1
|
Pourrostami Niavol K, Andaluri G, Achary MP, Suri RPS. How does carbon to nitrogen ratio and carrier type affect moving bed biofilm reactor (MBBR): Performance evaluation and the fate of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124619. [PMID: 39987875 DOI: 10.1016/j.jenvman.2025.124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
With the spread of antibiotic resistance genes (ARGs) in the environment, monitoring and controlling ARGs have become an emerging issue of concern in biological processes. Moving bed biofilm reactors (MBBR) have been gaining attention for application in wastewater treatment. Since the performance of MBBR depends on operational parameters and biocarriers, selection of suitable biocarriers and start-up conditions are vital for efficiency of MBBRs. This study investigates the effects of different carbon-to-nitrogen (C/N) ratios and carrier types on the fate of selected ARGs and microbial communities in four MBBR systems using two conventional (K3 and sponge biocarrier (SB)) and two modified carriers (Fe-Ca@SB and Ze-AC@SB). Results showed that the modified biocarriers achieved higher NH4-N removal and better simultaneous nitrification and denitrification (SND) performance (90%) at C/N of 20. However, as the C/N ratio decreased to 10 and 7, the performance of all bioreactors was approximately similar. Moreover, COD removal of 90% was achieved in all reactors regardless of C/N ratio and carrier type. Further studies on the fate of selected ARGs (tetA, blaTEM, ampR) showed that the C/N ratio could affect the abundance of target ARGs, especially for K3 biocarrier, with tetA being the most abundant gene. Also, as the C/N ratio decreased, intl1 was enriched using K3 and SB. However, for Ze-AC@SB, the increase in the abundance of ARGs and intl1 was the lowest making it a reliable carrier not only in MBBR performance but in the control of ARGs. Metagenomic studies showed that the C/N ratio and carrier type could alter the diversity and structure of the bacterial communities in different MBBR systems, with Proteobacteria being the most abundant phylum in all four systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Gangadhar Andaluri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Mohan P Achary
- Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Rominder P S Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Zhang W, Liang W, Jin J, Meng S, He Z, Ali M, Saikaly PE. Filtration performance of biofilm membrane bioreactor: Fouling control by threshold flux operation. CHEMOSPHERE 2024; 362:142458. [PMID: 38810811 DOI: 10.1016/j.chemosphere.2024.142458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/19/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Membrane fouling is the major factor that restricts the furtherly widespread use of membrane bioreactor (MBR). As a new generation of MBR, biofilm membrane bioreactor (BF-MBR) demonstrates high treatment efficiency and low sludge growth rate, however the filtration performance improvement and membrane fouling control are still the challenges for its further development. This work investigated the filtration performance using resistance in series model and membrane fouling control via threshold flux for BF-MBR. At first, the flux behavior and filtration resistance under various operating conditions, including agitation speed, membrane and TMP, were explored by resistance in series model. Because of the desirable anti-fouling capacity, UP100 and UP030 had the high threshold flux (100 and 90 L m-2 h-1) and low irreversible fouling resistance (1 and 1.3 × 10-10 m-1). Higher shear stress produced by higher agitation speed could reduce membrane fouling, while greatly promote the threshold flux (138 L m-2 h-1) and membrane cleaning efficiency (96%). Moreover, increasing shear stress or selecting membrane with large pore size could decrease the fouling rate and raise the threshold flux. As for TMP, high TMP reduced the removal rate for organic and nutrient, and enhanced the irreversible fouling. Besides, the aerobic-BF-MBR (101 L m-2 h-1 and 1.3 × 10-10 m-1) with lower foulant concentration had a better filtration performance than anoxic-BF-MBR (90 L m-2 h-1 and 1.5 × 10-10 m-1). Additionally, the long-term tests with 10 cycles were conducted to evaluate the industrial application value of BF-MBR (45-58 L m-2 h-1). This work provides the technical support for sustainable filtration performance of BF-MBR.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Wenzhong Liang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China.
| | - Jiarou Jin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shujuan Meng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziqiang He
- Key Laboratory of Electromechanical Equipment Safety in Western Complex Environment for State Market Regulation, Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121, China.
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Wang X, Lu Y, Yan Y, Wang R, Wang Y, Li H, Zhou L, Zheng G, Zhang Y. Pivotal role of intracellular oxidation by HOCl in simultaneously removing antibiotic resistance genes and enhancing dewaterability during conditioning of sewage sludge using Fe 2+/Ca(ClO) 2. WATER RESEARCH 2024; 254:121414. [PMID: 38461604 DOI: 10.1016/j.watres.2024.121414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Pre-acidification has been shown to be crucial in attenuating antibiotic resistance genes (ARGs) during the conditioning of sewage sludge. However, it is of great significance to develop alternative conditioning approaches that can effectively eliminate sludge-borne ARGs without relying on pre-acidification. This is due to the high investment costs and operational complexities associated with sludge pre-acidification. In this study, the effects of Fe2+/Ca(ClO)2 conditioning treatment on the enhancement of sludge dewaterability and the removal of ARGs were compared with other conditioning technologies. The dose effect and the associated mechanisms were also investigated. The findings revealed that Fe2+/Ca(ClO)2 conditioning treatment had the highest potential, even surpassing Fenton treatment with pre-acidification, in terms of eliminating the total ARGs. Moreover, the effectiveness of the treatment was found to be dose-dependent. This study also identified that the •OH radical reacted with extracellular polymeric substance (EPS) and extracellular ARGs, and the HOCl, the production of which was positively correlated with the dose of Fe2+/Ca(ClO)2, could infiltrate the EPS layer and diffuse into the cell of sludge flocs, inducing the oxidation of intracellular ARGs. Furthermore, this study observed a significant decrease in the predicted hosts of ARGs and MGEs in sludge conditioned with Fe2+/Ca(ClO)2, accompanied by a significant downregulation of metabolic pathways associated with ARG propagation, thereby contributing to the attenuation of sludge-borne ARGs. Based on these findings, it can be concluded that Fe2+/Ca(ClO)2 conditioning treatment holds great potential for the removal of sludge-borne ARGs while also enhancing sludge dewaterability, which mainly relies on the intracellular oxidation by HOCl.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiwen Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Li
- Department of Civil Engineering, College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| |
Collapse
|
4
|
Cheng M, Fu HM, Mao Z, Yan P, Weng X, Ma TF, Xu XW, Guo JS, Fang F, Chen YP. Motility behavior and physiological response mechanisms of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress: Insights from individual cells to populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170002. [PMID: 38220024 DOI: 10.1016/j.scitotenv.2024.170002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 μg O2/g/min and 593.51 mM/L to 3.27 μg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.
Collapse
Affiliation(s)
- Meng Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Chongqing Institute of Geology and Mineral Resources, Chongqing 400042, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Teng-Fei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Mazioti AA, Vyrides I. Treatment of high-strength saline bilge wastewater by four pilot-scale aerobic moving bed biofilm reactors and comparison of the microbial communities. ENVIRONMENTAL TECHNOLOGY 2024; 45:1066-1080. [PMID: 36315853 DOI: 10.1080/09593330.2022.2137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Four Pilot-scale Moving Bed Biofilm Reactors (MBBRs) were operated for the treatment of real, saline, bilge wastewater. The MBBRs were connected in pairs to create two system configurations with different filling ratios (20%, 40%) and were operated in parallel. The inflow organic loading rate (OLR) varied from 3.6 ± 0.2 to 7.8 ± 0.6 g COD L-1 d-1, salinity was >15 ppt and three hydraulic residence times (HRTs) were tested 48, 30 and 24 h. In both systems, the first-stage bioreactors (R1 and R3) eliminated the higher part of the organic load (57%-65%). The second-stage bioreactors (R2 and R4) removed an additional fraction (18%-31%) of the organic load received by the effluent of R1 and R3, respectively. The microbial communities of the influent wastewater, suspended, and attached biomass were determined using 16S rRNA gene amplicon sequencing analysis. The evolution of the microbial communities was investigated and compared over the different operational phases. The microbial communities of the biofilm presented higher diversity and greater stability in composition over time, while the suspended biomass exhibited intense and rapid changes in the dominance of genera. Proteobacteria, Bacteroidetes and Firmicutes were highly present in the biofilm. The genera Celeribacter, Novispirillum, Roseovarius (class: Alphaproteobacteria) and Formosa (class: Flavobacteriia) were highly present during all operational phases. Principal Component Analysis (PCA) was used to identify similarities between samples, exhibiting high relation of samples according to the series of the bioreactor (1st, 2nd).
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
6
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|
7
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
8
|
Huang R, Pan H, Zheng X, Fan C, Si W, Bao D, Gao S, Tian J. Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4558. [PMID: 36901568 PMCID: PMC10001914 DOI: 10.3390/ijerph20054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ceramic membrane has emerged as a promising material to address the membrane fouling issue in membrane bioreactors (MBR). In order to optimize the structural property of ceramic membrane, four corundum ceramic membranes with the mean pore size of 0.50, 0.63, 0.80, and 1.02 μm were prepared, which were designated as C5, C7, C13, and C20, respectively. Long-term MBR experiments showed that the C7 membrane with medium pore size experienced the lowest trans-membrane pressure development rate. Both the decrease and increase of membrane pore size would lead to more severe membrane fouling in the MBR. It was also interesting that with the increase of membrane pore size, the relative proportion of cake layer resistance in total fouling resistance was gradually increased. The content of dissolved organic foulants (i.e., protein, polysaccharide and DOC) on the surface of C7 was quantified as the lowest among the different ceramic membranes. Microbial community analysis also revealed the C7 had a lower relative abundance of membrane fouling associated bacteria in its cake layer. The results clearly demonstrated that ceramic membrane fouling in MBR could be effectively alleviated through optimizing the membrane pore size, which was a key structural factor for preparation of ceramic membrane.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Pan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Chao Fan
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wenyan Si
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongguan Bao
- Shanghai Hanyuan Engineering & Technology Co., Ltd., Shanghai 201400, China
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- Guangdong GDH Water Co., Ltd., Shenzhen 518021, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Saidulu D, Srivastava A, Gupta AK. Elucidating the performance of integrated anoxic/oxic moving bed biofilm reactor: Assessment of organics and nutrients removal and optimization using feed forward back propagation neural network. BIORESOURCE TECHNOLOGY 2023; 371:128641. [PMID: 36681347 DOI: 10.1016/j.biortech.2023.128641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
A lab-scale integrated anoxic and oxic (A/O) moving bed biofilm reactor (MBBR) was investigated for the removal of organics and nutrients by varying chemical oxygen demand (COD) to NH4-N ratio (C/N ratio: 3.5, 6.75, and 10), hydraulic retention time (HRT: 6 h, 15 h, and 24 h), and recirculation ratio (R: 1, 2, and 3). The use of activated carbon coated carriers prepared from waste polyethylene material and polyurethane sponges attached to a cylindrical frame in the integrated A/O MBBR increased the attached growth biomass significantly. >95 % of COD removal was observed under the C/N ratio of 10 at an HRT of 24 h. While the low C/N ratio favored the removal of NH4-N (∼98 %) and PO43--P (∼90 %) with an optimal R of 1.75. Using the experimental dataset, to predict and forecast the performance of integrated A/O MBBR, a feed-forward-backpropagation-neural-network model was developed.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
10
|
Rahman TU, Roy H, Islam MR, Tahmid M, Fariha A, Mazumder A, Tasnim N, Pervez MN, Cai Y, Naddeo V, Islam MS. The Advancement in Membrane Bioreactor (MBR) Technology toward Sustainable Industrial Wastewater Management. MEMBRANES 2023; 13:membranes13020181. [PMID: 36837685 PMCID: PMC9965322 DOI: 10.3390/membranes13020181] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 05/31/2023]
Abstract
The advancement in water treatment technology has revolutionized the progress of membrane bioreactor (MBR) technology in the modern era. The large space requirement, low efficiency, and high cost of the traditional activated sludge process have given the necessary space for the MBR system to come into action. The conventional activated sludge (CAS) process and tertiary filtration can be replaced by immersed and side-stream MBR. This article outlines the historical advancement of the MBR process in the treatment of industrial and municipal wastewaters. The structural features and design parameters of MBR, e.g., membrane surface properties, permeate flux, retention time, pH, alkalinity, temperature, cleaning frequency, etc., highly influence the efficiency of the MBR process. The submerged MBR can handle lower permeate flux (requires less power), whereas the side-stream MBR can handle higher permeate flux (requires more power). However, MBR has some operational issues with conventional water treatment technologies. The quality of sludge, equipment requirements, and fouling are major drawbacks of the MBR process. This review paper also deals with the approach to address these constraints. However, given the energy limitations, climatic changes, and resource depletion, conventional wastewater treatment systems face significant obstacles. When compared with CAS, MBR has better permeate quality, simpler operational management, and a reduced footprint requirement. Thus, for sustainable water treatment, MBR can be an efficient tool.
Collapse
Affiliation(s)
- Tanzim Ur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md. Reazul Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
- Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71270, USA
| | - Mohammed Tahmid
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Athkia Fariha
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Antara Mazumder
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nishat Tasnim
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md. Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Md. Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh
| |
Collapse
|
11
|
Zhao J, Wang Y, Guan D, Fu Z, Zhang Q, Guo L, Sun Y, Zhang Q, Wang D. Calcium hypochlorite-coupled aged refuse promotes hydrogen production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 370:128534. [PMID: 36574889 DOI: 10.1016/j.biortech.2022.128534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This work investigated the effect of calcium hypochlorite (CH) coupled aged refuse (AR) treatment on the enhanced hydrogen generation from sludge anaerobic dark fermentation (SADF). The enhanced mechanism was systematically revealed through sludge disintegration, organic matter biotransformation, and microbial community characteristics, etc. The experimental data showed that CH coupled AR increased the hydrogen yield to 18.1 mL/g, significantly higher than that in the AR or CH group alone. Mechanistic analysis showed that CH-coupled AR significantly promoted sludge disintegration and hydrolysis processes, providing sufficient material for hydrogen-producing bacteria. Microbiological analysis showed that CH-coupled AR increased the relative abundance of responsible hydrogen-producing microorganisms. In addition, CH-coupled AR was very effective in reducing phosphate content in the fermentation liquid and fecal coliforms in the digestate, thus facilitating the subsequent treatment of fermentation broth and digestate. CH coupled AR is an alternative strategy to increase hydrogen production from sludge.
Collapse
Affiliation(s)
- Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd, Qingdao 266113, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qiuzhuo Zhang
- School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
An Y, Xing Y, Wei J, Zhou C, Wang L, Pan X, Wang J, Wang M, Pang H, Zhou Z. Performance and microbial community of MBBRs under three maintenance strategies for intermittent stormwater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158578. [PMID: 36075438 DOI: 10.1016/j.scitotenv.2022.158578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Maintaining microbial activities is a critical problem for biological treatment processes of stormwater runoff because of its intermittent nature. In this study, the suitability of the moving bed biofilm reactor (MBBR) was assessed for stormwater treatment by long-term dry - rainy alternation operation. Three strategies to maintain microbial activities during the dry period, including keeping idle (MBBRI), introducing river water throughout the period (MBBRC), and ahead of a rainy day (MBBRM), were investigated. COD and NH4+-N removal efficiencies declined linearly from 94.2 % and 94.7 % to 51.7 % and 64.6 %, respectively, after the 61-day operation with microbial activity and biomass decreased. Introducing river water adversely affected the process performance as MBBRC presented the highest declining rates of COD and NH4+-N removal efficiencies. Most genera in MBBRs decayed and their microbial communities developed towards individualization, especially in MBBRM because of its highest environmental variability. Keeping idle slightly alleviated the performance decline and formed a more stable microbial community structure. However, significantly deteriorating performance in all MBBRs after the long-term operation indicated that MBBRs were unsuitable for treating stormwater independently of intermittent nature.
Collapse
Affiliation(s)
- Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunxin Xing
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jun Wei
- Hydrochina Huadong Engineering Corporation, Hangzhou 311122, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Libing Wang
- Hydrochina Huadong Engineering Corporation, Hangzhou 311122, China
| | - Xiaowen Pan
- Hydrochina Huadong Engineering Corporation, Hangzhou 311122, China
| | - Jianguang Wang
- Hydrochina Huadong Engineering Corporation, Hangzhou 311122, China
| | - Mengyu Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hongjian Pang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Wang JH, Zhao XL, Hu Q, Gao X, Qu B, Cheng Y, Feng D, Shi LF, Chen WH, Shen Y, Chen YP. Effects mechanism of bio-carrier filling rate on rotating biofilms and the reactor performance optimization method. CHEMOSPHERE 2022; 308:136176. [PMID: 36030945 DOI: 10.1016/j.chemosphere.2022.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Benefited from the massive filling bio-carriers, the packed cage rotating biological contactors (RBCs) have better performance and application potentiality in wastewater treatment. Investigating the effects mechanism of bio-carrier filling rate is crucial for such reactors management. In this study, the pollutants removal performance, biofilms physical characteristics, and microbial communities of the biofilms under a series of bio-carrier filling rates were analyzed. The results shown, the pollutant removal rate and amount were quite different under different filling rates, and biofilms structure and microbial composition were the main factors affecting the pollutants removal performance. With the increasing filling rates, the biofilms were more mass increased (dry weight from 0.066 to 0.148 g/per carrier), thicker (from 340.30 to 850.84 μm) and lower dense (from 0.068 to 0.060 g/cm3). The microbial community composition of those biofilms was also quite different at the genus level. The effects mechanism of bio-carrier filling rate can be summarized: the filling rates affect the physical and biological characteristics of biofilms, which will further affect the microenvironment and microbial distribution in biofilms, and then determines the pollutant metabolic rate and metabolic pathway. This study will contribute to design better bio-carrier filling rate according to different wastewater treatment scenario, and promote the performance optimization of packed cage RBCs.
Collapse
Affiliation(s)
- Jian-Hui Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Xiao-Long Zhao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Qing Hu
- Chongqing Water Group Co., Ltd., Chongqing, 400015, China
| | - Xu Gao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water Group Co., Ltd., Chongqing, 400015, China; Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Bin Qu
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Yin Cheng
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Dong Feng
- Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Long-Fei Shi
- Chongqing Endurance Automation Solutions Co., Ltd, 401120, China
| | - Wen-Hao Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
14
|
Xie J, Xin X, Ai X, Hong J, Wen Z, Li W, Lv S. Synergic role of ferrate and nitrite for triggering waste activated sludge solubilisation and acidogenic fermentation: Effectiveness evaluation and mechanism elucidation. WATER RESEARCH 2022; 226:119287. [PMID: 36323210 DOI: 10.1016/j.watres.2022.119287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Enhancing anaerobic treatment efficiency of waste activated sludge (WAS) toward preferable resource recovery would be an important requirement for achieving carbon-emission reduction, biosolids minimization, stabilization and security concurrently. This study demonstrated the synergic effect of potassium ferrate (PF) and nitrite on prompting WAS solubilisation and acidogenic fermentation toward harvesting volatile fatty acids (VFAs). The results indicated the PF+NaNO2 co-pretreatment boosted 7.44 times and 1.32 times higher WAS solubilisation [peak soluble chemical oxygen demand (SCOD) of 2680 ± 52 mg/L] than that by the single nitrite- and PF-pretreatment, respectively, while about 2.77 times and 2.11 times higher VFAs production were achieved (maximum VFAs accumulation of 3536.25 ± 115.24 mg COD/L) as compared with the single pretreatment (nitrite and PF)-fermentations. Afterwards the WAS dewaterability was improved simultaneously after acidogenic fermentation. Moreover, a schematic diagram was established for illustrating mechanisms of the co-pretreatment of PF and nitrite for enhancing the VFAs generation via increasing key hydrolytic enzymes, metabolic functional genes expression, shifting microbial biotransformation pathways and elevating abundances of key microbes in acidogenic fermentation. Furthermore, the mechanistic investigations suggested that the PF addition was conducive to form a relatively conductive fermentation environment for enhancing electron transfer (ET) efficiency, which contributed to the VFAs biotransformation positively. This study provided an effective strategy for enhancing the biodegradation/bioconversion efficiency of WAS organic matters with potential profitable economic returns.
Collapse
Affiliation(s)
- Jiaqian Xie
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China.
| | - Xiaohuan Ai
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR. China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China
| |
Collapse
|
15
|
Fathiah Mohamed Zuki, Pourzolfaghar H, Edyvean RGJ, Hernandez JE. Interpretation of Initial Adhesion of Pseudomonas putida on Hematite and Quartz Using Surface Thermodynamics, DLVO, and XDLVO Theories. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Qian S, Hou R, Yuan R, Zhou B, Chen Z, Chen H. Removal of Escherichia coli from domestic sewage using biological sand filters: Reduction effect and microbial community analysis. ENVIRONMENTAL RESEARCH 2022; 209:112908. [PMID: 35150718 DOI: 10.1016/j.envres.2022.112908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The recycling of sewage is an economical option to solve the water resource pressure. However, to avoid health risks to humans, pathogens in sewage must be removed before reuse. In this study, a biological sand filter (BSF) was used to remove pathogen indicator Escherichia coli (E. coli) from sewage. The biolayer (schmutzdecke layer) formation process of BSFs, operation performance, factors affecting E. coli removal and microbial community structure were evaluated. The results of schmutzdecke layer culture showed that a large number of microorganisms were attached to the upper medium of BSFs. At the same time, the BSFs could reduce both conventional contaminants and E. coli. The E. coli removal experiments revealed that the removal rate of E. coli was about 96.1% at higher effective medium depth (50 cm), the removal rate was about 95% when set hydraulic loading rate (HLR) to 0.16 m3/m2/h and the removal efficiency reached 93.6% at lower influent bacteria concentration. Finally, the microbial community analysis indicated that different BSFs had similar microbial structure, and the microbial abundance in the schmutzdecke layer was higher than that in the bottom layer in the same BSFs. Besides, Biological action played a significant role in the removal of E. coli, including the bacteriolysis of Bdellovibrio and the competition between other bacteria and E. coli. In summary, BSF was a promising technology for removing E. coli from sewage.
Collapse
Affiliation(s)
- Shengtao Qian
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
17
|
Shitu A, Liu G, Muhammad AI, Zhang Y, Tadda MA, Qi W, Liu D, Ye Z, Zhu S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Zhu L, Yuan H, Shi Z, Deng L, Yu Z, Li Y, He Q. Metagenomic insights into the effects of various biocarriers on moving bed biofilm reactors for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151904. [PMID: 34838558 DOI: 10.1016/j.scitotenv.2021.151904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Preferable biocarrier is vital for start-up and operation of moving bed biofilm reactor (MBBR). Effects of three separate biocarriers - PPC, PU, and PP on MBBRs were systematically investigated including nutrients removal performances, biomass attachment, microbial community, and relevant functional genes. Results showed that three biocarriers achieved similar removal efficiencies for chemical oxygen demand (COD) and total phosphorus (TP), though much higher biomasses were found attached onto PPC and PU carriers. PPC and PU performed better than PP for ammonia nitrogen (NH4+-N) removal. However, PPC exhibited the greatest and most reliable denitrifying efficiency, mainly due to stronger simultaneous nitrification and denitrification during better micro-anoxic-environment created within PPC carriers than others. Further studies by 16S rRNA gene and metagenomic sequencing analysis uncovered the bacterial diversity and structures, and relevant functional genes for nitrogen-transformation and pathways of nitrogen metabolisms, which laid the biological basis for the best performances via biocarrier PPC. This study inspired a feasible approach for municipal wastewater treatment through PPC filled MBBR.
Collapse
Affiliation(s)
- Liang Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Huizhou Yuan
- School of Materials & Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zefang Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yong Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
19
|
Saidulu D, Srivastava A, Gupta AK. Enhancement of wastewater treatment performance using 3D printed structures: A major focus on material composition, performance, challenges, and sustainable assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114461. [PMID: 35032942 DOI: 10.1016/j.jenvman.2022.114461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
In order to enhance the performance and sustainability of wastewater treatment technologies, researchers are showing keen interest in the development of novel materials which can overcome the drawbacks associated with conventional materials. In this context, 3D printing gained significant attention due to its capability of fabricating complex geometrics using different material compositions. The present review focuses on recent advancements of 3D printing applications in various physicochemical and biological wastewater treatment techniques. In physicochemical treatment methods, substantial research has been aimed at fabricating feed spacers and other membrane parts, photocatalytic feed spacers, catalysts, scaffolds, monoliths, and capsules. Several advantages, such as membrane fouling mitigation, enhanced degradation efficiency, and recovery and reusability potential, have been associated with the aforementioned 3D printed materials. While in biofilm-based biological treatment methods, the use of 3D printed bio-carriers has led to enhanced mass transfer efficiency and microbial activities. Moreover, the application of these bio-carriers has shown better removal efficiency of chemical oxygen demand (∼90%), total nitrogen (∼73%), ammonia nitrogen (95%), and total phosphorous (∼100%). Although the removal efficiencies were comparable with conventional carriers, 3D printed carriers led to ∼40% reduction in hydraulic retention time, which could significantly save capital and operational expenditures. This review also emphasizes the challenges and sustainability aspects of 3D printing technology and outlines future recommendations which could be vital for further research in this field.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
20
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Chen C, Sun M, Chang J, Liu Z, Zhu X, Xiao K, Song G, Wang H, Liu G, Huang X. Unravelling temperature-dependent fouling mechanism in a pilot-scale anaerobic membrane bioreactor via statistical modelling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Du T, Feng L, Zhen X. Microbial community structures and antibiotic biodegradation characteristics during anaerobic digestion of chicken manure containing residual enrofloxacin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:102-113. [PMID: 35037829 DOI: 10.1080/03601234.2022.2026124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To explore the interaction between the residual antibiotic in animal manure and biological treatment, the effect of enrofloxacin (ENR) on the anaerobic digestion of chicken manure, and biodegradation rate of ENR was studied under the condition of actual residual ENR content of 0, 8, 16 and 32 mg/kg·TS. The results showed that the addition of ENR increased the total biogas production, especially 8 mg/kg·TS promoted the anaerobic reaction obviously, and the corresponding cumulative biogas production was increased by 15.33%. However, in the presence of 32 mg/kg·TS, the biogas production rate was reduced and the peak period of biogas production was delayed. The results of enzyme activities determination and 16S rRNA sequencing showed that ENR had different effects on archaea and bacteria. The residual ENR could promote hydrolysis reactions in the anaerobic system, but could inhibit acetoclastic methanogens, and the relative abundance of Methanosaeta declined by 7.22‒12.41%. The first-order kinetic model showed that the half-life period of ENR in the anaerobic digestion system was 9.16‒10.83 days, and the biodegradation rate exceeded 80% after the treatment. This study can bring important information for the management of animal manure in the future.
Collapse
Affiliation(s)
- Tie Du
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
| | - Lei Feng
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
| | - Xiaofei Zhen
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
23
|
Leiva-Aravena E, Vera MA, Nerenberg R, Leiva ED, Vargas IT. Biofilm formation of Ancylobacter sp. TS-1 on different granular materials and its ability for chemolithoautotrophic As(III)-oxidation at high concentrations. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126733. [PMID: 34339991 DOI: 10.1016/j.jhazmat.2021.126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of arsenic (As) is a key step in its removal from water, and biological oxidation may provide a cost-effective and sustainable method. The biofilm-formation ability of Ancylobacter sp. TS-1, a novel chemolithoautotrophic As oxidizer, was studied for four materials: polypropylene, graphite, sand, and zeolite. After seven days under batch mixotrophic conditions, with high concentrations of As(III) (225 mg·L-1), biofilm formation was detected on all materials except for polypropylene. The results demonstrate As(III)-oxidation of TS-1 biofilms and suggest that the number of active cells was similar for graphite, sand, and zeolite. However, the biofilm biomass follows the specific surface area of each material: 7.0, 2.4, and 0.4 mg VSS·cm-3 for zeolite, sand, and graphite, respectively. Therefore, the observed biofilm-biomass differences were probably associated with different amounts of EPS and inert biomass. Lastly, As(III)-oxidation kinetics were assessed for the biofilms formed on graphite and zeolite under chemolithoautotrophic conditions. The normalized oxidation rate for biofilms formed on these materials was 3.6 and 1.0 mg·L-1·h-1·cm-3, resulting among the highest reported values for As(III)-oxidizing biofilms operated at high-As(III) concentrations. Our findings suggest that biofilm reactors based on Ancylobacter sp. TS-1 are highly promising for their utilization in As(III)-oxidation pre-treatment of high-As(III) polluted waters.
Collapse
Affiliation(s)
- Enzo Leiva-Aravena
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, Chile
| | - Mario A Vera
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences Notre Dame, University of Notre Dame, Notre Dame, IN, United States
| | - Eduardo D Leiva
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, Chile.
| |
Collapse
|
24
|
The Influence of Different Operation Conditions on the Treatment of Mariculture Wastewater by the Combined System of Anoxic Filter and Membrane Bioreactor. MEMBRANES 2021; 11:membranes11100729. [PMID: 34677495 PMCID: PMC8539745 DOI: 10.3390/membranes11100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022]
Abstract
The mariculture wastewater treatment performance for the combined system of anoxic filter and membrane bioreactor (AF-MBR) was investigated under different hydraulic retention times (HRTs), influent alkalinity, and influent ammonia nitrogen load. The results showed that the removal efficiencies of TOC and total nitrogen were slightly better at the HRT of 8 h than at other HRTs, and the phosphate removal efficiency decreased with the increase of HRT. With the increase of influent alkalinity, the removal of TOC and phosphate did not change significantly. With the increase of influent alkalinity from 300 mg/L to 500 mg/L, the total nitrogen removal efficiency of AF-MBR was improved, but the change of the removal efficiency was not obvious when the alkalinity increased from 500 mg/L to 600 mg/L. When the influent concentration of ammonia nitrogen varied from 20 mg/L to 50 mg/L, the removal efficiencies of TOC, phosphate, and total nitrogen by AF-MBR were stable. An interesting finding was that in all the different operation conditions examined, the treatment efficiency of AF-MBR was always better than that of the control MBR. The concentrations of NO3−-N in AF-MBR were relatively low, whereas NO3−-N accumulated in the control MBR. The reason was that the microorganisms attached to the carrier and remained fixed in the aerobic and anoxic spaces, so that there was a gradual enrichment of bacteria characterized by slow growth in a high-salt environment. In addition, the microorganisms could gather and grow on the carrier forming a biofilm with higher activity, a richer and more stable population, and enhanced ability to resist a load impact.
Collapse
|
25
|
Tong Q, Wang G, Chen M, Chen Y, Guo Y. Preparation and performance evaluation of novel magnetic porous carriers in fluidized bed bioreactor for wastewater treatment. Biodegradation 2021; 32:677-695. [PMID: 34514545 DOI: 10.1007/s10532-021-09960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Biofilm process is a promising wastewater treatment technology and biofilm carrier (biocarrier) is regarded as the core of this process. However, the traditional commercial biocarriers have their inherent drawbacks, therefore, the development of new-type biocarrier to enhance wastewater treatment efficiency is significantly important to biofilm-based reactors. In this study, based on radical suspension polymerization, a novel kind of magnetic porous carriers (PMCs) was prepared by modifying the porous polymer carriers (PPCs) with inorganic particles, and then applied in a fluidized bed bioreactor (FBBR) with a low packing ratio of 10 % (v/v) to synthetic wastewater treatment. The results showed that this novel biocarrier possesses paramagnetism with saturation magnetization of 1.01emu/g, low density (1.26 g/cm3), excellent hydrophilicity (surface water contact angle approaching zero) and rough surface. Besides, compared with the PPCs, the developed PMCs have larger pores (up to 50 μm or more), in which the larger-sized microbes are able to colonize. Moreover, as compared to the PPCs-based FBBR, the PMCs-based reactor achieved shorter time (7 days) for biofilm formaiton and significantly enhanced NH3-N removal efficiency ( nearly 20 % increase at the level of influent NH3-N concentration about 100 mg/L). High-throughput sequencing (HTS) results indicated that this new biocarrier could promote biodiversity and improve the abundance of Nitrosomonadales (the functional bacteria for ammonia removal in the bio-system), thus enhancing the ammonification process. Therefore, the developed PMCs could be preferable biocarriers for biofilm formation and provide an alternative to the traditional suspended biocarrier, demonstrating a promising potential, even at a lower filling ratio, to enhance the pollutants removal performance.
Collapse
Affiliation(s)
- Qibang Tong
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Maolian Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yaping Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
26
|
Insights into the Development of Phototrophic Biofilms in a Bioreactor by a Combination of X-ray Microtomography and Optical Coherence Tomography. Microorganisms 2021; 9:microorganisms9081743. [PMID: 34442822 PMCID: PMC8398007 DOI: 10.3390/microorganisms9081743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
As productive biofilms are increasingly gaining interest in research, the quantitative monitoring of biofilm formation on- or offline for the process remains a challenge. Optical coherence tomography (OCT) is a fast and often used method for scanning biofilms, but it has difficulty scanning through more dense optical materials. X-ray microtomography (μCT) can measure biofilms in most geometries but is very time-consuming. By combining both methods for the first time, the weaknesses of both methods could be compensated. The phototrophic cyanobacterium Tolypothrix distorta was cultured in a moving bed photobioreactor inside a biocarrier with a semi-enclosed geometry. An automated workflow was developed to process µCT scans of the biocarriers. This allowed quantification of biomass volume and biofilm-coverage on the biocarrier, both globally and spatially resolved. At the beginning of the cultivation, a growth limitation was detected in the outer region of the carrier, presumably due to shear stress. In the later phase, light limitations could be found inside the biocarrier. µCT data and biofilm thicknesses measured by OCT displayed good correlation. The latter could therefore be used to rapidly measure the biofilm formation in a process. The methods presented here can help gain a deeper understanding of biofilms inside a process and detect any limitations.
Collapse
|
27
|
Li Y, Li X, Hao Y, Liu Y, Dong Z, Li K. Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. Int J Biol Sci 2021; 17:1769-1781. [PMID: 33994861 PMCID: PMC8120469 DOI: 10.7150/ijbs.59025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The formation of biofilms on medical-context surfaces gives the EPS embedded bacterial community protection and additional advantages that planktonic cells would not have such as increased antibiotic resistance and horizontal gene transfer. Bacterial cells tend to attach to a conditioning layer after overcoming possible electrical barriers and go through two phases of attachments: reversible and irreversible. In the first, bacterial attachment to the surface is reversible and occurs quickly whilst the latter is permanent and takes place over a longer period of time. Upon reaching a certain density in the bacterial community, quorum sensing causes phenotypical changes leading to a loss in motility and the production of EPS. This position paper seeks to address the problem of bacterial adhesion and biofilm formation for the medical surfaces by comparing inhabiting physicochemical interactions and biological mechanisms. Several physiochemical methodologies (e.g. ultrasonication, alternating magnetic field and chemical surface coating) and utilizing biological mechanisms (e.g. quorum quenching and EPS degrading enzymes) were suggested. The possible strategical applications of each category were suggested and evaluated to a balanced position to possibly eliminate the adhesion and formation of biofilms on medical-context surfaces.
Collapse
Affiliation(s)
- Yuanzhe Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiang Li
- School of Chemistry and Biomolecules Engineering, National University of Singapore, Singapore, 637551, Singapore
| | - Yu Hao
- School of Chemistry and Biomolecules Engineering, National University of Singapore, Singapore, 637551, Singapore
| | - Yang Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - ZhiLi Dong
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Kexin Li
- Hwa Chong International School, Singapore, 269783, Singapore
| |
Collapse
|
28
|
Lai C, Guo Y, Cai Q, Yang P. Enhanced nitrogen removal by simultaneous nitrification-denitrification and further denitrification (SND-DN) in a moving bed and constructed wetland (MBCW) integrated bioreactor. CHEMOSPHERE 2020; 261:127744. [PMID: 32739690 DOI: 10.1016/j.chemosphere.2020.127744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
With the main objective of improving the removal of nitrogen from domestic wastewater and more sustainably, a moving bed and constructed wetland (MBCW) integrated bioreactor was fabricated and evaluated with continuous and intermittent aeration operations. The hybrid system achieves average removal efficiencies up to 90.4 ± 0.8% of chemical oxygen demand (COD), 91.8 ± 1.2% of ammonia nitrogen (NH4+-N), and 77.0 ± 2.6% of total nitrogen (TN), respectively, through a simultaneous nitrification-denitrification and further denitrification (SND-DN) process. This occurs through an intermittent aeration operation followed by continuous aeration with a dissolved oxygen (DO) of 4.0 mg L-1 due to the complementary and coordinated action of mixed biocarriers. It has resulted in the improvement of the efficiency of SND from 5.9 to 35.3% and in the removal via wetland for DN, between 2.42 and 2.45 g m-2·d-1, respectively. The analysis of extracellular polymeric substances (EPS) and high-throughput sequencing demonstrated the enhanced SND mechanism and the evolution of microbial species within the biofilm structure. The total relative abundance of nitrifying bacteria, more aggregated outside the biofilm, decreased by 7.66% compared to denitrifying bacteria, mostly accumulated inside, which increased by 5.49%, respectively.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
29
|
Li C, Gu Z, Zhu S, Liu D. 17β-Estradiol removal routes by moving bed biofilm reactors (MBBRs) under various C/N ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140381. [PMID: 32599404 DOI: 10.1016/j.scitotenv.2020.140381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the contribution of biotic and abiotic routes to the 17β-estradiol (E2) removal in moving bed biofilm reactors (MBBRs), and uncovered the interrelation between the E2 removal routes and biofilm characteristics, which was not researched in previous literature. Three MBBRs with different C/N ratios (0 for C/N0; 2 for C/N2; and 5 for C/N5) were operated in continuous mode. A 65-day degradation demonstrated that the MBBRs had high potential to remove E2 regardless of the C/N (E2 removal greater than 99% for all MBBRs; P > 0.05). Further batch tests showed that the E2 removal mainly resulted from heterotrophic activities for all MBBRs, accounting for approximately 85% for all MBBRs (P > 0.05), followed by nitrification (10-11%) and adsorption (4-5%). Importantly, lower adhesive force likely led to higher E2 adsorption onto biofilms. Besides, enhanced ammonia oxidizing rate (AOR) was consistent with the high contribution of nitrification to the E2 attenuation. Importantly, heterotrophic activity was positively correlated with its contribution to E2 removal (r = 0.99, P < 0.05). To sum, the results obtained in this study helped to understand the E2 removal routes in nitrifying biofilm systems.
Collapse
Affiliation(s)
- Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhefeng Gu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Song W, Xu D, Bi X, Ng HY, Shi X. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. BIORESOURCE TECHNOLOGY 2020; 314:123715. [PMID: 32645570 DOI: 10.1016/j.biortech.2020.123715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study proposed a novel approach of cultivating aerobic granular sludge (AGS) using intertidal wetland sediment (IWS) as inoculant in MBR for saline wastewater treatment. Granulation was observed in IWS-MBR during start-up, with increased sludge particle size (3.1-3.3 mm) and improved settling property (23.8 ml/g). The abundant inorganic particulates (acted as nuclei) and distinctive microbial community in IWS contributed to the granules formation. With the help of AGS, IWS-MBR system exhibited excellent TOC reduction of 90.3 ± 6.1% and significant TN reduction of 31.2 ± 5.0%, while the control MBR (Co-MBR) only showed 58.9 ± 7.2% and 10.4 ± 2.7%, respectively. Meanwhile, membrane fouling was mitigated in IWS-MBR, with a longer filtration cycle of 21.5 d, as compared with that of 8.9 d for Co-MBR. Microbial community analysis revealed that abundant functional bacteria associated with granulation and pollutants removal were enriched from IWS and set the basis for AGS formation and the superior treatment performance.
Collapse
Affiliation(s)
- Weilong Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Dong Xu
- Changzhou Cloud Intelligent Environment Technology Co. Ltd., 124 East Taihu Road, Changzhou 213022, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China.
| |
Collapse
|
31
|
Waqas S, Bilad MR, Man Z, Wibisono Y, Jaafar J, Indra Mahlia TM, Khan AL, Aslam M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110718. [PMID: 32510449 DOI: 10.1016/j.jenvman.2020.110718] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) process is considered as one of the leading-edge processes that provides a sustainable solution for wastewater treatment. IFAS was introduced as an advancement of the moving bed biofilm reactor by integrating the attached and the suspended growth systems. IFAS offers advantages over the conventional activated sludge process such as reduced footprint, enhanced nutrient removal, complete nitrification, longer solids retention time and better removal of anthropogenic composites. IFAS has been recognized as an attractive option as stated from the results of many pilot and full scales studies. Generally, IFAS achieves >90% removals for combined chemical oxygen demand and ammonia, improves sludge settling properties and enhances operational stability. Recently developed IFAS reactors incorporate frameworks for either methane production, energy generation through algae, or microbial fuel cells. This review details the recent development in IFAS with the focus on the pilot and full-scale applications. The microbial community analyses of IFAS biofilm and floc are underlined along with the special emphasis on organics and nitrogen removals, as well as the future research perspectives.
Collapse
Affiliation(s)
- Sharjeel Waqas
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Zakaria Man
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Yusuf Wibisono
- Bioprocess Engineering, Universitas Brawijaya, Malang, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
32
|
Huang J, Liang J, Yang X, Zhou J, Liao X, Li S, Zheng L, Sun S. Ultrasonic coupled bioleaching pretreatment for enhancing sewage sludge dewatering: Simultaneously mitigating antibiotic resistant genes and changing microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110349. [PMID: 32114241 DOI: 10.1016/j.ecoenv.2020.110349] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, ultrasonic as a pretreatment coupled with bioleaching was used to enhance sludge dewaterability. Changes in microbial diversity and antibiotic resistant genes (ARGs) were studied during the combined treatment process. The results show that under optimal conditions, combined ultrasonic and bioleaching treatment led to decreases in the specific resistance of filtration and bioleaching time by 7.59% and 12.5%, respectively, compared with single bioleaching process. Using high pressure filtration system, the water content of sludge cake treated by the combined treatment was decreased to 58.04%, which was 10.04% lower than bioleaching sludge. After combined treatment, the microbial diversity and the total number of bacteria in the sludge decreased significantly, which caused the decreases in the absolute abundance of sulfonamide and tetracycline ARGs by 1.56-1.58 and 0.34-1.23 log units, respectively. However, the decrease in the total bacterial biomass was greater than the decrease in the number of potential hosts carrying the tetracycline ARG, resulting in an increase in the relative abundance of tetracycline gene. Furthermore, this study proposed a mechanism of the dewatering and ARGs, involving the combined ultrasonic and bioleaching treatment: Firstly, ultrasonic cavitation causes extracellular polymeric substances (EPS) to fall off the surface of sludge; Secondly, this faster and directly makes bacteria cells affected by bio-acidification and bio-oxidation. In this case, the cells could be more easily destroyed by the combined ultrasonic and bioleaching treatment, compared with individual bioleaching treatment; As a result, stronger dewaterability and more removal rates of ARGs were achieved under the combined treatment. The economic analyses showed that the combined ultrasonic and bioleaching treatment is a more practical and economical technique for achieving deep dewatering of sludge.
Collapse
Affiliation(s)
- Jinjia Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jialin Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xian Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiali Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojian Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoupeng Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| |
Collapse
|
33
|
Wang T, Wu T, Wang H, Dong W, Zhao Y, Chu Z, Yan G, Chang Y. Comparative Study of Denitrifying-MBBRs with Different Polyethylene Carriers for Advanced Nitrogen Removal of Real Reverse Osmosis Concentrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082667. [PMID: 32295014 PMCID: PMC7215845 DOI: 10.3390/ijerph17082667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022]
Abstract
Nitrogen (N) remains a great challenge in wastewater treatment while attempts to remove N has continuously been a research point for decades. In this study, the long-term performance of four identical-shape denitrification MBBRs (moving bed biofilm reactors) with four different configurations of cylindrical polyethylene as carriers (Φ25 × 12, Φ25 × 4, Φ15 × 15, and Φ10 × 7 mm) for advanced N removal of real reverse osmosis concentrate was investigated in great detail. The N of the real concentrate can be effectively removed by denitrification MBBRs when the pH, temperature, hydraulic retention time (HRT), C/N ratio, and filling rate are 7.50–8.10, 24~26 °C, 12 hours, 6.6, and 50%, respectively. The results showed that the MBBR with the Φ15 × 15 poly-carrier had the best removal efficiency on NO3-–N (78.0 ± 15.8%), NO2-–N (43.79 ± 9.30%), NH4+–N (55.56 ± 22.28%), and TN (68.9 ± 12.4%). The highest biomass of 2.13 mg/g-carrier was in the Φ15 × 15 poly-carrier was compared with the other three carriers, while the genes of the Φ15 × 15 poly-carrier reactor were also the most abundant. Proteobacteria was the most abundant phylum in the system followed by Bacteroidetes and then Firmicutes. The entire experiment with various parameter examination supported that Φ15 × 15 poly-carrier MBBR was a promising system for N removal in high strength concentrate. Despite the lab-scale trial, the successful treatment of high strength real reverse osmosis concentrate demonstrated the reality of the treated effluent as possible reclaimed water, thus providing a good showcase of N-rich reverse osmosis concentrate purification in practical application.
Collapse
Affiliation(s)
- Tong Wang
- School of Civil Engineering, Chang’an University, Xi’an 710061, China; (T.W.); (T.W.)
| | - Tong Wu
- School of Civil Engineering, Chang’an University, Xi’an 710061, China; (T.W.); (T.W.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
- Correspondence: (H.W.); (Y.Z.)
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- UCD Dooge Center for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence: (H.W.); (Y.Z.)
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| |
Collapse
|
34
|
She Y, Hong J, Zhang Q, Chen BY, Wei W, Xin X. Revealing microbial mechanism associated with volatile fatty acids production in anaerobic acidogenesis of waste activated sludge enhanced by freezing/thawing pretreatment. BIORESOURCE TECHNOLOGY 2020; 302:122869. [PMID: 32006928 DOI: 10.1016/j.biortech.2020.122869] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the association of volatile fatty acid (VFA) production with microbial mechanism in waste activated sludge (WAS) anaerobic acidogenesis enhanced by freezing/thawing (F/T) pretreatment. WAS solubilization was enhanced with 955.4 ± 10.0 mg/L soluble chemical oxygen demand (SCOD) release by a 50-h F/T pretreatment at -24 °C. The highest level of VFAs (4852 ± 156 mg COD/L) was obtained after a 12-day fermentation. Moreover, phyla of Proteobacteria, Bacteroidetes, Firmicutes, and Ignavibacteriae played vital roles in VFA generation, while high genera abundance of Clostridium, Macellibacteroides, Prevotella, and Megasphaera were positively associated with high yields of short-chain (C2-C5) fatty acids. A schematic diagram was drawn to illustrate the microbial mechanism of enhanced VFA generation by F/T pretreatment during WAS fermentation. This study provides an in-depth exploration of promoting bio-resource recycling from WAS with a low-cost approach (specially in high latitudes) and bring about some new thinking on future WAS management.
Collapse
Affiliation(s)
- Yuecheng She
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| | - Qian Zhang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Bor-Yann Chen
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan
| | - Wenxuan Wei
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| |
Collapse
|
35
|
Yin F, Dong H, Zhang W, Zhu Z, Shang B. Additional function of pasteurisation pretreatment in combination with anaerobic digestion on antibiotic removal. BIORESOURCE TECHNOLOGY 2020; 297:122414. [PMID: 31787508 DOI: 10.1016/j.biortech.2019.122414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Pasteurisation pretreatment (PP) in combination with anaerobic digestion (PPAD) is one of the best ways for sterilisation of pathogenic microorganisms in manure. However, the effect of antibiotic residues in manure on PPAD has not been studied. This study investigated the function of PPAD on antibiotic removal and the effect of antibiotic on PPAD performance. Results demonstrated that chlortetracycline (CTC) and oxytetracycline (OTC) concentrations decreased from 17.236 and 183.446 to 0 and 17.348 mg/kg·TS using PPAD, respectively. PPAD for swine manure containing CTC and OTC increased methane production from 244.0 ± 7.6 to 254.0 ± 6.1 mL/g·VS and reduced technical digestion time (T80) from 30 to 25 days compared with AD process. Moreover, PPAD affected only archaeal communities, whereas PP affected bacterial/archaeal communities. Thus, PPAD can be used to treat antibiotic-containing manure and reduce the negative effects of antibiotics.
Collapse
Affiliation(s)
- Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
36
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
37
|
Ding K, Wang N, Huang X, Liao C, Liu S, Yang M, Wang YZ. Enhancing lipid productivity with novel SiO2-modified polytetrafluoroethylene (PTFE) membranes in a membrane photobioreactor. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Adoonsook D, Chia-Yuan C, Wongrueng A, Pumas C. A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS One 2019; 14:e0214976. [PMID: 31756182 PMCID: PMC6913871 DOI: 10.1371/journal.pone.0214976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, two anoxic-oxic membrane bioreactor (A/O-MBR) systems, i.e. conventional and biofilm anoxic-oxic-membrane bioreactors (C-A/O-MBR and BF-A/O-MBR, respectively), were operated in parallel under conditions of complete sludge retention for the purposes of comparing system performance and microbial community composition. Moreover, with the microbial communities, comparisons were made between the adhesive stage and the suspended stage. High average removal of COD, NH4+-N and TN was achieved in both systems. However, TP removal efficiency was remarkably higher in BF-A/O-MBR when compared with C-A/O-MBR. TP mass balance analysis suggested that under complete sludge retention, polyurethane sponges that were added into the anoxic tank played a key role in both phosphorus release and accumulation. The qPCR analysis showed that sponge biomass could maintain a higher level of abundance of total bacteria than the suspended sludge. Meanwhile, AOB and denitrifiers were enriched in the suspended sludge but not in the sponge biomass. Results of illumina sequencing reveal that the compacted sponge in BF-A/O-MBR could promote the growth of bacteria involved in nutrient removal and reduce the amount of filamentous and bacterial growth that is related to membrane fouling in the suspended sludge.
Collapse
Affiliation(s)
- Dome Adoonsook
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand
| | - Chang Chia-Yuan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand.,Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
39
|
Wang J, Liu Q, Ma S, Hu H, Wu B, Zhang XX, Ren H. Distribution characteristics of N-acyl homoserine lactones during the moving bed biofilm reactor biofilm development process: Effect of carbon/nitrogen ratio and exogenous quorum sensing signals. BIORESOURCE TECHNOLOGY 2019; 289:121591. [PMID: 31230907 DOI: 10.1016/j.biortech.2019.121591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Carbon/nitrogen (C/N) ratios play an important role in biological wastewater treatment processes, with quorum sensing (QS) coordinating biological group behaviors. However, the relationship between them remains unclear. This study investigated the effects of varying C/N ratios and exogenous QS signals on the distribution characteristics of AHLs in Moving Bed Biofilm Reactors during the biofilm development process. Results show that C10-HSL and C12-HSL were the dominant AHLs, with the highest concentrations observed in the reactor with a C/N ratio of 10, followed by C/N ratios of 20 and 4. With varying C/N ratios, the biofilm microbial community structure changed significantly, which may contribute to significant differences in the distribution of AHLs. Furthermore, with the addition of a QS strain Sphingomonas rubra sp. nov., the pollutant removal efficiency of the reactor was not significantly improved and a reversible change in community composition was temporarily observed.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
40
|
Li L, Yan G, Wang H, Chu Z, Li Z, Ling Y, Wu T. Denitrification and microbial community in MBBR using A. donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment. J Environ Sci (China) 2019; 84:133-143. [PMID: 31284905 DOI: 10.1016/j.jes.2019.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, raw Arundo donax (A. donax) pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor (MBBR) for the treatment of reverse osmosis concentrate gathered from local wastewater reuse plant. At stable phase (about 60 days), efficient denitrification performance was obtained with 73.2% ± 19.5% NO3--N average removal and 8.10 ± 3.45 g N/(m3·day) NO3--N average volumetric removal rate. Mass balance analysis showed that 4.84 g A. donax was required to remove 1 g TN. Quantitative real-time PCR analysis results showed that the copy numbers of 16S r-RNA, narG, nirS, nosZ and anammox gene of carrier biofilm and suspended activated sludge in the declination phase (BF2 and AS2) were lower than those of samples in the stable phase (BF1 and AS1), and relatively higher copy numbers of nirS and nirK genes with lower abundance of narG and nosZ genes were observed. High-throughput sequencing analysis was conducted for BF2 and AS2, and similar dominant phyla and classes with different abundance were obtained. The class Gammaproteobacteria affiliated with the phylum Proteobacteria was the most dominant microbial community in both BF2 (52.6%) and AS2 (41.7%). The PICRUSt prediction results indicated that 33 predictive specific genes were related to denitrification process, and the relative abundance of 18 predictive specific genes in BF2 were higher than those in AS2.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zewen Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Wu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
41
|
Zhou JH, Yu HC, Ye KQ, Wang HY, Ruan YJ, Yu JM. Optimized aeration strategies for nitrogen removal efficiency: application of end gas recirculation aeration in the fixed bed biofilm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28216-28227. [PMID: 31368074 DOI: 10.1007/s11356-019-06050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Aeration strategy played an important role in reactor performance. In this study, when superficial upflow air velocity (SAV) decreased from 0.16 to 0.08 cm s-1, low dissolved oxygen concentration (DO) of 2.0 mg L-1 occurred in reactor. The required depth for anoxic microenvironment in biofilm decreased from 902.3 to 525.9 μm, which enhanced the growth of denitrifying bacteria and total nitrogen (TN) removal efficiency. However, decreasing aeration intensity resulted in insufficient hydraulic shear stress, which led to weak biofilm matrix structure. Mass biofilm detachment and reactor deterioration then occurred after 87 days of operation. An end gas recirculation aeration strategy was proposed to separately manipulate DO and aeration intensity. Low DO and high aeration intensity were simultaneously achieved, which enhanced the metabolism of denitrifying bacteria (such as Flavobacterium sp., Pseudorhodobacter sp., and Dok59 sp.) and EPS-producing bacteria (such as Zoogloea sp. and Rhodobacter sp.). Consequently, high TN removal performance (82.1 ± 2.7%) and stable biofilm structure were achieved.
Collapse
Affiliation(s)
- Jia Heng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Cheng Yu
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Kai Qiang Ye
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Yu Wang
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yun Jie Ruan
- College of Bio-systems Engineering and Food Science, Zhejiang University, |Hangzhou, 310058, China
| | - Jian Ming Yu
- College of Environment, Zhejiang University of Technology, 310014, CNo. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
42
|
Deng L, Ngo HH, Guo W, Zhang H. Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment. WATER RESEARCH 2019; 157:155-166. [PMID: 30953850 DOI: 10.1016/j.watres.2019.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
A new hybrid system was developed in this study for the treatment of drinking water consisting of pre-coagulation using polyaluminium chloride (PACl) and membrane filtration (MF) with sponge cubes acting as biomass carriers (P-SMF). When compared to a conventional MF (CMF) and a MF after coagulation by utilizing PACl (P-MF), better removal of nutrients, UV254 and dissolved organic carbon (DOC) (>65%) was obtained from the P-SMF. The accumulation of biopolymers (including polysaccharides and proteins), humic substances, hydrophilic organics, and other small molecular weight (MW) organic matter in the CMF led to the most severe membrane fouling coupled with the highest pore blocking and cake resistance. Pre-coagulation was ineffective in eliminating small MW and hydrophilic organic matter. Conversely, the larger MW organics (i.e. biopolymers and humic substances), small MW organics and hydrophilic organic compounds could be removed in significantly larger quantities in the P-SMF by PACl coagulation. This was achieved via adsorption and the biodegradation by attached biomass on these sponges and by the suspended sludge. Further analyses of the microbial community indicated that the combined addition of PACl and sponges generated a high enrichment of Zoolgloea, Amaricoccus and Reyranella leading to the reduction of biopolymers, and Flexibacter and Sphingobium were linked to the degradation of humic substances. Moreover, some members of Alphaproteobacteria in the P-SMF may be responsible for the removal of low MW organics. These results suggest that the pre-coagulation process coupled with adding sponge in the MF system is a promising technology for mitigating membrane fouling.
Collapse
Affiliation(s)
- Lijuan Deng
- State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin, 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| |
Collapse
|
43
|
Liu D, Li C, Guo H, Kong X, Lan L, Xu H, Zhu S, Ye Z. Start-up evaluations and biocarriers transfer from a trickling filter to a moving bed bioreactor for synthetic mariculture wastewater treatment. CHEMOSPHERE 2019; 218:696-704. [PMID: 30504045 DOI: 10.1016/j.chemosphere.2018.11.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/03/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Mariculture wastewater treatment by nitrification requires a long start-up time due to high salinity stress. This study aimed to verify the faster start-up of a trickling filter (TF) compared to a moving bed bioreactor (MBBR) treating synthetic mariculture wastewater, and to investigate the feasibility of transferring mature biocarriers from the TF to a new MBBR (TF-MBBR). The nitrogen removal performance, biofilm physicochemical properties and microbial communities were investigated. The results obtained showed that, the TF started up 41 days faster than the MBBR, despite the richer microbial diversity in the latter. Lower biofilm roughness and protein content as well as higher adhesive force and polysaccharide content in the TF were obtained compared to the MBBR. Adhesive force was found to be negatively correlated with roughness (r = -0.630, p = 0.069). Transmittance assigned to amide II (1538 cm-1) and amid III (1243 cm-1) through Fourier transform infrared spectroscopy (FTIR) determination was only obtained in the TF, which was likely related to the faster start-up. Nitrosomonas and Nitrospira were detected as the predominant nitrifiers in both reactors. In addition, the new MBBR, incubated with the mature biocarriers transferred from the TF, had a satisfactory nitrification performance with no lag time. Interestingly, the transfer action increased the microbial diversity and made the biofilm physicochemical characteristics shift toward those of the MBBR. Taken together, the study confirmed that MBBR nitrification start-up can be accelerated via TF and biocarrier transfer.
Collapse
Affiliation(s)
- Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Changwei Li
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hengbo Guo
- School of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, WA 6009, Australia
| | - Xianwang Kong
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihua Lan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Zhao L, Ji Y, Sun P, Deng J, Wang H, Yang Y. Effects of individual and combined zinc oxide nanoparticle, norfloxacin, and sulfamethazine contamination on sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 273:454-461. [PMID: 30469135 DOI: 10.1016/j.biortech.2018.11.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
This work investigated the individual and combined effects of zinc oxide, norfloxacin, and sulfamethazine on sludge anaerobic digestion-associated methane production, protein and carbohydrate metabolism, and microbial diversity. Norfloxacin and sulfamethazine (500 mg/kg) did not inhibit methane production, but inhibited its production rate. Zinc oxide nanoparticles with antibiotics inhibited hydrolysis, fermentation, and methanogenesis over varying digestion periods. Complex pollution had a greater impact on methane production than zinc oxide alone, with acute, synergistic toxicity to methanogenesis over short periods. Complex pollution also had varying effects on bacterial and archaeal communities during digestion. These results aid understanding of the toxicity of emerging contaminants in sludge digestion, with the potential to improve pollution removal and reduce associated risks.
Collapse
Affiliation(s)
- Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yi Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinghui Deng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
45
|
Zhu Y. Preparation and characterization of a new hydrophilic and biocompatible magnetic polypropylene carrier used in wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2018; 39:2736-2746. [PMID: 28791890 DOI: 10.1080/09593330.2017.1365940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
This paper employed a blending method to prepare a new hydrophilic and biocompatible magnetic polypropylene carrier (HBMPC) and pure polypropylene carrier (PPC). Mechanical strength, magnetic induction on surface, microstructure, hydrophilicity and biocompatibility of HBMPC were measured, characterized and investigated respectively. The results showed that mechanical strength of PPC and HBMPC was not much different; magnetic induction on the surface of HBMPC was 4-6 mT; HBMPC had relatively large surface roughness and specific surface; average water content of PPC and HBMPC was 47.1% and 64.7%, respectively; contact angle of PPC and HBMPC was 88.7° and 58.5°, respectively; adsorption capacity of HBMPC and PPC to microorganism was 5.40E + 05 and 5.70E + 04 cfu (g·h)-1, respectively. It took about 15 days for PPC to succeed in biofilm culturing while it took only 12 days for HBMPC. COD and [Formula: see text] removal efficiencies of PPC and HBMPC on the 15th day of biofilm formation were 80.5%, 90.5%, 63.7% and 85.4%, respectively; and growth status of microorganism adhering to the surface of HBMPC was better than that of PPC, biomass on single HBMPC and PPC after succeeded in biofilm culturing was 43.9 and 27.4 mg, respectively. All of these indicated that HBMPC had excellent hydrophilicity and biocompatibility.
Collapse
Affiliation(s)
- Youli Zhu
- a Faculty of Urban Construction and Environmental Engineering , Chongqing University , Chongqing , People's Republic of China
| |
Collapse
|
46
|
Li Z, Song W, Liu F, Ding Y, You H, Liu H, Qi P, Jin C. The characteristic evolution of soluble microbial product and its effects on membrane fouling during the development of sponge membrane bioreactor coupled with fiber bundle anoxic bio-filter for treating saline wastewater. BIORESOURCE TECHNOLOGY 2018; 266:51-59. [PMID: 29957290 DOI: 10.1016/j.biortech.2018.06.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Membrane fouling mitigation was observed during the development of novel sponge membrane bioreactor coupled with fiber bundle anoxic bio-filter (AF-MBMBR). Soluble microbial product (SMP) was found to be positively correlated with membrane fouling. To further clarify the mechanism of fouling mitigation, the effects of bio-carriers (sponge and fiber bundles) on characteristics and fouling potential of SMP were investigated. Characterization of SMP implied that as a consequence of employing bio-carriers, tyrosine and tryptophan in SMP significantly decreased, instead relative proportions of humic and fulvic acids increased. Meanwhile, batch filtration tests demonstrated that fouling potential of SMP was significantly alleviated, flux decline caused by filtrating SMP decreased from 84.5% to 60.1%. Further analysis on foulants and filtrate revealed that proteins performed high adhesion propensity on membrane while humic and fulvic acids mainly can pass through the membrane; this finding could well explain the mitigation of SMP fouling potential induced by bio-carriers.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Weilong Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yi Ding
- Marine College, Shandong University at Weihai, Weihai 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Hengjun Liu
- Traffic and Transportation Engineering, Central South University, Changsha 410075, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chao Jin
- Department of Systems Design Engineering, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
47
|
Dias J, Bellingham M, Hassan J, Barrett M, Stephenson T, Soares A. Influence of carrier media physical properties on start-up of moving attached growth systems. BIORESOURCE TECHNOLOGY 2018; 266:463-471. [PMID: 29990762 DOI: 10.1016/j.biortech.2018.06.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Five carrier media with different shapes (spherical and cylindrical), sizes, voidage and protected surface areas (112-610 m2/m3) were studied in a pilot scale moving bed biofilm reactor (MBBR). This study aimed at assessing start-up duration using biofilm formation rates. Results indicated that the spherical media required shorter periods to achieve stable biofilm formation rates associated with chemical oxygen demand (COD) (15-17 days), compared to cylindrical high surface area media (23-24 days). Protected surface area presented weaker correlations with the biofilm formation rate for COD (R2 = 0.83) and ammonia removal (R2 = 0.76). However, good correlations were observed with a combination of the media physical factors: dimensionality (Di), voidage (Voi), and hydraulic efficiency (HE) strongly correlated with biofilm formation rates for heterotrophic (R2 = 0.95) and nitrifying bacteria (R2 = 0.92). This study proposes that the media physical properties can contribute to shortening start-up, contributing to improved removal rates and fast commissioning of MBBRs.
Collapse
Affiliation(s)
- Joana Dias
- Cranfield University Water Sciences Institute, Cranfield MK43 0AL, UK
| | - Mel Bellingham
- Warden Biomedia, 31 Sundon Industrial Estate, Dencora Way, Luton, Bedford LU3 3HP, UK
| | - Junaid Hassan
- Warden Biomedia, 31 Sundon Industrial Estate, Dencora Way, Luton, Bedford LU3 3HP, UK
| | - Mark Barrett
- Warden Biomedia, 31 Sundon Industrial Estate, Dencora Way, Luton, Bedford LU3 3HP, UK
| | - Tom Stephenson
- Cranfield University Water Sciences Institute, Cranfield MK43 0AL, UK
| | - Ana Soares
- Cranfield University Water Sciences Institute, Cranfield MK43 0AL, UK.
| |
Collapse
|
48
|
Huang Y, Zheng Y, Li J, Liao Q, Fu Q, Xia A, Fu J, Sun Y. Enhancing microalgae biofilm formation and growth by fabricating microgrooves onto the substrate surface. BIORESOURCE TECHNOLOGY 2018; 261:36-43. [PMID: 29653332 DOI: 10.1016/j.biortech.2018.03.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Attachment of cells to substrate surface is the premise for biofilm formation. To shelter microalgae cells from fluid shear stress and offer larger areas for microalgae attachment, the inerratic microgrooves, which can act as anchor points that offer larger areas for microalgae attachment and induce vortex to protect cells from hydraulic shear stress, were designed and fabricated into substrate surface. The results indicated that the shear stress on the surface with V-grooves was weaker than that on the surface with U-grooves, and 45° V-grooves with the width of 200 μm were benefit for cells attachment. The initial attachment time was shortened to 50 min under the hydraulic shear stress of 0.02 Pa compared to that of 135 min on the surface without microgrooves. Subsequently, the biofilm biomass concentration on the surface with 45° V-grooves increased by 14.29% to 165.84 g m-2 compared with that on flat substrates.
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yaping Zheng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
49
|
Zheng Y, Zhang W, Tang B, Ding J, Zheng Y, Zhang Z. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. BIORESOURCE TECHNOLOGY 2018; 250:398-405. [PMID: 29195151 DOI: 10.1016/j.biortech.2017.11.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/04/2017] [Accepted: 11/11/2017] [Indexed: 06/07/2023]
Abstract
Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning.
Collapse
Affiliation(s)
- Yi Zheng
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenxiang Zhang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bing Tang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Ding
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Zhien Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
50
|
Yin F, Dong H, Zhang W, Zhu Z, Shang B. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline. BIORESOURCE TECHNOLOGY 2018; 250:247-255. [PMID: 29174902 DOI: 10.1016/j.biortech.2017.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 05/21/2023]
Abstract
Anaerobic digestion (AD) has been applied to animal manure stabilization, and antibiotics is frequently found in animal manure. However, antibiotic degradation and microbial community structures during two-stage AD (acidification and methanogenesis) remain poorly understood. This experiments on two-stage anaerobic swine manure digesters were performed to investigate the degradation mechanisms and effects of chlortetracycline (CTC) and oxytetracycline (OTC) on microbial community structures. Results showed that acidification and methanogenesis showed good degradation performance for manure containing CTC and OTC at 60 and 40 mg/kg·TS, respectively. CTC and OTC were degraded by 59.8% and 41.3% in the acidogenic stage and by 76.3% and 78.3% in the methanogenic stage, respectively. CTC and OTC negatively affected bacterial community in methanogenic and acidogenic stages, respectively. They also adversely influenced the archaeal species in the methanogenic stage. Two-stage AD was proposed to treat manure containing antibiotics and to reduce the negative effects of antibiotics on AD.
Collapse
Affiliation(s)
- Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|