1
|
Bodle KB, Kirkland CM. Environmentally-grown aerobic granular sludge performs more complete pharmaceutical biodegradation and wastewater treatment than lab-grown granules. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2025; 202:106081. [PMID: 40242331 PMCID: PMC11999665 DOI: 10.1016/j.ibiod.2025.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study evaluated pharmaceutical removal by environmentally-grown aerobic granular sludge (AGS). Most pharmaceutical treatment studies utilize lab-grown AGS, which is cultivated from activated sludge flocs on synthetic media and therefore is likely to possess different physical and microbiological properties than its real-world counterpart. For approximately 70 days, a 60 μg/L mixture of gemfibrozil, diclofenac, and erythromycin was fed to environmentally-grown AGS. Wastewater treatment, granule characteristics, and pharmaceutical fate were monitored. Environmentally-grown granules outperformed their lab-grown counterparts in multiple ways: environmental granules were physically unimpacted by pharmaceuticals, phosphate removal remained complete, and all nitrogen removal processes were unaffected except ammonia oxidation, which was temporarily inhibited by approximately 35%. Most importantly, gemfibrozil was completely biodegraded, a result yet to be observed in any AGS study. Diclofenac and erythromycin removal were minimal and generally below 10%. The families J111, Xanthomonadaceae, OLB5, and Weeksellaceae were uniquely identified as pharmaceutical degraders. Results suggest that environmentally-grown AGS contains rare, but essential, microbial community members missing from lab-grown granules, and these communities enhance environmental granules' resilience during pharmaceutical exposure. Altogether, this study demonstrates that lab-grown AGS may not accurately model the functional capacity of its real-world counterparts.
Collapse
Affiliation(s)
- Kylie B. Bodle
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA
| | - Catherine M. Kirkland
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA
| |
Collapse
|
2
|
Fan C, Hou D, Zhang L, Li C, Chen L, Zhang P, Wu Y, Zou J. Bioaugmentation using HN-AD consortia for high salinity wastewater treatment: Synergistic effects of halotolerant bacteria and nitrogen removal bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125355. [PMID: 40233618 DOI: 10.1016/j.jenvman.2025.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Bioaugmentation shows promise in enhancing nitrogen removal efficiency of high-salt wastewater, yet the impact of microbial associations on ecosystem function and community stability remains unclear. This study innovatively introduced a novel heterotrophic nitrification-aerobic denitrification bacterial consortium to improve the performance of SBR reactor for removing nitrogen from saline wastewater. The results revealed that the bioaugmented reactor (R2) exhibited superior removal performance, achieving maximum removal efficiencies of 87.8 % for COD and 97.8 % for NH4+-N. Moreover, proper salinity (2 % and 4 %) promoted the secretion of EPS and ectoine, further enhancing the resistance and stability of bacterial consortia. 16S rRNA gene sequencing and metagenomics analysis revealed the key denitrifying bacteria Pseudomonas and salt-tolerant bacteria Halomonas were successfully coexistence and the relative abundances of crucial genes (napB, nirS, norB, norC and nosZ) were increased obviously, which were benefit for the excellent nitrogen removal performance in R2. These findings elucidate microbial interactions in response to salinity in bioaugmentation, providing a valuable reference for the efficient treatment of high-saline wastewater.
Collapse
Affiliation(s)
- Chenchen Fan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Dongmei Hou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China.
| | - Lan Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Chuncheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Lutong Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Pei Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Yunjie Wu
- China Metallurgical Geology Southwest Co., Ltd., Kunming Geological Exploration Institute of China Metallurgical Geology Administration, No. 702 Longquan Road, Kunming, 650200, P.R. China
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China.
| |
Collapse
|
3
|
Zhao J, Huang Y, Hu S, Chen Z, Chen B, Qi W, Wang L, Liu H. Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136950. [PMID: 39731892 DOI: 10.1016/j.jhazmat.2024.136950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties. Additionally, microbial community shifts after 400 d of lincomycin exposure were studied to understand the underlying mechanisms. We found that the removal efficiencies of 24 OMPs, including lincomycin and fluconazole, improved by 3-77 % over 82 d while being positively correlated with the presence of tertiary amides and secondary sulfonamides. Lincomycin removal efficiency rose from 20 % to 95 % over 68 days and stayed high. We identified eight potential degradation products of lincomycin, occurring primarily via hydroxylation, N-demethylation, and amide hydrolysis. Additionally, lincomycin notably increased the abundances of specific antibiotic-resistant bacteria (e.g., Thiobacillus, 8.3-fold) and ammonia-oxidizing archaea (e.g., Nitrososphaera, 46.8-fold). The β-lactam resistance gene in Thiobacillus and the amoA gene in Nitrososphaera may enhance lincomycin's removal by promoting its hydrolysis and hydroxylation. Overall, this study provides insights into OMP biodegradation mechanisms and the impact of ng/L levels of lincomycin on microbial communities.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhanyan Chen
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China
| | - Bi Chen
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd, Zunyi 564501, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Yang JH, Han NN, Hu JB, Jiang Y, Fan NS, Jin RC. Microbial regulation of interspecific interaction and metabolism in anammox process to achieve coadaptation to artificial sweeteners. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136654. [PMID: 39591786 DOI: 10.1016/j.jhazmat.2024.136654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Artificial sweeteners (ASs) were frequently detectable in wastewater, which pose high risks to human health and ecological security. The feasibility of anaerobic ammonium oxidation (anammox) process for treatment of ASs-containing wastewater was evaluated in this study. The 86-d continuous flow experiment results showed that 0-30 μg L-1 cyclamate and acesulfame did not significantly affect the nitrogen removal efficiency (NRE) of anammox processes, which were 94.5 ± 3.0 % and 96.6 ± 2.5 %, respectively. Simultaneously, specific anammox activity (SAA) was inhibited by 15 μg L-1 ASs. Fortunately, anammox consortia adapted to the ASs stress by secreting extracellular polymeric substance (EPS). The relative abundances of Candidatus Kuenenia slightly decreased by 0.2 % and 2.3 % under stress of two ASs, and the microbial diversity increased. In addition, the anammox consortia regulated metabolites expression by cell energy allocation. The dominant metabolic pathways were amino acid metabolism, lipid metabolism and nucleotide metabolism. Particularly, the abundances of 5-hydroxylysinonorleucine and L-hypoglycin A significantly increased with ASs concentrations, which were crucial for bacterial proliferation. The co-metabolism between different bacteria might contribute to the biodegradation of ASs. This work demonstrates the feasibility of anammox process to treat the ASs-containing wastewater and reveals the regulation and adaptation mechanism of anammox microbiota, which further drives the implementation and development of anammox process.
Collapse
Affiliation(s)
- Jia-Hui Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Bao Hu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan Jiang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Li Y, Feng L, Li G, Wang J, Li K. Removing high strength lincomycin in pharmaceutical wastewater by a bacteria microalgae consortium co-immobilized filter. BIORESOURCE TECHNOLOGY 2025; 415:131704. [PMID: 39490598 DOI: 10.1016/j.biortech.2024.131704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Lincomycin (LIN) in pharmaceutical wastewater would enter municipal wastewater treatment plants and decrease their performance, leading to residual LIN enter the natural environment and pose serious eco-risk. In this study, a bacterium-microalgae consortium co-immobilized filter (BMCCF) was established and used to remove LIN in artificial pharmaceutical wastewater treatment plants effluents (PWWTPE). LIN removal mechanisms and degradation products' eco-toxicity was studied, and the abundance change of class 1 integrase gene (intI1) and antibiotic resistance genes (ARGs) was monitored. As a result, 98.54% of 82 mg L-1 LIN was removed within 7 days, LIN removal was mainly attributed to bio-degradation by the Bacillus subtilis strain, and LIN degradation products were less toxic than their substrate. Therefore, the BMCCF established in this study provides a promising alternative for the bio-treatment of pharmaceutical wastewater containing high concentration of LIN.
Collapse
Affiliation(s)
- Yonghong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lifei Feng
- Henan Jinbaihe Biotechnology Co., LTD, Anyang 450000, Henan, China
| | - Guanghua Li
- Henan Jinbaihe Biotechnology Co., LTD, Anyang 450000, Henan, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Keke Li
- Henan Jinbaihe Biotechnology Co., LTD, Anyang 450000, Henan, China.
| |
Collapse
|
6
|
Gureeva MV, Muntyan MS, Ravin NV, Grabovich MY. Wastewater Treatment with Bacterial Representatives of the Thiothrix Morphotype. Int J Mol Sci 2024; 25:9093. [PMID: 39201777 PMCID: PMC11355018 DOI: 10.3390/ijms25169093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Bacteria of the Thiothrix morphotype, comprising the genera Thiothrix, Thiolinea and Thiofilum, are frequently encountered in domestic and industrial wastewater treatment systems, but they are usually not clearly differentiated due to the marked similarity in their morphologies. Methods ranging from light microscopy, FISH and PCR to modern high-throughput sequencing are used to identify them. The development of these bacteria in wastewater treatment systems has both advantages and disadvantages. On the one hand, the explosive growth of these bacteria can lead to activated sludge bulking or clogging of the treatment system's membranes, with a consequent decrease in the water treatment efficiency. On the other hand, members of the Thiothrix morphotype can improve the quality of granular sludge and increase the water treatment efficiency. This may be due to their capacity for sulfide oxidation, denitrification combined with the oxidation of reduced sulfur compounds, enhanced biological phosphate removal and possibly denitrifying phosphate removal. The recently obtained pangenome of the genus Thiothrix allows the explanation, at the genomic level, of the experimental results of various studies. Moreover, this review summarizes the data on the factors affecting the proliferation of representatives of the Thiothrix morphotype.
Collapse
Affiliation(s)
- Maria V. Gureeva
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia;
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia;
| | - Margarita Yu. Grabovich
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia;
| |
Collapse
|
7
|
Xie L, Zhu J, Xie J, Xu J, He R, Wang W. Underlying the inhibition mechanisms of sulfate and lincomycin on long-term anaerobic digestion: Microbial response and antibiotic resistance genes distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169837. [PMID: 38185146 DOI: 10.1016/j.scitotenv.2023.169837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
This study evaluated the resilience of a long-term anaerobic treatment system exposed to sulfate, lincomycin (LCM) and their combined stress. LCM was found to impede anaerobic propionate degradation, while sulfate for restraining methanogenic acetate utilization. The combined stress, with influent LCM of 200 mg/L and sulfate of 1404 mg/L, revealed severer inhibition on anaerobic digestion than individual inhibition, leading to 73.9 % and 38.5 % decrease in methane production and sulfate removal, respectively. Suppression on propionate-oxidizing bacteria like unclassified_f__Anaerolineae and unclassified_f__Syntrophaceae further demonstrated LCM's inhibitory effect on propionate degradation. Besides, the down-regulation of genes encoding dissimilatory sulfate reduction enzymes caused by LCM triggered great inhibition on sulfate reduction. A notable increase in ARGs was detected under sulfate-stressed condition, owing to its obvious enrichment of tetracycline-resistant genes. Genera including unclassified_f__Syntrophaceae, unclassified_f__Geobacteraceae and unclassified_f__Anaerolineaceae were identified as dominant host of ARGs and enriched by sulfate addition. Overall, these results could provide the theoretical basis for further enhancement on anaerobic digestion of pharmaceutical wastewater containing sulfate and lincomycin.
Collapse
Affiliation(s)
- Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Rong He
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Wenbiao Wang
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| |
Collapse
|
8
|
Zhao M, Yang M, Yang P, Su R, Xiao F, He P, Deng H, Zhang T, Jia B. One-step electrodeposition preparation of boron nitride and samarium co-modified Ti/PbO 2 anode with ultra-long lifetime: highly efficient degradation of lincomycin wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97195-97208. [PMID: 37589843 DOI: 10.1007/s11356-023-28819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
Lincomycin (LC) is an extensively applied broad-spectrum antibiotic, and its considerable residues in wastewater have caused a series of environmental problems, which makes degradation of LC wastewater extremely urgent. In this work, we have constructed a novel boron nitride (BN) and samarium (Sm) co-modified Ti/PbO2 as anode for high-performance degradation of LC wastewater. Compared with Ti/PbO2, Ti/PbO2-Sm, and Ti/PbO2-BN electrodes, Ti/PbO2-BN-Sm electrode with smaller pyramidal particles possesses higher oxygen evolution potential (2.32 V), excellent accelerated service life (103 h), and outstanding electrocatalytic activity. The single-factor experiments demonstrate that under optimized conditions (current density of 20 mA.cm-2, 6.0 g L-1 Na2SO4, pH 9, and temperature of 30°C), removal rate and COD degradation rate of LC at 3 h have reached 92.85% and 89.11%, respectively. At the same time, degradation of LC is in accordance with the primary kinetic model. Based on the analysis of high-performance liquid chromatography-mass spectrometry (HPLC-MS), four possible degradation pathways are hypothesized. Therefore, efficient electrochemical degradation of LC by using an extremely long-life Ti/PbO2 electrode with high catalytic activity may be a promising method.
Collapse
Affiliation(s)
- Maojie Zhao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Mengqi Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Peilin Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Hongquan Deng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Tinghong Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Bin Jia
- International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
- Key Laboratory of Shock and Vibration of Engineering Materials and Structure of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| |
Collapse
|
9
|
Lei H, Zhang J, Huang J, Shen D, Li Y, Jiao R, Zhao R, Li X, Lin L, Li B. New insights into lincomycin biodegradation by Conexibacter sp. LD01: Genomics characterization, biodegradation kinetics and pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129824. [PMID: 36087529 DOI: 10.1016/j.jhazmat.2022.129824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The aerobic, lincomycin-degrading bacterial strain Conexibacter sp. LD01, belonging to the phylum Actinobacteria, was isolated from activated sludge. Both second- and third-generation sequencing technologies were applied to uncover the genomic characterization and high-quality genome with 99.2% completeness and 2.2% contamination was obtained. The biodegradation kinetics of lincomycin fit well with the modified Gompertz model (R2 > 0.97). Conexibacter sp. LD01 could subsist with lincomycin as the sole source of carbon, nitrogen, and energy. When 500 mg/L of glucose was added as a co-substrate, the biodegradation rate improved significantly, whereas the addition of 500 mg/L sodium pyruvate had a slight inhibitory effect. Ammonia nitrogen was the best nitrogen source for Conexibacter sp. LD01 when growing and degrading lincomycin. In total, 17 metabolic products consisting of nine novel products were detected, and five biodegradation pathways, including N-demethylation, breakage of the amido bond, sulfoxidation, and oxidation of the pyrrolidine ring and propylamino chain, were proposed. This study significantly expands our understanding of the functional microorganisms and mechanism involved in lincomycin biodegradation at the phylum level.
Collapse
Affiliation(s)
- Huaxin Lei
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Dengjin Shen
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Jiao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Luo X, Yang Q, Lin Y, Tang Z, Tomberlin JK, Liu W, Huang Y. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114539. [PMID: 35085969 DOI: 10.1016/j.jenvman.2022.114539] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Lincomycin fermentation residues (LFR) are the byproducts from the pharmaceutical industry, and contain high concentrations of antibiotics that could pose a threat to the environment. Here, we report that black soldier fly larvae (BSFL) and associated microbiota can effectively degrade LFR and accelerate the degradation of lincomycin in LFR. The degradation rate of lincomycin in LFR can reach 84.9% after 12 days of BSFL-mediated bioconversion, which is 3-fold greater than that accomplished with natural composting. The rapid degradation was partially carried out by the BSFL-associated microbiota, contributing 22.0% of the degradation in the final composts. Based on microbiome analysis, we found that the structure of microbiota from both BSFL guts and BSFL composts changed significantly during the bioconversion, and that several bacterial genera were correlated with lincomycin degradation. The roles of the associated microbiota in the degradation were further verified by the ability of two larval intestinal bacterial isolates and one bacterial isolate from BSFL composts to lincomycin degradation. The synergy between BSFL and the isolated strains resulted in a 2-fold increase in degradation compared to that achieved by microbial degradation alone. Furthermore, we determined that the degradation was correlated with the induction of several antibiotic resistant genes (ARGs) associated with lincomycin degradation in larval guts and BSFL composts. Moreover, the environmental conditions in the BSFL composts were found to be conducive to the degradation. In conclusion, these findings demonstrate that the BSFL-mediated bioconversion of LFR could effectively reduce residual lincomycin and that the associated microbiota play crucial roles in the process.
Collapse
Affiliation(s)
- Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yueting Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 400 Bizzell St., College Station, TX, 77843, USA
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhou Z, Wang Y, Wang M, Zhou Z. Co-metabolic Effect of Glucose on Methane Production and Phenanthrene Removal in an Enriched Phenanthrene-Degrading Consortium Under Methanogenesis. Front Microbiol 2021; 12:749967. [PMID: 34712215 PMCID: PMC8546250 DOI: 10.3389/fmicb.2021.749967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion is used to treat diverse waste classes, and polycyclic aromatic hydrocarbons (PAHs) are a class of refractory compounds that common in wastes treated using anaerobic digestion. In this study, a microbial consortium with the ability to degrade phenanthrene under methanogenesis was enriched from paddy soil to investigate the cometabolic effect of glucose on methane (CH4) production and phenanthrene (a representative PAH) degradation under methanogenic conditions. The addition of glucose enhanced the CH4 production rate (from 0.37 to 2.25mg⋅L-1⋅d-1) but had no influence on the degradation rate of phenanthrene. Moreover, glucose addition significantly decreased the microbial α-diversity (from 2.59 to 1.30) of the enriched consortium but showed no significant effect on the microbial community (R 2=0.39, p=0.10), archaeal community (R 2=0.48, p=0.10), or functional profile (R 2=0.48, p=0.10). The relative abundance of genes involved in the degradation of aromatic compounds showed a decreasing tendency with the addition of glucose, whereas that of genes related to CH4 synthesis was not affected. Additionally, the abundance of genes related to the acetate pathway was the highest among the four types of CH4 synthesis pathways detected in the enriched consortium, which averagely accounted for 48.24% of the total CH4 synthesis pathway, indicating that the acetate pathway is dominant in this phenanthrene-degrading system during methanogenesis. Our results reveal that achieving an ideal effect is diffcult via co-metabolism in a single-stage digestion system of PAH under methanogenesis; thus, other anaerobic systems with higher PAH removal efficiency should be combined with methanogenic digestion, assembling a multistage pattern to enhance the PAH removal rate and CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Ziyan Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yanqin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mingxia Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhifeng Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Zheng M, Han H, Shi J, Zhang Z, Ma W, Xu C. Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe 3O 4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125387. [PMID: 33676245 DOI: 10.1016/j.jhazmat.2021.125387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In current study, nano-Fe3O4@activated coke enhanced bio-system (FEBS) under limited-oxygen condition was applied for efficient treatment of aromatic organics in coal pyrolysis wastewater. Metagenomic analyses revealed functional microbiome linkages and mechanism involved in aromatic ring-cleavage. Based on biodegradation efficiency in different reactors, FEBS supplementation conferred the best organic removal (avg. 92.29%). It also showed a remarkable advantage in biodegradability maintenance (>40%) over control reactors. Metagenomics profiling revealed the degradation processes were driven by Fe3O4 redox reactions and microbial biofilm, while the suspended sludge was the principal force for aromatic mineralization. Based on the analysis of functional species and genes, most bacteria cleaved the benzene ring preferably through the aerobic pathways, mediated by catechol 1, 2-dioxygenase, catechol 2, 3-dioxygenase and protocatechuate 3, 4-dioxygenase (66-84%). Ecological network showed that Comamonas testosterone-centered microbiome and Azotobacter linked to the nitrogen (N)-heterocyclic ring-cleavage. Network linkage further demonstrated that Alicycliphilus and Acidovorax were the key tone taxa involved in benzene ring-cleavage. Finally, combined with analysis of degradation products, bacteria degraded N-heterocyclic ring containing organic aromatic compounds (quinoline) mainly through anaerobic processes, whereas cleavage of benzene ring preferred aerobic pathways. The enriched functional species were the primary reason for the enhanced biodegradation in FEBS.
Collapse
Affiliation(s)
- Mengqi Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingxin Shi
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengwen Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wencheng Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chunyan Xu
- Harbin Gongchuang Environmental Protection Technology Company, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
13
|
Zhou LJ, Han P, Zhao M, Yu Y, Sun D, Hou L, Liu M, Zhao Q, Tang X, Klümper U, Gu JD, Men Y, Wu QL. Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA, AOB and comammox: A comparison of removal, pathways, and mechanisms. WATER RESEARCH 2021; 196:117003. [PMID: 33730544 DOI: 10.1016/j.watres.2021.117003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, we evaluated the biotransformation mechanisms of lincomycin (LIN) and three fluoroquinolone antibiotics (FQs), ciprofloxacin (CFX), norfloxacin (NFX), and ofloxacin (OFX), which regularly enter aquatic environments through human activities, by different ammonia-oxidizing microorganisms (AOM). The organisms included a pure culture of the complete ammonia oxidizer (comammox) Nitrospira inopinata, an ammonia oxidizing archaeon (AOA) Nitrososphaera gargensis, and an ammonia-oxidizing bacterium (AOB) Nitrosomonas nitrosa Nm90. The removal of these antibiotics by the pure microbial cultures and the protein-normalized biotransformation rate constants indicated that LIN was significantly co-metabolically biotransformed by AOA and comammox, but not by AOB. CFX and NFX were significantly co-metabolized by AOA and AOB, but not by comammox. None of the tested cultures transformed OFX effectively. Generally, AOA showed the best biotransformation capability for LIN and FQs, followed by comammox and AOB. The transformation products and their related biotransformation mechanisms were also elucidated. i) The AOA performed hydroxylation, S-oxidation, and demethylation of LIN, as well as nitrosation and cleavage of the piperazine moiety of CFX and NFX; ii) the AOB utilized nitrosation to biotransform CFX and NFX; and iii) the comammox carried out hydroxylation, demethylation, and demethylthioation of LIN. Hydroxylamine, an intermediate of ammonia oxidation, chemically reacted with LIN and the selected FQs, with removals exceeding 90%. Collectively, these findings provide important fundamental insights into the roles of different ammonia oxidizers and their intermediates on LIN and FQ biotransformation in nitrifying environments including wastewater treatment systems.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Mengyue Zhao
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yaochun Yu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Dongyao Sun
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qiang Zhao
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Tang
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01217, Germany
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Yujie Men
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Zerva I, Remmas N, Melidis P, Ntougias S. Biotreatment efficiency, hydrolytic potential and bacterial community dynamics in an immobilized cell bioreactor treating caper processing wastewater under highly saline conditions. BIORESOURCE TECHNOLOGY 2021; 325:124694. [PMID: 33454565 DOI: 10.1016/j.biortech.2021.124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Although caper processing wastewaters (CPW) are characterized by high organic content and salt concentration, no attempt has been made to treat these effluents. In this study, an immobilized cell bioreactor efficiently treated CPW even at hypersaline conditions (100 g/L salinity). Nitrogen was mainly assimilated during biotreatment, as nitrification was inhibited at elevated salinities. The hydrolytic potential was assessed by determining glucanase, xylanase, glucosidase, lipase and protease activities, which were negatively affected above 20 g/L salinity as the consequence of the inhibition of non-halotolerant microbiota. Succession of non-halotolerant taxa by the slightly halotolerant bacteria Defluviimonas, Amaricoccus, Arenibacter, Formosa and Muricauda, and then by the moderately/extremely halotolerant genera Halomonas, Roseovarius and Idiomarina occurred over salinity increase. Diversity indices were reduced during transition from moderately saline to hypersaline conditions. A distinct network was formed at hypersaline conditions, consisting of the halotolerant genera Halomonas, Idiomarina, Saliterribacillus and Gracilibacillus.
Collapse
Affiliation(s)
- Ioanna Zerva
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece.
| |
Collapse
|
15
|
Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, Umaru I, Abdurrasheed AS, Adam AA, Ghaleb AAS, Almahbashi NMY, Al-Dhawi BNS, Noor A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111946. [PMID: 33486234 DOI: 10.1016/j.jenvman.2021.111946] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
Collapse
Affiliation(s)
- A H Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - S R M Kutty
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - I M Lawal
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - S Abubakar
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Hassan
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Zubairu
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Umaru
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - A S Abdurrasheed
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - A A Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A A S Ghaleb
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - N M Y Almahbashi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - B N S Al-Dhawi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
16
|
Song T, Li S, Yin Z, Bao M, Lu J, Li Y. Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116111. [PMID: 33290953 DOI: 10.1016/j.envpol.2020.116111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Polymer flooding is one of the most important enhanced oil recovery techniques. However, a large amount of hydrolyzed polyacrylamide (HPAM)-containing wastewater is produced in the process of polymer flooding, and this poses a potential threat to the environment. In this study, the treatment of HPAM-containing wastewater was analyzed in an ozonic-anaerobic-aerobic multistage treatment process involving an ozone reactor (OR), an upflow anaerobic sludge blanket reactor (UASBR), and an aerobic biofilm reactor (ABR). At an HPAM concentration of 500 mg L-1 and an ozone dose of 25 g O3/g TOC, the HPAM removal rate reached 85.06%. With fracturing of the carbon chain, high-molecular-weight HPAM was degraded into low-molecular-weight compounds. Microbial communities in bioreactors were investigated via high-throughput sequencing, which revealed that norank_c_Bacteroidetes_vadinHA17, norank_f_Cytophagaceae, and Meiothermus were the dominant bacterial groups, and that Methanobacterium, norank_c_WCHA1-57, and Methanosaeta were the key archaeal genera. To the best of our knowledge, this is the first study in which HPAM-containing wastewater is treated using an ozonic-anaerobic-aerobic multistage treatment system. The ideal degradation performance and the presence of keystone microorganisms confirmed that the multistage treatment process is feasible for treatment of HPAM-containing wastewater.
Collapse
Affiliation(s)
- Tianwen Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China; College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Shanshan Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zichao Yin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, And Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing, 100728, China
| |
Collapse
|
17
|
Xiang Y, Shao Z, Chai H, Ji F, He Q. Functional microorganisms and enzymes related nitrogen cycle in the biofilm performing simultaneous nitrification and denitrification. BIORESOURCE TECHNOLOGY 2020; 314:123697. [PMID: 32593105 DOI: 10.1016/j.biortech.2020.123697] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Simultaneous nitrification and denitrification (SND) is a potential energy-saving process in wastewater treatment while the nitrogen removal mechanism is still unclear due to the lack of information about the functional microbes and enzymes. Sequencing batch biofilm reactors were implemented to achieve efficient SND. Eight nitrogen removal related microorganisms out of the top abundant 20 microbial community and reference species were used to construct a phylogenetic tree. Functional enzymes and modules analysis were investigated to reveal the SND pathway: in the aerobic part of the biofilm, ammonia oxidation was catalyzed by complete ammonia oxidizers while in the inner anoxic part, denitrification, dissimilatory nitrate reduction (DNRA) and nitrogen fixation (NF) cooperated to stimulate nitrate removal. These results provide a practical aeration control strategy to achieve SND and indicate that DNRA and NF are important nitrogen removal pathways that should not be ignored in the SND mechanism.
Collapse
Affiliation(s)
- Yu Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhiyu Shao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
18
|
Zhang L, Guo R, Li H, Du Q, Lu J, Huang Y, Yan Z, Chen J. Mechanism analysis for the process-dependent driven mode of NaHCO 3 in algal antibiotic removal: efficiency, degradation pathway and metabolic response. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122531. [PMID: 32283379 DOI: 10.1016/j.jhazmat.2020.122531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
This work provided a comprehensive perspective to investigate the performance of NaHCO3-driving effect and mechanism including the antibiotic removal, degradation pathway and metabolites analysis, and the algal physiological response during the removal process. Cefuroxime sodium was selected as the target antibiotic. Our results showed that NaHCO3 did not facilitate self-decomposition of the target antibiotic, while drove the improvement on the removal capacity of every algal cell, which then attributed to the total removal efficiency. After 24 h, there was an improvement on the removal rate of the target antibiotic (from 10.21% to 92.89%) when NaHCO3 was added. The degradation pathway of the target antibiotic was confirmed by the formation of three main products (M1, M2 and M3), and the degradation process, that from M1 to M2 and M2 to M3, was accelerated by the existence of NaHCO3. Besides, a 4-stage model illustrated the relationship between NaHCO3 and antibiotic removal process. Moreover, algal culture that supplemented with NaHCO3 demonstrated a better growth capacity. A large increase in the content of chlorophyll a and a moderate increase in the activity of two carbon metabolic enzymes (RuBisCO and CA) might be viewed as a positive response of the algae during the NaHCO3-driving process.
Collapse
Affiliation(s)
- Ling Zhang
- China Pharmaceutical University, Nanjing, 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Nanjing, 210009, China
| | - Haitao Li
- Research Institute of Nanjing Chemical Industry Group, Nanjing, 210048, China
| | - Qiong Du
- China Pharmaceutical University, Nanjing, 210009, China
| | - Jilai Lu
- Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, 210036, China
| | - Yaxin Huang
- China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Yan
- China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Li X, Li M, Pu Y, Ragauskas AJ, Zheng Y. Simultaneous depolymerization and fermentation of lignin into value-added products by the marine protist, Thraustochytrium striatum. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Xia Z, Wang Q, She Z, Gao M, Zhao Y, Guo L, Jin C. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134047. [PMID: 31491641 DOI: 10.1016/j.scitotenv.2019.134047] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In this study, simultaneous nitrification and denitrification (SND) process was successfully established in a hybrid sequencing batch biofilm reactor (HSBBR). High removal efficiency of NH4+-N (98.0±2.4% to 99.8±0.4%) and COD (86.6±4.0% to 91.6±1.8%) was observed in the salinity range of 0.0 to 2.4%. SND via nitrite, replacing SND via nitrate, became the main nitrogen removal pathway at 1.6% and 2.4% salinity. Suspended sludge and biofilm shared similar microbial composition. Dominant genera were substituted by salt-adaptable microbes as salinity increasing. Abundance of autotrophic ammonia-oxidizing bacteria (Nitrosomonas) increased with elevated salinity, while autotrophic nitrite-oxidizing bacteria (Nitrospira) exhibited extreme sensitivity to salinity. The presence of Gemmata demonstrated that heterotrophic nitrification co-existed with autotrophic nitrification in the SND process. Aerobic denitrifiers (Denitratisoma and Thauera) were also identified. Thiothrix, Sedimenticola, Sulfuritalea, Arcobacter (sulfide-based autotrophic denitrifier) and Hydrogenophaga (hydrogen-based autotrophic denitrifier) were detected in both S-sludge and biofilm. The occurrence of ANAMMOX bacteria Pirellula and Planctomyces indicated that ANAMMOX process was another pathway for nitrogen removal. Nitrogen removal in the HSBBR was accomplished via diverse pathways, including traditional autotrophic nitrification/heterotrophic denitrification, heterotrophic nitrification, aerobic and autotrophic denitrification, and ANAMMOX.
Collapse
Affiliation(s)
- Zhengang Xia
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Qun Wang
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
21
|
Zhao R, Feng J, Liu J, Fu W, Li X, Li B. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics. WATER RESEARCH 2019; 151:388-402. [PMID: 30616051 DOI: 10.1016/j.watres.2018.12.034] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Currently, the effects of high antibiotic concentrations on the performance of microbiota and antibiotic resistance genes (ARGs) in activated sludge (AS) process are not well characterized. Lab-scale batch reactors were performed to evaluate the dynamics of microbial community and ARGs in response to six antibiotics at different concentrations using high-throughput sequencing-based 16S rRNA gene and metagenomic analyses. The presence of antibiotics remarkably decreased the microbial diversity, caused a great change of the microbiota structure, and exerted a selective pressure on the enrichment of potential antibiotic resistant bacteria (ARB), such as Arthrobacter, Thauera, Geothrix, Rudaea, Aridibacter, Conexibacter, Terrimonas, etc. High antibiotic selective pressures increased ARG abundance but simultaneously reduced ARG number. In total, 491 ARG subtypes belonging to 20 ARG types were detected and kanamycin treatment showed the highest ARG abundances. A core set of 54 ARG subtypes that accounted for 66.7%-99.6% of the total ARG abundances were shared by all samples. The increase of the abundances of both corresponding and non-corresponding ARGs under a specific antibiotic treatment revealed the collateral effects of antibiotic selective pressure. Microbial community may play an important role in the composition of ARGs. Network analysis indicated that both internal-type and external-type of ARGs exhibited higher non-random co-occurrence incidences and 18 genera were speculated as the possible hosts for multiple ARGs. This study deciphered the profiles and relationships between microbial community and ARGs in AS process treating wastewater with high antibiotic concentrations and could provide helpful guidance for controlling the development and dissemination of ARB and ARGs.
Collapse
Affiliation(s)
- Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Wenjie Fu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Li S, Geng J, Wu G, Gao X, Fu Y, Ren H. Removal of artificial sweeteners and their effects on microbial communities in sequencing batch reactors. Sci Rep 2018; 8:3399. [PMID: 29467367 PMCID: PMC5821853 DOI: 10.1038/s41598-018-21564-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/06/2018] [Indexed: 01/22/2023] Open
Abstract
Concern is growing over contamination of the environment with artificial sweeteners (ASWs) because of their widespread existence in wastewater treatment plants (WWTPs). To evaluate ASWs removal and the effect on activated sludge, acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC) were introduced individually or in mixture to sequencing batch reactors (SBRs) in environmentally relevant concentrations (100 ppb) for 100 days. Comparisons between ACE removal in a full-scale WWTP and in lab-scale SBRs were conducted. Results showed that CYC and SAC were completely removed, whereas SUC was persistent. However, ACE removal in lab-scale SBRs was significantly greater than in the full-scale WWTP. In SBRs, chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) removal appeared unchanged after adding ASWs (p > 0.05). Adenosine triphosphate (ATP) concentrations and triphenyl tetrazolium chloride-dehydrogenase activity (TTC-DHA) declined significantly (p < 0.05). The mixed ASWs had more evident effects than the individual ASWs. Microbial community analyses revealed that Proteobacteria decreased obviously, while Bacteroidetes, Chloroflexi and Actinobacteria were enriched with the addition of ASWs. Redundancy Analysis (RDA) indicated ACE had a greater impact on activated sludge than the other ASWs.
Collapse
Affiliation(s)
- Shaoli Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China.
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Xingsheng Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Yingying Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
23
|
Wang M, Cai C, Zhang B, Liu H. Characterization and mechanism analysis of lincomycin biodegradation with Clostridium sp. strain LCM-B isolated from lincomycin mycelial residue (LMR). CHEMOSPHERE 2018; 193:611-617. [PMID: 29169137 DOI: 10.1016/j.chemosphere.2017.11.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Lincomycin mycelial residue (LMR) is the restricted resource because it contains residual lincomycin, which is producing potential risks to the environment and human health. In this study, lincomycin-degrading strain LCM-B was isolated and identified as Clostridium sp. in the LMR. Strain LCM-B was able to degrade 62.03% of lincomycin at the initial concentration of 100 mg L-1 after incubation for 10 d, while only 15.61% of lincomycin was removed at the initial concentration of 500 mg L-1. The removal efficiency of lincomycin by strain LCM-B decreased as the initial concentration increased. Gene lnuB (which encodes the nucleotidyl transferase) was detected in the isolated strain, and it was proven to participate in lincomycin biodegradation based on the analysis of degradation products and pathway. The results provide a relatively complete understanding of lincomycin biodegradation mechanism. Strain LCM-B is promising to eliminate lincomycin from the LMR.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
24
|
Fu QL, Blaney L, Zhou DM. Natural degradation of roxarsone in contrasting soils: Degradation kinetics and transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:132-140. [PMID: 28688255 DOI: 10.1016/j.scitotenv.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/02/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
Roxarsone (ROX) is transformed to more toxic arsenicals after land application of ROX-containing poultry litter to agricultural soils. To date, no reports have compared ROX degradation in soils with contrasting properties. In this study, the impact of different incubation conditions on ROX degradation was investigated in red (C-Soil) and yellow-brown (H-Soil) soils. The degradation half-lives of extractable ROX in C-Soil and H-Soil were found to be 130-394d and 4-94d, respectively, indicating that the extractable ROX degraded faster in H-Soil. This result stems from the higher organic matter content, more abundant soil microbes, and lower ROX sorption capacity of H-Soil compared to C-Soil. Degradation of extractable ROX in both C-Soil and H-Soil was significantly promoted by soil moisture and exogenous glucose. Exogenous P(V) facilitated degradation of extractable ROX in C-Soil, but limited effects were observed for H-Soil. HPLC-ICP-MS analysis confirmed that ROX and dimethylarsinic acid were the predominant As species in soil extracts from 119-day incubated C-Soil and H-Soil, respectively. Ultimately, minimal transformation of extractable ROX was observed in C-Soil, but the majority of extractable ROX in H-Soil was biologically transformed. The differences in degradation of extractable ROX in C-Soil and H-Soil highlight the key roles of soil properties on the environmental fate of ROX and associated arsenicals. Results from this study inform the need for comprehensive evaluation of the ecological risks in organoarsenical-contaminated soils.
Collapse
Affiliation(s)
- Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|