1
|
Santoro C, Bollella P, Erable B, Atanassov P, Pant D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat Catal 2022. [DOI: 10.1038/s41929-022-00787-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
2
|
Rimboud M, Etcheverry L, Barakat M, Achouak W, Bergel A, Délia ML. Hypersaline microbial fuel cell equipped with an oxygen-reducing microbial cathode. BIORESOURCE TECHNOLOGY 2021; 337:125448. [PMID: 34320736 DOI: 10.1016/j.biortech.2021.125448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial anodes and oxygen reducing microbial cathodes were designed separately under constant polarization at + 0.1 V/SCE in a hypersaline medium (NaCl 45 g/L). They were then associated to design two-compartment microbial fuel cells (MFCs). These MFCs produced up to 209 ± 24 mW m-2 during a week. This was the first demonstration that hypersaline MFCs equipped with microbial cathodes can produce power density at this level. Desulfuromonas sp. were confirmed to be key species of the anodes. The efficiency of the cathodes was linked to the development of a redox system centred at + 0.2 V/SCE and to the presence of Gammaproteobacteria (Alteromonadales and Oceanospirillales), especially an unclassified order phylogenetically linked to the genus Thioalobacter. Comparing the different performance of the four MFCs with the population analyses suggested that polarization at + 0.1 V/SCE should be maintained longer to promote the growth of Thioalobacter on the cathode and thus increase the MFC performance.
Collapse
Affiliation(s)
- Mickaël Rimboud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Mohamed Barakat
- Lab of Microbial Ecology of the Rhizosphere (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille University, CEA Cadarache, 13108 Saint Paul Lez Durance, France
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille University, CEA Cadarache, 13108 Saint Paul Lez Durance, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Marie-Line Délia
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
3
|
Guette-Marquet S, Roques C, Bergel A. Catalysis of the electrochemical oxygen reduction reaction (ORR) by animal and human cells. PLoS One 2021; 16:e0251273. [PMID: 33951096 PMCID: PMC8099096 DOI: 10.1371/journal.pone.0251273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Animal cells from the Vero lineage and MRC5 human cells were checked for their capacity to catalyse the electrochemical oxygen reduction reaction (ORR). The Vero cells needed 72 hours’ incubation to induce ORR catalysis. The cyclic voltammetry curves were clearly modified by the presence of the cells with a shift of ORR of 50 mV towards positive potentials and the appearance of a limiting current (59 μA.cm-2). The MRC5 cells induced considerable ORR catalysis after only 4 h of incubation with a potential shift of 110 mV but with large experimental deviation. A longer incubation time, of 24 h, made the results more reproducible with a potential shift of 90 mV. The presence of carbon nanotubes on the electrode surface or pre-treatment with foetal bovine serum or poly-D-lysine did not change the results. These data are the first demonstrations of the capability of animal and human cells to catalyse electrochemical ORR. The discussion of the possible mechanisms suggests that these pioneering observations could pave the way for electrochemical biosensors able to characterize the protective system of cells against oxidative stress and its sensitivity to external agents.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Fac. Sci. Pharmaceutique, 31062, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Fac. Sci. Pharmaceutique, 31062, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432, Toulouse, France
- * E-mail:
| |
Collapse
|
4
|
|
5
|
Electrochemical and phylogenetic comparisons of oxygen-reducing electroautotrophic communities. Biosens Bioelectron 2021; 171:112700. [PMID: 33096434 DOI: 10.1016/j.bios.2020.112700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/21/2022]
Abstract
The mechanisms of extracellular electron transfer and the microbial taxa associated with the observed electroactivity are fundamental to oxygen-reducing microbial cathodes. Here we confirmed the apparent 'electroautotrophic' behavior of electroactive biofilms (EABs) grown on carbon electrodes at + 0.20V vs. Ag/AgCl under air. The EABs catalyzed O2 electroreduction into water ─ as demonstrated by a rotating ring disc experiment ─ and performed quasi-reversible heterogeneous electron transfer (HET). By using electrodes of low surface capacitance, we report for the first time nonturnover redox peaks that are very likely intrinsic to the redox protein(s) performing the HET. Because the formal potential of redox proteins is pH-dependent, we investigated the evolution of characteristic potentials of the EABs with the solution pH: (i) open circuit potential, (ii) half-wave potential, and (iii) averaged peak potential of nonturnover cyclic voltammograms, which is presumably the formal potential of the primary electron acceptor(s) for the community. In addition to describing the redox thermodynamics behind HET, we suggest that the corresponding data provides an electrochemical fingerprint that could help in comparing the electroactivity of diverse microbial communities. The taxon with the highest relative abundance in our EABs was an unclassified member of the Gammaproteobacteria that was phylogenetically closely related to most other abundant unclassified Gammaproteobacteria commonly reported in EABs reducing O2 at high potentials, further suggesting that those taxa are responsible for the bioelectroactivity. Phylogenetic and electrochemical similarities between reported EABs jointly support the hypothesis that similar biomolecular mechanisms may be responsible for this highly probable electroautotrophic metabolism.
Collapse
|
6
|
Rimboud M, Barakat M, Achouak W, Bergel A, Délia ML. Oxygen-reducing microbial cathodes in hypersaline electrolyte. BIORESOURCE TECHNOLOGY 2021; 319:124165. [PMID: 33039843 DOI: 10.1016/j.biortech.2020.124165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Hypersaline electrolytes offer a way to boost the development of microbial fuel cells by overcoming the issue due to the low conductivity of the usual media. Efficient halotolerant bioanodes have already been designed but O2-reducing cathodes remain a strong bottleneck. Here, O2-reducing biocathodes were designed by using salt marsh sediment as the inoculum and a hypersaline media (45 g/L NaCl) of high conductivity (10.4 S m-1). Current density up to 2.2 A m-2 was reached from potential of +0.2 V/SCE. The efficiency of the biocathodes was correlated to the presence of Gammaproteobacteria strain(s) related to Thiohalobacter thiocyanaticus, which were considerably enriched in the best performing biocathodes. This work opens up new perspectives to overcome the O2 reduction issue in hypersaline MFCs by designing efficient halotolerant microbial cathodes and pointing out the strains that should now be focused to improve them.
Collapse
Affiliation(s)
- Mickaël Rimboud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Allée Emile Monso, 31432 Toulouse, France
| | - Mohamed Barakat
- Laboratoire d'Ecologie Microbienne de la Rhizosphère et des Environnements Extrêmes (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille Université, CEA Cadarache, 13108 Saint Paul Lez Durance, France
| | - Wafa Achouak
- Laboratoire d'Ecologie Microbienne de la Rhizosphère et des Environnements Extrêmes (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille Université, CEA Cadarache, 13108 Saint Paul Lez Durance, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Allée Emile Monso, 31432 Toulouse, France
| | - Marie-Line Délia
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
7
|
Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. Biosens Bioelectron 2019; 132:115-121. [DOI: 10.1016/j.bios.2019.02.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 11/18/2022]
|
8
|
Rimboud M, Achouak W. Electroautotrophy of Thioalkalivibrio nitratireducens. Bioelectrochemistry 2019; 126:48-55. [DOI: 10.1016/j.bioelechem.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
9
|
Massaglia G, Fiorello I, Sacco A, Margaria V, Pirri CF, Quaglio M. Biohybrid Cathode in Single Chamber Microbial Fuel Cell. NANOMATERIALS 2018; 9:nano9010036. [PMID: 30597855 PMCID: PMC6359297 DOI: 10.3390/nano9010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/04/2023]
Abstract
The aim of this work is to investigate the properties of biofilms, spontaneously grown on cathode electrodes of single-chamber microbial fuel cells, when used as catalysts for oxygen reduction reaction (ORR). To this purpose, a comparison between two sets of different carbon-based cathode electrodes is carried out. The first one (Pt-based biocathode) is based on the proliferation of the biofilm onto a Pt/C layer, leading thus to the creation of a biohybrid catalyst. The second set of electrodes (Pt-free biocathode) is based on a bare carbon-based material, on which biofilm grows and acts as the sole catalyst for ORR. Linear sweep voltammetry (LSV) characterization confirmed better performance when the biofilm is formed on both Pt-based and Pt-free cathodes, with respect to that obtained by biofilm-free cathodes. To analyze the properties of spontaneously grown cathodic biofilms on carbon-based electrodes, electrochemical impedance spectroscopy is employed. This study demonstrates that the highest power production is reached when aerobic biofilm acts as a catalyst for ORR in synergy with Pt in the biohybrid cathode.
Collapse
Affiliation(s)
- Giulia Massaglia
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; .
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy.
| | - Isabella Fiorello
- BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
- Center for Micro-BioRobotics @ SSSA, Istituto Italiano di Tecnologia (IIT), Pontedera, 56025 Pisa, Italy.
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy.
| | - Valentina Margaria
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy.
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; .
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy.
| | - Marzia Quaglio
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano Di Tecnologia, 10144 Torino, Italy.
| |
Collapse
|
10
|
Phan HC, Wade SA, Blackall LL. Is marine sediment the source of microbes associated with accelerated low water corrosion? Appl Microbiol Biotechnol 2018; 103:449-459. [DOI: 10.1007/s00253-018-9455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022]
|
11
|
Li L, Ding F, Sang L, Liu J, Mao D, Liu X, Xu Q. Study on the oxygen reduction reaction catalyzed by a cold-tolerant marine strain phylogenetically related to Erythrobacter citreus. Bioelectrochemistry 2017; 119:51-58. [PMID: 28915379 DOI: 10.1016/j.bioelechem.2017.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023]
Abstract
As the development of marine economy, the submarine battery with the seawater electrolyte has obtained more and more attentions. Owing to the conventional electrochemical catalysts of the cathodes in seawater battery are expensive, it is to seek the new biological catalysts to improve the electrochemical performance of the cathode and reduce the cost of seawater battery. A novel marine bacterial strain (Strain SQ-32) phylogenetically related to the Erythrobactercitreus strain has been isolated from the sea-bed sludge in the Yellow Sea of China successfully. The electrochemical measurements, which include the cyclic voltammetry, potentiostatic polarization, and electrochemical impedance spectroscopy, have been conducted in synthetic seawater. The electrochemical testing results show that the Strain SQ-32 is a cold-tolerant bacterium, which may exhibit a catalytic activity for the ORR in synthetic seawater at a freezing temperature. The SEM photo demonstrates that the Strain SQ-32 displays a rod-shaped characteristic, which has a diameter of 0.4μm and a length of about 1-2.5μm. By the testing of Gram staining, the Strain SQ-32 has been identified as a Gram-negative bacterium. The chemical analytical result reveals that the bacterium cell of Strain SQ-32 contains 1.92mgg-1 (DCW) of coenzyme Q10, which is a possible impact factor on the electro-catalytic effect on the Strain SQ-32. The exploitation of Strain SQ-32 may boost the development of the biocathode of seawater battery at a low temperature.
Collapse
Affiliation(s)
- Lianqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384, PR China
| | - Fei Ding
- National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384, PR China.
| | - Lin Sang
- National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384, PR China
| | - Jiaquan Liu
- School of Engineering and Applied Science, George Washington University, Washington DC 20052, USA
| | - Duolu Mao
- School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Qinghai 810007, PR China
| | - Xingjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin 300384, PR China
| | - Qiang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Rimboud M, Barakat M, Bergel A, Erable B. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics. Bioelectrochemistry 2017; 116:24-32. [DOI: 10.1016/j.bioelechem.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
|
13
|
Malanoski AP, Lin B, Eddie BJ, Wang Z, Hervey WJ, Glaven SM. Relative abundance of 'Candidatus Tenderia electrophaga' is linked to cathodic current in an aerobic biocathode community. Microb Biotechnol 2017; 11:98-111. [PMID: 28696003 PMCID: PMC5743799 DOI: 10.1111/1751-7915.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/18/2023] Open
Abstract
Biocathode microbial communities are proposed to catalyse a range of useful reactions. Unlike bioanodes, model biocathode organisms have not yet been successfully cultivated in isolation highlighting the need for culture‐independent approaches to characterization. Biocathode MCL (Marinobacter, Chromatiaceae, Labrenzia) is a microbial community proposed to couple CO2 fixation to extracellular electron transfer and O2 reduction. Previous metagenomic analysis of a single MCL bioelectrochemical system (BES) resulted in resolution of 16 bin genomes. To further resolve bin genomes and compare community composition across replicate MCL BES, we performed shotgun metagenomic and 16S rRNA gene (16S) sequencing at steady‐state current. Clustering pooled reads from replicate BES increased the number of resolved bin genomes to 20, over half of which were > 90% complete. Direct comparison of unassembled metagenomic reads and 16S operational taxonomic units (OTUs) predicted higher community diversity than the assembled/clustered metagenome and the predicted relative abundances did not match. However, when 16S OTUs were mapped to bin genomes and genome abundance was scaled by 16S gene copy number, estimated relative abundance was more similar to metagenomic analysis. The relative abundance of the bin genome representing ‘Ca. Tenderia electrophaga’ was correlated with increasing current, further supporting the hypothesis that this organism is the electroautotroph.
Collapse
Affiliation(s)
- Anthony P Malanoski
- United States Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC, 20375, USA
| | - Baochuan Lin
- Defense Threat Reduction Agency, 8725 John J Kingman Rd #6201, Fort Belvoir, VA, 22060, USA
| | - Brian J Eddie
- United States Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC, 20375, USA
| | - Zheng Wang
- United States Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC, 20375, USA
| | - W Judson Hervey
- United States Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC, 20375, USA
| | - Sarah M Glaven
- United States Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC, 20375, USA
| |
Collapse
|
14
|
Wu J, Chen W, Yan Y, Gao K, Liao C, Li Q, Wang X. Enhanced oxygen reducing biocathode electroactivity by using sediment extract as inoculum. Bioelectrochemistry 2017; 117:9-14. [PMID: 28494228 DOI: 10.1016/j.bioelechem.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Autotrophic bacteria are able to catalyze cathodic oxygen reduction as a renewable and sustainable inexpensive catalyst. However, the performance of biocathode varied over reactors, and we still not know how inoculums affect this system. Using three different inoculum of wastewater (WW), sediment extract (SE) and soil extract (SO) in parallel reactors, we found that SE achieved the shortest setup time (17-25% shorter) as well as the highest power density compared to those of SO and WW. Cyclic voltammetry (CV) further revealed that the current densities of SE biocathodes (100±1A/m3) was 150% and 67% higher than those of WW biocathodes (40±1A/m3) and SO biocathodes (65±1A/m3). Community analysis showed the selective pressure on biocathode facilitated the growth of Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria families. Different from WW and SO biocathodes, Nitrospirae was selectively enriched in SE biocathodes, corresponding to an obvious increase in Unidentified Nitrospiraceae population at genus level, which may play an important role on the cathodic electroactivity. These results confirmed that sediment extract is a better bacteria source than soil and wastewater for the acclimation of autotrophic electroactive bacteria, and the community comparison provided broader knowledge on biocathode microbiology.
Collapse
Affiliation(s)
- Jiali Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Wenshan Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuqing Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Kailin Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
15
|
Eddie BJ, Wang Z, Hervey WJ, Leary DH, Malanoski AP, Tender LM, Lin B, Strycharz-Glaven SM. Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by " Candidatus Tenderia electrophaga". mSystems 2017; 2:e00002-17. [PMID: 28382330 PMCID: PMC5371394 DOI: 10.1128/msystems.00002-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/07/2017] [Indexed: 01/12/2023] Open
Abstract
Biocathodes provide a stable electron source to drive reduction reactions in electrotrophic microbial electrochemical systems. Electroautotrophic biocathode communities may be more robust than monocultures in environmentally relevant settings, but some members are not easily cultivated outside the electrode environment. We previously used metagenomics and metaproteomics to propose a pathway for coupling extracellular electron transfer (EET) to carbon fixation in "Candidatus Tenderia electrophaga," an uncultivated but dominant member of an electroautotrophic biocathode community. Here we validate and refine this proposed pathway using metatranscriptomics of replicate aerobic biocathodes poised at the growth potential level of 310 mV and the suboptimal 470 mV (versus the standard hydrogen electrode). At both potentials, transcripts were more abundant from "Ca. Tenderia electrophaga" than from any other constituent, and its relative activity was positively correlated with current. Several genes encoding key components of the proposed "Ca. Tenderia electrophaga" EET pathway were more highly expressed at 470 mV, consistent with a need for cells to acquire more electrons to obtain the same amount of energy as at 310 mV. These included cyc2, encoding a homolog of a protein known to be involved in iron oxidation. Mean expression of all CO2 fixation-related genes is 0.27 log2-fold higher at 310 mV, indicating that reduced energy availability at 470 mV decreased CO2 fixation. Our results substantiate the claim that "Ca. Tenderia electrophaga" is the key electroautotroph, which will help guide further development of this community for microbial electrosynthesis. IMPORTANCE Bacteria that directly use electrodes as metabolic electron donors (biocathodes) have been proposed for applications ranging from microbial electrosynthesis to advanced bioelectronics for cellular communication with machines. However, just as we understand very little about oxidation of analogous natural insoluble electron donors, such as iron oxide, the organisms and extracellular electron transfer (EET) pathways underlying the electrode-cell direct electron transfer processes are almost completely unknown. Biocathodes are a stable biofilm cultivation platform to interrogate both the rate and mechanism of EET using electrochemistry and to study the electroautotrophic organisms that catalyze these reactions. Here we provide new evidence supporting the hypothesis that the uncultured bacterium "Candidatus Tenderia electrophaga" directly couples extracellular electron transfer to CO2 fixation. Our results provide insight into developing biocathode technology, such as microbial electrosynthesis, as well as advancing our understanding of chemolithoautotrophy.
Collapse
Affiliation(s)
- Brian J Eddie
- United States Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- United States Naval Research Laboratory, Washington, DC, USA
| | - W Judson Hervey
- United States Naval Research Laboratory, Washington, DC, USA
| | - Dagmar H Leary
- United States Naval Research Laboratory, Washington, DC, USA
| | | | | | - Baochuan Lin
- United States Naval Research Laboratory, Washington, DC, USA
| | | |
Collapse
|