1
|
Bu CY, Yan YX, Zou LH, Ouyang SP, Zheng ZJ, Ouyang J. Comprehensive utilization of corncob for furfuryl alcohol production by chemo-enzymatic sequential catalysis in a biphasic system. BIORESOURCE TECHNOLOGY 2021; 319:124156. [PMID: 33010718 DOI: 10.1016/j.biortech.2020.124156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
A new process for the production of furfuryl alcohol from corncob was constructed by using deep eutectic solvents and whole cell catalysis in this paper. Firstly, the corncob was treated with deep eutectic solvents to convert the xylan into furfural, and then the pretreated corncob residue was enzymatically hydrolyzed to obtain a glucose-rich enzymatic hydrolysate, which was used to provide NADH for Bacillus coagulans NL01 during the process of furfural reduction. The furfural yield could reach 46% using the selected choline chloride-oxalic acid as catalysts and corncob as substrate under the optimized catalytic condition at 120 °C for 30 min. The final furfuryl alcohol yield of 20.7% was achieved with corncob as substrate. Moreover, this catalytic system realized the recycling of deep eutectic solvents three times, the high-value production of furfuryl alcohol, and the comprehensive utilization of corncob.
Collapse
Affiliation(s)
- Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu-Xiu Yan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shui-Ping Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
2
|
Lu Y, Dai H, Shi H, Tang L, Sun X, Ou Z. Synthesis of ethyl (R)-4-chloro-3-hydroxybutyrate by immobilized cells using amino acid-modified magnetic nanoparticles. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Li L, Ye P, Chen M, Tang S, Luo Y, Gao Y, Yan Q, Cheng X. A Two-Step Ferric Chloride and Dilute Alkaline Pretreatment for Enhancing Enzymatic Hydrolysis and Fermentable Sugar Recovery from Miscanthus sinensis. Molecules 2020; 25:molecules25081843. [PMID: 32316307 PMCID: PMC7221650 DOI: 10.3390/molecules25081843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
A two-step process was proposed to enhance enzymatic hydrolysis of Miscanthus sinensis based on a comparative study of acid/alkaline pretreatments. Ferric chloride pretreatment (FP) effectively removed hemicellulose and recovered soluble sugars, but the enzymatic hydrolysis was not efficient. Dilute alkaline pretreatment (ALP) resulted in much better delignification and stronger morphological changes of the sample, making it more accessible to enzymes. While ALP obtained the highest sugar yield during enzymatic hydrolysis, the soluble sugar recovery from the pretreatment stage was still limited. Furthermore, a two-step ferric chloride and dilute alkaline pretreatment (F-ALP) has been successfully developed by effectively recovering soluble sugars in the first FP step and further removing lignin of the FP sample in the second ALP step to improve its enzymatic hydrolysis. As a result, the two-step process yielded the highest total sugar recovery (418.8 mg/g raw stalk) through the whole process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Yan
- Correspondence: (Q.Y.); (X.C.); Tel.: +86-10-51684351-209 (X.C.)
| | - Xiyu Cheng
- Correspondence: (Q.Y.); (X.C.); Tel.: +86-10-51684351-209 (X.C.)
| |
Collapse
|
4
|
Nargotra P, Sharma V, Bajaj BK. Consolidated bioprocessing of surfactant-assisted ionic liquid-pretreated Parthenium hysterophorus L. biomass for bioethanol production. BIORESOURCE TECHNOLOGY 2019; 289:121611. [PMID: 31207414 DOI: 10.1016/j.biortech.2019.121611] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
The current study presents the first ever report of surfactant (Tween-20) assisted ionic liquid IL, (1-ethyl-3-methylimidazolium methane sulphonate [Emim][MeSO3]) pretreatment of Parthenium hysterophorus biomass, its saccharification by in-house developed enzyme cocktail from Aspergillus aculeatus PN14, and fermentation of sugars to bioethanol under consolidated bioprocess. Optimization of pretreatment process variables viz. biomass loading, temperature and time, resulted in enhanced sugar yield (40.1%) upon saccharification of pretreated biomass with IL-stable cellulase and xylanase enzymes from an IL-tolerant newly isolated fungus Aspergillus aculeatus PN14. Physicochemical analysis of surfactant assisted IL-pretreated biomass by SEM, FT-IR and XRD provided molecular insights into inter/intra molecular ultrastructural changes in the biomass that eased the saccharification. Thorough understanding of chemical/molecular structure of biomass may help developing customized pretreatment regimes of apt severity which might result in enhanced accessibility of enzymes to biomass, and hence more sugar content.
Collapse
Affiliation(s)
- Parushi Nargotra
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Vishal Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
5
|
Chong G, Di J, Ma C, Wang D, Wang C, Wang L, Zhang P, Zhu J, He Y. Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment. BIORESOURCE TECHNOLOGY 2018; 261:196-205. [PMID: 29660661 DOI: 10.1016/j.biortech.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, biomass-hydrolysate was used for enhancing the bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE). Firstly, dilute alkalic salt pretreatment was attempted to pretreat bamboo shoot shell (BSS). It was found that enzymatic in situ hydrolysis of 20-50 g/L BSS pretreated with dilute alkalic salts (0.4% Na2CO3, 0.032% Na2S) at 7.5% sulfidity by autoclaving at 110 °C for 40 min gave sugar yields at 59.9%-73.5%. Moreover, linear relationships were corrected on solid recovery-total delignification-sugar yield. In BSS-hydrolysates, xylose and glucose could promote the reductase activity of recombinant E. coli CCZU-A13. Compared with glucose, hydrolysate could increase the reductase activity by 1.35-folds. Furthermore, the cyclohexane-hydrolysate (10:90, v/v) biphasic media containing ethylene diamine tetraacetic acid (EDTA, 40 mM) and l-glutamine (150 mM) was built for the effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (94.6% yield) from 500 mM COBE. In conclusion, this strategy has high potential for the effective biosynthesis of (R)-CHBE (>99% e.e.).
Collapse
Affiliation(s)
- Ganggang Chong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Junhua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Dajing Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Chu Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Lingling Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Pengqi Zhang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Jun Zhu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Yucai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
6
|
Di J, Ma C, Qian J, Liao X, Peng B, He Y. Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. BIORESOURCE TECHNOLOGY 2018; 262:52-58. [PMID: 29698837 DOI: 10.1016/j.biortech.2018.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
In this study, chemo-enzymatic synthesis of furfuralcohol from biomass-derived xylose was successfully demonstrated by a sequential acid-catalyzed dehydration under microwave and whole-cells reduction. After dry dewaxed chestnut shells (CNS, 75 g/L) was acid-hydrolyzed with dilute oxalic acid (0.5 wt%) at 140 °C for 40 min, the obtained CNS-derived xylose (17.9 g/L xylose) could be converted to furfural at 78.8% yield with solid acid SO42-/SnO2-Attapulgite (2.0 wt% catalyst loading) in the dibutyl phthalate-water (1:1, v:v) under microwave (600 W) at 180 °C for 10 min. In the dibutyl phthalate-water (1:1, v/v) media at 30 °C and pH 6.5, the furfural liquor (47.0 mM furfural) was biologically converted to furfuralcohol by recombinant Escherichia coli CCZU-Y10 whole-cells harboring an NADH-dependent reductase (PgCR) without extra addition of NAD+ and glucose, and furfural was completely converted to furfuralcohol after 2.5 h. Clearly, this one-pot synthesis strategy can be effectively used for furfuralcohol production.
Collapse
Affiliation(s)
- Junhua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Jianghao Qian
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Xiaolong Liao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Bo Peng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Yucai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
7
|
Liu ZQ, Wu L, Zheng L, Wang WZ, Zhang XJ, Jin LQ, Zheng YG. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. BIORESOURCE TECHNOLOGY 2018; 249:161-167. [PMID: 29040850 DOI: 10.1016/j.biortech.2017.09.204] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is the key intermediate for synthesis of atorvastatin and rosuvastatin. Carbonyl reductase exhibits excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) to synthesize (3R,5S)-CDHH. In this study, a whole cell biosynthesis reaction system to produce (3R,5S)-CDHH was constructed in organic solvents. A solution of 10% (v/v) Tween-80 was introduced to the reaction system as a co-solvent, which greatly enhanced biotransformation process, giving 98.9% yield, >99% ee and 1.8-fold higher space time yield in 5 h bioconversion of 1 M (S)-CHOH, compared with 98.7% yield and >99% ee in 9 h bioconversion of a purely aqueous reaction system. Moreover, a water-octanol biphasic reaction system was built and 20% of octanol was added as reservoir of substrate resulting in 98% yield, >99% ee and 4.08 mmol L-1 h-1 g-1 (wet cell weight) space time yield. This study paved a way for the whole cell biosynthesis of (3R,5S)-CDHH in mono and biphasic media.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ling Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Zhong Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
He YC, Jiang CX, Chong GG, Di JH, Wu YF, Wang BQ, Xue XX, Ma CL. Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO 42-/SnO 2-kaoline and E. coli CCZU-T15 cells in toluene-water media. BIORESOURCE TECHNOLOGY 2017; 245:841-849. [PMID: 28926917 DOI: 10.1016/j.biortech.2017.08.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 05/14/2023]
Abstract
One-pot synthesis of furfuralcohol from corncob-derived xylose was attempted by the tandem catalysis with solid acid SO42-/SnO2-kaoline and recombination Escherichia coli CCZU-T15 whole-cells in the toluene-water media. Using SO42-/SnO2-kaoline (3.5wt%) as catalyst, the furfural yield of 74.3% was obtained from corncob-derived xylose in the toluene-water (1:2, v:v) containing 10mM OP-10 at 170°C for 30min. After furfural liquor was mixed with corncob-hydrolysate from the enzymatic hydrolysis of oxalic acid-pretreated corncob residue, furfural (50.5mM) could be completely biotransformed to furfuralcohol with Escherichia coli CCZU-T15 whole-cells harboring an NADH-dependent reductase (ClCR) in the toluene-water (1:3, v:v) containing 12.5mM OP-10 and 1.6mM glucose/mM furfural at 30°C and pH 6.5. Furfuralcohol was obtained at 13.0% yield based on starting material corncob (100% furfuralcohol yield for bioreduction of furfural step). Clearly, this one-pot synthesis of furfuralcohol strategy shows high potential application for the effective utilization of corncob.
Collapse
Affiliation(s)
- Yu-Cai He
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China; Key Laboratory of Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Chun-Xia Jiang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Yan-Fei Wu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Bing-Qian Wang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Xin-Xia Xue
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
9
|
Wei P, Cui YH, Zong MH, Xu P, Zhou J, Lou WY. Enzymatic characterization of a recombinant carbonyl reductase from Acetobacter sp. CCTCC M209061. BIORESOUR BIOPROCESS 2017; 4:39. [PMID: 28913159 PMCID: PMC5573764 DOI: 10.1186/s40643-017-0169-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
Background Acetobacter sp. CCTCC M209061 could catalyze carbonyl compounds to chiral alcohols following anti-Prelog rule with excellent enantioselectivity. Therefore, the enzymatic characterization of carbonyl reductase (CR) from Acetobacter sp. CCTCC M209061 needs to be investigated. Results A CR from Acetobacter sp. CCTCC M209061 (AcCR) was cloned and expressed in E. coli. AcCR was purified and characterized, finding that AcCR as a dual coenzyme-dependent short-chain dehydrogenase/reductase (SDR) was more preferred to NADH for biocatalytic reactions. The AcCR was activated and stable when the temperature was under 35 °C and the pH range was from 6.0 to 8.0 for the reduction of 4′-chloroacetophenone with NADH as coenzyme, and the optimal temperature and pH were 45 °C and 8.5, respectively, for the oxidation reaction of isopropanol with NAD+. The enzyme showed moderate thermostability with half-lives of 25.75 h at 35 °C and 13.93 h at 45 °C, respectively. Moreover, the AcCR has broad substrate specificity to a range of ketones and ketoesters, and could catalyze to produce chiral alcohol with e.e. >99% for the majority of tested substrates following the anti-Prelog rule. Conclusions The recombinant AcCR exhibited excellent enantioselectivity, broad substrate spectrum, and highly stereoselective anti-Prelog reduction of prochiral ketones. These results suggest that AcCR is a powerful catalyst for the production of anti-Prelog alcohols.The biocatalytic reactions conducted with the recombinant AcCR ![]()
Collapse
Affiliation(s)
- Ping Wei
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Yu-Han Cui
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Pei Xu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| |
Collapse
|
10
|
Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis. Appl Environ Microbiol 2017; 83:AEM.00603-17. [PMID: 28389544 DOI: 10.1128/aem.00603-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter-1 day-1 These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor.IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis.
Collapse
|
11
|
Liu ZQ, Dong SC, Yin HH, Xue YP, Tang XL, Zhang XJ, He JY, Zheng YG. Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. BIORESOURCE TECHNOLOGY 2017; 229:26-32. [PMID: 28092733 DOI: 10.1016/j.biortech.2016.12.098] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
(4S)-3-[(5S)-5-(4-Fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one ((S)-ET-5) is an important chiral intermediate in the synthesis of chiral side chain of ezetimibe. Recombinant Escherichia coli expressing carbonyl reductase (CBR) was successfully constructed in this study. The total E. coli biomass and the specific activity of recombinant CBR in 5L fermenter culture were 10.9gDCWL-1 and 14900.3Ug-1DCW, respectively. The dual-enzyme coupled biocatalytic process in an aqueous-organic biphasic solvent system was first constructed using p-xylene as the optimal organic phase under optimized reaction conditions, and 150gL-1 (4S)-3-[5-(4-fluorophenyl)-1,5-dioxophentyl]-4-phenyl-1,3-oxazolidin-2-one (ET-4) was successfully converted to (S)-ET-5 with a conversion of 99.1% and diastereomeric excess of 99% after 24-h, which are the highest values reported to date for the production of (S)-ET-5.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Si-Chuan Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun-Yao He
- School of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
12
|
He YC, Tao ZC, Di JH, Chen L, Zhang LB, Zhang DP, Chong GG, Liu F, Ding Y, Jiang CX, Ma CL. Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6-hydrolyzate media. BIORESOURCE TECHNOLOGY 2016; 214:411-418. [PMID: 27155796 DOI: 10.1016/j.biortech.2016.04.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
It was the first report that the concentrated hydrolyzates from the enzymatic hydrolysis of dilute NaOH (3wt%)-soaking rice straw at 30°C was used to form [Bmim]PF6-hydrolyzate (50:50, v/v) media for bioconverting ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (>99% e.e.) with recombinant E. coli CCZU-A13. Compared with pure glucose, the hydrolyzates could promote both initial reaction rate and the intracellular NADH content. Furthermore, emulsifier OP-10 (20mM) was employed to improve the reductase activity. Moreover, Hp-β-cyclodextrin (0.01mol Hp-β-cyclodextrin/mol COBE) was also added into this bioreaction system for enhancing the biosynthesis of (R)-CHBE from COBE by E. coli CCZU-A13 whole-cells. The yield of (R)-CHBE (>99% e.e.) from 800mM COBE was obtained at 100% in the [Bmim]PF6-hydrolyzate (50:50, v/v) media by supplementation of OP-10 (20mM) and Hp-β-CD (8mM). In conclusion, an effective strategy for the biosynthesis of (R)-CHBE was successfully demonstrated.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| | - Zhi-Cheng Tao
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Liang Chen
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Lin-Bing Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Dan-Ping Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Feng Liu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Chun-Xia Jiang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| |
Collapse
|