditions, approximately 51.35 g/L SA with a yield of 53% was produced when batch fermentation was conducted in a 3-L stirred bioreactor. When lactose was replaced with whey permeate, the highest SA concentration of 57.7 g/L was achieved with a yield and total productivity of 62% and 0.34 g/(L*h), respectively. The highest productivity of 0.67 g/(L*h) was observed from 48 to 72 h of batch fermentation, when E. aerogenes LU2 produced 16.23 g/L SA. CONCLUSIONS This study shows that the newly isolated strain E. aerogenes LU2 has great potential as a new biocatalyst for producing SA from whey permeate.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| |
Collapse
|
17
|
Mu D, Liu H, Lin W, Shukla P, Luo J. Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production. BIORESOURCE TECHNOLOGY 2020; 302:122879. [PMID: 32028148 DOI: 10.1016/j.biortech.2020.122879] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
A cost-effective and environmentally friendly method for biofuel production was developed, by utilizing duckweed as feedstock for biohydrogen production through dark fermentation and simultaneously using the fermentative waste to produce microalgal lipids. The results suggested that acid hydrolysis (1% H2SO4) was more suitable for the pretreatment of duckweed biomass. Maximum hydrogen production of 169.30 mL g-1 dry weight was determined under a temperature of 35 °C and an initial pH of 7.0. After the dark fermentation, the volatile fatty acids (VFAs) including acetate and butyrate, were detected in the waste, with concentration determined as 1.04 g L-1 and 1.52 g L-1, respectively. During the mixotrophic cultivation of Chlorella sacchrarophila FACHB-4 using waste as feedstock, the maximum microalgal biomass and the lipid productions were about 2.8 and 33 times higher with respect to the autotrophic growth. The simultaneous biohydrogen production and waste utilization method provided a green strategy for biofuel production.
Collapse
Affiliation(s)
- Demei Mu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Genome analysis of a wild rumen bacterium Enterobacter aerogenes LU2 - a novel bio-based succinic acid producer. Sci Rep 2020; 10:1986. [PMID: 32029880 PMCID: PMC7005296 DOI: 10.1038/s41598-020-58929-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Enterobacter aerogenes LU2 was isolated from cow rumen and recognized as a potential succinic acid producer in our previous study. Here, we present the first complete genome sequence of this new, wild strain and report its basic genetic features from a biotechnological perspective. The MinION single-molecule nanopore sequencer supported by the Illumina MiSeq platform yielded a circular 5,062,651 bp chromosome with a GC content of 55% that lacked plasmids. A total of 4,986 genes, including 4,741 protein-coding genes, 22 rRNA-, 86 tRNA-, and 10 ncRNA-encoding genes and 127 pseudogenes, were predicted. The genome features of the studied strain and other Enterobacteriaceae strains were compared. Functional studies on the genome content, metabolic pathways, growth, and carbon transport and utilization were performed. The genomic analysis indicates that succinic acid can be produced by the LU2 strain through the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. Antibiotic resistance genes were determined, and the potential for bacteriocin production was verified. Furthermore, one intact prophage region of length ~31,9 kb, 47 genomic islands (GIs) and many insertion sequences (ISs) as well as tandem repeats (TRs) were identified. No clustered regularly interspaced short palindromic repeats (CRISPRs) were found. Finally, comparative genome analysis with well-known succinic acid producers was conducted. The genome sequence illustrates that the LU2 strain has several desirable traits, which confirm its potential to be a highly efficient platform for the production of bulk chemicals.
Collapse
|
19
|
Bukhari NA, Loh SK, Nasrin AB, Luthfi AAI, Harun S, Abdul PM, Jahim JM. Compatibility of utilising nitrogen-rich oil palm trunk sap for succinic acid fermentation by Actinobacillus succinogenes 130Z. BIORESOURCE TECHNOLOGY 2019; 293:122085. [PMID: 31499328 DOI: 10.1016/j.biortech.2019.122085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, the potential of oil palm trunk (OPT) sap as a sole substrate for succinic acid (SA) production was evaluated using Actinobacillus succinogenes 130Z. After OPT sap was characterised, the effects of adding carbonate, yeast extract (YE) and minerals to this medium were investigated in an attempt to develop a low-cost fermentation medium. The OPT sap alone, gave comparable SA yield and productivity (0.54 g/g and 0.35 g/L/h) to those supplemented with YE (0.50 g/g and 0.36 g/L/h) and minerals (0.55 g/g and 0.40 g/L/h). The findings showed that OPT sap has sufficient amount of nutrients for SA biosynthesis by A. succinogenes 130Z and could potentially reduce cost without requiring expensive nutrients supplementation.
Collapse
Affiliation(s)
- Nurul Adela Bukhari
- Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Soh Kheang Loh
- Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Abu Bakar Nasrin
- Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Shuhaida Harun
- Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jamaliah Md Jahim
- Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
20
|
Jampatesh S, Sawisit A, Wong N, Jantama SS, Jantama K. Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a. BIORESOURCE TECHNOLOGY 2019; 273:93-102. [PMID: 30419446 DOI: 10.1016/j.biortech.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
This work demonstrated a pioneer work in the pre-treatment of rice straw by phosphoric acid (H3PO4) for succinate production. The optimized pre-treatment condition of rice straw was at 121 °C for 30 min with 2 N H3PO4. With this condition, total sugar concentration of 31.2 g/L with the highest hemicellulose saccharification yield of 94% was obtained. The physicochemical analysis of the pre-treated rice straw showed significant changes in its structure thus enhancing enzymatic saccharification. Succinate concentrations of 78.5 and 63.8 g/L were produced from hydrolysate liquor (L) and solid fraction (S) of the pre-treated rice straw respectively, with a comparable yield of 86% by E. coli AS1600a. Use of a combined L + S fraction in simultaneous saccharification and fermentation (LS + SSF) further improved succinate production at a concentration and yield of 85.6 g/L and 90% respectively. The results suggested that H3PO4 pre-treated rice straw may be utilized for economical succinate production by E. coli AS1600a.
Collapse
Affiliation(s)
- Surawee Jampatesh
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apichai Sawisit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
21
|
Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 2018; 102:9893-9910. [PMID: 30259101 DOI: 10.1007/s00253-018-9379-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Abstract
Due to environmental issues and the depletion of fossil-based resources, ecofriendly sustainable biomass-based chemical production has been given more attention recently. Succinic acid (SA) is one of the top value added bio-based chemicals. It can be synthesized through microbial fermentation using various waste steam bioresources. Production of chemicals from waste streams has dual function as it alleviates environmental concerns; they could have caused because of their improper disposal and transform them into valuable products. To date, Actinobacillus succinogenes is termed as the best natural SA producer. However, few reviews regarding SA production by A. succinogenes were reported. Herewith, pathways and metabolic engineering strategies, biomass pretreatment and utilization, and process optimization related with SA fermentation by A. succinogenes were discussed in detail. In general, this review covered vital information including merits, achievements, progresses, challenges, and future perspectives in SA production using A. succinogenes. Therefore, it is believed that this review will provide platform to understand the potential of the strain and tackle existing hurdles so as to develop superior strain for industrial applications. It will also be used as a baseline for identification, isolation, and improvement of other SA-producing microbes.
Collapse
|
22
|
Sawisit A, Jampatesh S, Jantama SS, Jantama K. Optimization of sodium hydroxide pretreatment and enzyme loading for efficient hydrolysis of rice straw to improve succinate production by metabolically engineered Escherichia coli KJ122 under simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2018; 260:348-356. [PMID: 29649727 DOI: 10.1016/j.biortech.2018.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, β-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ± 0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ± 0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ± 0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ± 0.4 g/L and 1.37 ± 0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale.
Collapse
Affiliation(s)
- Apichai Sawisit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Surawee Jampatesh
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
23
|
Zhang H, Shen N, Qin Y, Zhu J, Li Y, Wu J, Jiang MG. Complete Genome Sequence of Actinobacillus succinogenes GXAS137, a Highly Efficient Producer of Succinic Acid. GENOME ANNOUNCEMENTS 2018; 6:e01562-17. [PMID: 29472344 PMCID: PMC5824005 DOI: 10.1128/genomea.01562-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 01/05/2023]
Abstract
The bacterium Actinobacillus succinogenes GXAS137, an efficient producer of succinic acid, was isolated from bovine rumen in Nanning, Guangxi Province, China. Here, we present the 2.3-Mb genome assembly of this strain, which consists of 2,314,479 bp (G+C content of 44.89%) with a circular chromosome, 2,235 DNA coding sequences, 57 tRNAs, and 15 rRNAs.
Collapse
Affiliation(s)
- Hongyan Zhang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
- Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Naikun Shen
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yan Qin
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jing Zhu
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yi Li
- National Non-Grain Bioenergy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jiafa Wu
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Ming-Guo Jiang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| |
Collapse
|
24
|
Shen N, Zhang H, Qin Y, Wang Q, Zhu J, Li Y, Jiang MG, Huang R. Efficient production of succinic acid from duckweed (Landoltia punctata) hydrolysate by Actinobacillus succinogenes GXAS137. BIORESOURCE TECHNOLOGY 2018; 250:35-42. [PMID: 29153648 DOI: 10.1016/j.biortech.2017.09.208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
A novel process of enzyme pretreatment and semi-simultaneous saccharification and fermentation (SSSF) was developed in this work to improve succinic acid (SA) productivity from duckweed (Landoltia punctata) and achieve low viscosity. Viscosity (83.86%) was reduced by the pretreatment with combined enzymes at 50 °C for 2 h to a greater extent than that by single enzyme (26.19-71.75%). SSSF was an optimal combination with 65.31 g/L of SA content, which was remarkably higher than those obtained through conventional separate hydrolysis and fermentation (62.12 g/L) and simultaneous saccharification and fermentation (52.41 g/L). The combined approach was effective for SA production. Approximately 75.46 g/L of SA content with a yield of 82.87% and a productivity of 1.35 g/L/h was obtained after 56 h in a 2 L bioreactor. Further studies will focus on increasing the working scale of the proposed method.
Collapse
Affiliation(s)
- Naikun Shen
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities, Nanning, Guangxi 530008, China; National Non-grain Bio-energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
| | - Hongyan Zhang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities, Nanning, Guangxi 530008, China; Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yan Qin
- National Non-grain Bio-energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Qingyan Wang
- National Non-grain Bio-energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jing Zhu
- National Non-grain Bio-energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yi Li
- National Non-grain Bio-energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Ming-Guo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities, Nanning, Guangxi 530008, China
| | - Ribo Huang
- National Non-grain Bio-energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
25
|
Song Y, Li J, Shin HD, Liu L, Du G, Chen J. Biotechnological production of alpha-keto acids: Current status and perspectives. BIORESOURCE TECHNOLOGY 2016; 219:716-724. [PMID: 27575335 DOI: 10.1016/j.biortech.2016.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|