1
|
Xie Y, Gu L, Wang Y, Liu W, Huo Y. Comparative effects of ammonium nitrogen on perchlorate degradation performance under heterotrophic condition with different carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135293. [PMID: 39094307 DOI: 10.1016/j.jhazmat.2024.135293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Perchlorate (ClO4-) mainly exists in the form of ammonium perchlorate in industrial production. However, the degradation mechanisms of different concentrations of ammonium nitrogen (NH4+-N) and ClO4- mixed pollutants in the environment are not well understood. This study aims to explore the potential of different types of carbon sources for ClO4- and NH4+-N biodegradation. Experimental results showed that the concentration and type of carbon sources are decisive to simultaneous removal of NH4+-N and ClO4-. Under condition of C(COD)/C(ClO4-) ratio of 21.15 ± 4.40, the simultaneously removal efficiency of ClO4- and NH4+-N in acetate (Ace) was relatively higher than that in methanol (Met). C(NH4+-N)/C(ClO4-) ratio of 9.66 ± 0.51 and C(COD)/C(ClO4-) ratio of 2.51 ± 0.87 promoted ClO4- reduction in glucose-C (Glu-C). However, high concentration of Glu could cause pH decrease (from 7.57 to 4.59), thereby inhibiting ClO4- reduction. High-throughput sequencing results indicated that Proteobacteria and Bacteroidetes have made a major contribution to the simultaneous removal of NH4+-N and ClO4-. They are two representative bacterial phyla for participating in both ClO4- reduction and denitrification. Notably, the abundance of main ClO4- degrading bacteria (such as Proteobacteria, Chloroflexi, and Firmicutes) significantly increased by 528.57 % in Glu-C. It can be inferred that the concentration of carbon source and NH4+-N were the most important factors determining the removal efficiency of ClO4- by influencing changes in the core microbial community. This study will provide new techniques and mechanistic insights for the simultaneous removal of mixed ClO4- and nitrogen pollutants, which can also provide theoretical support for innovation in future biological treatment processes.
Collapse
Affiliation(s)
- Yuxuan Xie
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Liang Gu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Yang Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Wuzixiao Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Yang Huo
- Research Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, People's Republic of China; Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| |
Collapse
|
2
|
Rosa-Masegosa A, Rodriguez-Sanchez A, Gorrasi S, Fenice M, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review. Microorganisms 2024; 12:433. [PMID: 38543484 PMCID: PMC10972187 DOI: 10.3390/microorganisms12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2025] Open
Abstract
Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Jesus Gonzalez-Lopez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| |
Collapse
|
3
|
Development of marine activated algae-bacterial granule: A novel replacement to the conventional algal remediation processes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Wang Q, Yang Y, Shen Q, Chen X, Li F, Wang J, Zhang Z, Lei Z, Yuan T, Shimizu K. Energy saving and rapid establishment of granular microalgae system from tiny microalgae cells: Effect of decrease in upflow air velocity under intermittent aeration condition. BIORESOURCE TECHNOLOGY 2022; 363:127860. [PMID: 36041681 DOI: 10.1016/j.biortech.2022.127860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The novel type of microalgae granules (MGs) derived from tiny microalgae cells has received extensive attention due to its great potential for nutrient remediation and resource recovery in wastewater treatment whereas the long start-up time with increased labor expenses remains a bottleneck. In this study, an operation strategy at reduced upflow air velocity (UAV = 0.49 cm/s in RA) under intermittent aeration mode was proposed and compared with RB at a higher UAV (0.98 cm/s) in terms of MGs formation, maintenance, and energy consumption. Although the formation of MGs in RA was delayed for 12 days compared to RB, 40.78 % increase in chlorophyll-a content was detected in MGs in RA along with more cost-effective carbon, nitrogen, and phosphorus removals due to efficient microalgae assimilation and energy reduction. Results from this study provide new insight into minimizing energy input for rapid establishment and stable operation of MG systems towards environmentally sustainable wastewater management.
Collapse
Affiliation(s)
- Qian Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuyi Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qingyue Shen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xingyu Chen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jixiang Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun Itakura, Gunma 374-0193, Japan
| |
Collapse
|
5
|
Chen X, Wang J, Wang Q, Yuan T, Lei Z, Zhang Z, Shimizu K, Lee DJ. Simultaneous recovery of phosphorus and alginate-like exopolysaccharides from two types of aerobic granular sludge. BIORESOURCE TECHNOLOGY 2022; 346:126411. [PMID: 34838630 DOI: 10.1016/j.biortech.2021.126411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants are expected to realize not only pollutants removal from wastewater but also resources recovery such as phosphorus (P) and alginate-like exopolysaccharides (ALE) from the produced sludge. In this study, ALE extraction and fractionation from the same activated sludge-derived bacterial aerobic granular sludge (AGS) and algal-bacterial AGS were performed in addition to P fate examination during ALE recovery. Results showed that the ALE content recovered from algal-bacterial AGS was 8.81 ± 0.02 mg/g-volatile suspended solids (VSS), about 2.8 times higher than that from bacterial AGS when fed with the same synthetic wastewater. Moreover, the mannuronic acid to guluronic acid (MG) blocks accounted for the largest proportion of ALE from the two granular sludges. In particular, the extracellular polymeric substances (EPS) extracted from bacterial and algal-bacterial AGS contained about 25.10 ± 1.85 and 19.53 ± 0.04 mg-P/g-SS, respectively, and both granular sludges possessed high P bioavailability of 97-99%.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qian Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| |
Collapse
|
6
|
Zheng J, Wang N, Zhao L, Li Y, Yu J, Wang S. Microbial population changes and metabolic shift of candidatus accumulibacter under low temperature and limiting polyphosphate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1107-1119. [PMID: 35228357 DOI: 10.2166/wst.2022.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study explored the microbial population dynamics of Accumulibacter (Acc) at low temperature and metabolic shift to limiting polyphosphate (Poly-P) in enhanced biological phosphorus removal (EBPR) system. The Accumulibacter-enriched EBPR systems, fed with acetate (HAc) and propionate (HPr) at 10 ± 1 °C respectively, were operated for 60 days in two identical SBR reactors (SBR-1 and SBR-2). The phosphorus removal performance in two systems was stable at 10 ± 1 °C, while the microbial community structure changed. Compared with the population structure in seed sludge, Accumulibacter clades reduced in the HAc system, while Acc I increased significantly in the HPr system. Low temperature was beneficial to the formation of granular sludge in the EBPR system, and the sludge granulation in the HAc system was more homogeneous than that in the HPr system. Accumulibacter in the HPr system can get ATP through glycogen accumulating metabolism (GAM) under limiting Poly-P condition at 10 ± 1 °C, while that in the HAc system cannot. This work suggests that poly-P levels can affect the metabolic pathway of Accumulibacter in EBPR systems under low temperature.
Collapse
Affiliation(s)
- Jianfeng Zheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Nan Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Ledan Zhao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yajing Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
7
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
8
|
Amorim de Carvalho CD, Ferreira Dos Santos A, Tavares Ferreira TJ, Sousa Aguiar Lira VN, Mendes Barros AR, Bezerra Dos Santos A. Resource recovery in aerobic granular sludge systems: is it feasible or still a long way to go? CHEMOSPHERE 2021; 274:129881. [PMID: 33582539 DOI: 10.1016/j.chemosphere.2021.129881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.
Collapse
Affiliation(s)
- Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
9
|
Lyu W, Song Q, Shi J, Wang H, Wang B, Hu X. Weak magnetic field affected microbial communities and function in the A/O/A sequencing batch reactors for enhanced aerobic granulation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Dong X, Zhao Z, Yang X, Lei Z, Shimizu K, Zhang Z, Lee DJ. Response and recovery of mature algal-bacterial aerobic granular sludge to sudden salinity disturbance in influent wastewater: Granule characteristics and nutrients removal/accumulation. BIORESOURCE TECHNOLOGY 2021; 321:124492. [PMID: 33316698 DOI: 10.1016/j.biortech.2020.124492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The impact of sudden salinity (1-3%) disturbance in influent wastewater on mature algal-bacterial aerobic granular sludge (AGS) was investigated, in addition to its recovery possibility when salinity disturbance was removed. Results show that the mature algal-bacterial AGS with less filamentous could maintain its good settleability with sludge volume index below 41 mL/g when wastewater salinity was increased to 3%, in which loosely bound extracellular polymeric substances might play an important role. Under this condition, the granule system achieved slightly lower dissolved organic carbon removal (from 97% to 94%), while the removals of ammonia nitrogen, total nitrogen and total phosphorus were remarkably decreased from ~100%, 66% and 70% to 23%, 16% and 38%, respectively. However, the organics and nutrients removals could be recovered immediately when the salinity disturbance was removed from the influent. P bioavailability, on the other hand, kept almost stable (93-97%) in the AGS during the examination period.
Collapse
Affiliation(s)
- Xiaochuan Dong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Wang X, Chen Z, Shen J, Kang J, Zhang X, Li J, Zhao X. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge. CHEMOSPHERE 2020; 260:127544. [PMID: 32673869 DOI: 10.1016/j.chemosphere.2020.127544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 05/12/2023]
Abstract
Aerobic granular sludge sequencing batch reactor (AGSBR) is a promising approach for wastewater treatment. In the paper, the effects of methanol, starch and sucrose as carbon sources on the treatment of swine wastewater (SW) containing antibiotics by aerobic granular sludge (AGS) were studied. The results revealed that the carbon sources could affect the morphology, biomass, and settleability of AGS, and AGS could maintain a better sludge performance when sucrose was used as carbon source. The pollutants (ammonium nitrogen (NH+ 4-N), organic matter and total phosphorus (TP)) in SW also had a good removal effect, and the removal rates reached 81.14%, 96.83% and 97.37% respectively. The removal efficiencies of tetracycline (TC) and oxytetracycline (OTC) from SW were the best when sucrose as co-metabolic matrix by microorganisms. The analysis of miseq pyrosequencing demonstrated that carbon sources with methanol, starch and sucrose improved the diversity of microbial community in AGS, and the dominant bacteria also changed. The dominant groups involved in TC and OTC, removal at different classification levels suggested that the formation of bacterial communities was determined by carbon sources.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiaolei Zhang
- Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ji Li
- Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
12
|
Wang Q, Shen Q, Wang J, Zhang Y, Zhang Z, Lei Z, Shimizu K, Lee DJ. Fast cultivation and harvesting of oil-producing microalgae Ankistrodesmus falcatus var. acicularis fed with anaerobic digestion liquor via biogranulation in addition to nutrients removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140183. [PMID: 32563780 DOI: 10.1016/j.scitotenv.2020.140183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
This study examined the feasibility of cultivation and harvesting of oil-producing microalgae (i.e. Ankistrodesmus falcatus var. acicularis) via biogranulation in two identical sequencing batch reactors (SBRs) fed with synthetic anaerobic digestion liquor. Easily settled algae granules with compact structure appeared around day 90 and mature granules were obtained after 150 days' operation. The microalgae settleability was remarkably improved, signaling by the substantial decrease of sludge volume index (SVI30) from initially >3000 to 53.44 ± 3.31 mL/g, with settling velocity correspondingly increased from nearly 0 to 18.47 ± 0.23 m/h. Although the percentage of the target microalgae (Ankistrodesmus falcatus var. acicularis) decreased along with the granulation process, the biomass concentration (2-4 g/L) and biomass productivity (130-270 mg/L/d) using biogranulation were 10-20 times and 16-34 times that by the traditional suspension method. Compared to the seed microalgae cells, more extracellular polymeric substances (EPS) (162.54 ± 3.60 mg/g-mixed liquor volatile suspended solids (MLVSS)) with a higher proteins/polysaccharides ratio (7.62) were excreted from the mature algae granules. Moreover, the mature microalgae granules showed comparable nutrients removal, averagely 96% and 86% of dissolved organic carbon (DOC) and NH4+-N from the digestion liquor, respectively, reflecting its great potential for simultaneous microalgae cultivation, harvesting and wastewater treatment.
Collapse
Affiliation(s)
- Qian Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qingyue Shen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yihao Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Zhang M, Zhu C, Pan T, Fan Y, Soares A, Wu J, He C. Nutrient metabolism, mass balance, and microbial structure community in a novel denitrifying phosphorus removal system based on the utilizing rules of acetate and propionate. CHEMOSPHERE 2020; 257:127076. [PMID: 32485516 DOI: 10.1016/j.chemosphere.2020.127076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The effect of acetate (HAc) and propionate (HPr) on denitrifying phosphorus removal (DPR) was evaluated in a novel two-sludge A2/O - MBBR (anaerobic/anoxic/oxic - moving bed biofilm reactor) system. Results showed that it was the carbon source transformation and utilization especially the composition of poly-β-hydroxyalkanoates (PHA) (mainly poly-β-hydroxybutyrate (PHB) and poly-bhydroxyvalerate (PHV)) decided DPR performance, where the co-exist of HAc and HPr promoted the optimal nitrogen (85.77%) and phosphorus (91.37%) removals. It facilitated the balance of PHB and PHV and removing 1 mg NO3- (PO43-) consumed 3.04-4.25 (6.84-9.82) mgPHA, where approximately 40-45% carbon source was saved. Mass balance revealed the main metabolic pathways of carbon (MAn,C (consumed amount in anaerobic stage) and MA-O,C (consumed amount in anoxic and oxic stages): 66.38-76.19%), nitrogen (MDPR,N (consumed amount in DPR): 57.01-65.75%), and phosphorus (MWS,P (discharged amount in waste sludge): 81.05-85.82%). Furthermore, the relative abundance and microbial distribution were assessed to elucidate DPR mechanism (e.g. Accumulibacter, Acinetobacter, Dechloromonas, Competibacter, and Defluviicoccus) in the A2/O reactor and nitrification performance (e.g. Nitrosomonas, Nitrosomonadaceae and Nitrospira) in the MBBR. Carbon source was demonstrated as the key point to stimulate the biodiversity and bioactivity related to DPR potential, and the operational strategy of carbon source addition was proposed based on the utilizing rules of HAc and HPr.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Chenjie Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Ting Pan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou, 225127, PR China
| | - Ana Soares
- Water Sciences Institute, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Chengda He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China.
| |
Collapse
|
14
|
Huang W, Liu D, Huang W, Cai W, Zhang Z, Lei Z. Achieving partial nitrification and high lipid production in an algal-bacterial granule system when treating low COD/NH 4-N wastewater. CHEMOSPHERE 2020; 248:126106. [PMID: 32041075 DOI: 10.1016/j.chemosphere.2020.126106] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Partial nitrification-Anammox process is an efficient and energy-saving method for nitrogen removal from low C/N wastewaters. In this study, partial nitrification was achieved in an algal-bacterial granular sludge system when treating low COD/NH4-N (309.4 mg L-1/213.6 mg L-1) wastewater under sunlight irradiation (RS). Sunlight irradiation, algae growth and free nitrous acid (FNA) decreased the activity of ammonia oxidizing bacteria (AOB) by 25.7% and completely inhibited the activity of nitrite oxidizing bacteria (NOB), resulting in a NH4-N removal efficiency of ≥99% and a nitrite accumulation efficiency of 96.5% in Rs. Compared with the control without sunlight irradiation (RC), the algal-bacterial granules in RS produced 34.7% and 13.1% more proteins and polysaccharides, respectively, and exhibited a higher structure stability. The lipid content in the algal-bacterial granules was 68.7 mg g-SS-1, which was about 2.1 times higher than that in the granules from RC, making the algal-bacterial granule a value-added biomass. Meanwhile, the content of unsaturated fatty acid methyl esters increased remarkably due to the growth of algae (Stigeoclonium, Scenedesmus and Navicula). The combined stress of sunlight irradiation, algae growth and high FNA in RS only slightly lowered the relative abundance of Nitrosomonadaceae (AOB family) from 7.5% to 5.8%, while Nitrospiraceae (NOB family) was severely inhibited and became undetectable.
Collapse
Affiliation(s)
- Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin, 300350, China
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin, 300350, China
| | - Weiwei Huang
- College of Ecology and Environment, Hainan University, No. 58. Renmin Road, Meilan District, Haikou, 570228, China.
| | - Wei Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
15
|
Zhang M, Wang Y, Fan Y, Liu Y, Yu M, He C, Wu J. Bioaugmentation of low C/N ratio wastewater: Effect of acetate and propionate on nutrient removal, substrate transformation, and microbial community behavior. BIORESOURCE TECHNOLOGY 2020; 306:122465. [PMID: 32200224 DOI: 10.1016/j.biortech.2019.122465] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The effect of various acetate/propionate ratios (1:0, 2:1, 1:1, 1:2, and 0:1) in a two-sludge A2/O - MBBR process was investigated. Results showed that the increased propionic/acetic ratios exerted indistinctive impact on COD (91.21-93.44%) and P (92.23-93.87%) removals, but high P content (7.42%) accelerated sludge granulation proved by SEM and EDS. Acetate favored N removal (79.52%-82.92%) with higher PURA (3.53-4.06 mgP/(gVSS·h)), while the removal declined (75.14%) due to lower PHB/PHA ratio (52.3-57.8%) with propionate as sole carbon source. Based on the stoichiometry-based quantifications, PAOs were the major contributors to nutrient removal although certain GAOs and OHO participated. The mixture ratio of 1:1 facilitated microbial diversity (995 OTUs), Rhodobacteraceae (25.63%) was responsible for high-efficient denitrifying phosphorus removal, while Defluviicoccus (15.23%) contributed to nitrite accumulation was the main competitiveness with PAOs. Nitrospira, Nitrosomonas, and Nitrosomonadaceae responsible for nitrification accounted for 7.73%, 27.11%, and 38.76% in MBBR, but the biodiversity decreased owing to the enrichment and purification.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yixin Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Yizhong Liu
- Yangzhou Jieyuan Drainage Company Limited, Yangzhou 225002, PR China
| | - Meng Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chengda He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
16
|
Wang S, Li Z, Wang D, Li Y, Sun L. Performance and population structure of two carbon sources granular enhanced biological phosphorus removal systems at low temperature. BIORESOURCE TECHNOLOGY 2020; 300:122683. [PMID: 31901772 DOI: 10.1016/j.biortech.2019.122683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
This study explored the effect of two carbon sources on performance and population structure of granular enhanced biological phosphorus removal systems at long-term low temperature by using two sequencing batch reactors, with acetate (SBR-1) and propionate (SBR-2) as carbon sources respectively. Results showed that highly efficient EBPR were successfully achieved, and the average PO43--P and COD removal efficiency of SBR-1 and SBR-2 were 94.2%, 87.1% and 98.2%, 87.0%, respectively. Moreover, the acetate system preferred to utilize intracellular Mg/K-polyP to produce ATP for VFA uptake rather than glycogen. High-throughput sequencing analysis revealed that the abundance of Rhodocyclaceae were 31.7% (SBR-1) and 71.7% (SBR-2), and genus Dechloromonas was enriched to 60.5% with propionate, evidently higher than acetate (1.2%). Furthermore, in addition to oxygen, Dechloromonas could use nitrate as electron acceptors for phosphate uptake. The study further provides support to simultaneous nitrogen and phosphorus removal at low temperature.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Zhu Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yajing Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Liping Sun
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
17
|
Ahmad JSM, Zhao Z, Zhang Z, Shimizu K, Utsumi M, Lei Z, Lee DJ, Tay JH. Algal-bacterial aerobic granule based continuous-flow reactor with effluent recirculation instead of air bubbling: Stability and energy consumption analysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Cai W, Huang W, Lei Z, Zhang Z, Lee DJ, Adachi Y. Granulation of activated sludge using butyrate and valerate as additional carbon source and granular phosphorus removal capacity during wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 282:269-274. [PMID: 30875594 DOI: 10.1016/j.biortech.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
As an efficient and low-cost phosphorus (P) removal method from wastewater, enhanced biological phosphorus removal process always faces the insufficient carbon source issue. In this study, two identical sequencing batch reactors were used to cultivate aerobic granular sludge, in which butyrate (Rb) and valerate (Rv), two major volatile fatty acids that can be produced from anaerobic fermentation of waste biomass, were respectively applied as additional carbon source. Both reactors exhibited almost same excellent organics and total nitrogen removals during 120 days' operation, about 95.2-95.7% and 67.9-68.0% respectively with noticeable difference in P removal. Compared to the granules in Rv (24.3 mg P/g-total solids), bigger and more stable ones with higher P removal capacity (11.5 mg P/g-volatile solids∙d) were finally achieved in Rb, containing higher P content (36.0 mg P/g-total solids) with more orthophosphate and polyphosphate accumulated. Microbial community analysis reflected more polyphosphate-accumulating organisms (Rhodocyclus-related bacteria and Actinobacteria) in the granules from Rb.
Collapse
Affiliation(s)
- Wei Cai
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yasuhisa Adachi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
19
|
Cai W, Zhao Z, Li D, Lei Z, Zhang Z, Lee DJ. Algae granulation for nutrients uptake and algae harvesting during wastewater treatment. CHEMOSPHERE 2019; 214:55-59. [PMID: 30253256 DOI: 10.1016/j.chemosphere.2018.09.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
To overcome the high separation cost of microalgae, natural microalgae granulation was performed in open sequencing batch reactors (SBRs) by treating synthetic wastewater. After operation for 60 days, easily settled algae granules were obtained with an average size of 0.61 mm, sludge volume index (SVI) of 125 ml/g and settling velocity of 12.2 m/h. More extracellular polymeric substances (EPS) (∼252 mg/g-VSS) were detected to excrete with a higher proteins/polysaccharides (PN/PS) ratio (∼7) for the algae granules on day 60, which are beneficial for granulation. Meanwhile, the algae granules were found to have a higher phosphorus (P) content (33.4 mg-P/g-TSS) with higher P bioavailability (91.8%) when compared to the seed algae (20.4 mg-P/g-TSS). The obtained algae granules possess great potential for P recovery and reuse.
Collapse
Affiliation(s)
- Wei Cai
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Dawei Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
20
|
Wang X, Daigger G, Lee DJ, Liu J, Ren NQ, Qu J, Liu G, Butler D. Evolving wastewater infrastructure paradigm to enhance harmony with nature. SCIENCE ADVANCES 2018; 4:eaaq0210. [PMID: 30083599 PMCID: PMC6070318 DOI: 10.1126/sciadv.aaq0210] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/20/2018] [Indexed: 05/24/2023]
Abstract
Restoring and improving harmony between human activities and nature are essential to human well-being and survival. The role of wastewater infrastructure is evolving toward resource recovery to address this challenge. Yet, existing design approaches for wastewater systems focus merely on technological aspects of these systems. If system design could take advantage of natural ecological processes, it could ensure infrastructure development within ecological constraints and maximize other benefits. To test this hypothesis, we illustrate a data-driven, systems-level approach that couples natural ecosystems and the services they deliver to explore how sustainability principles could be embedded into the life phases of wastewater systems. We show that our design could produce outcomes vastly superior to those of conventional paradigms that focus on technologies alone, by enabling high-level recovery of both energy and materials and providing substantial benefits to offset a host of unintended environmental effects. This integrative study advances our understanding and suggests approaches for regaining a balance between satisfying human demands and maintaining ecosystems.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Glen Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Liu
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA, Delft, Netherlands
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
21
|
Cai W, Jin M, Zhao Z, Lei Z, Zhang Z, Adachi Y, Lee DJ. Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ahmad JSM, Cai W, Zhao Z, Zhang Z, Shimizu K, Lei Z, Lee DJ. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. BIORESOURCE TECHNOLOGY 2017; 244:225-233. [PMID: 28779675 DOI: 10.1016/j.biortech.2017.07.134] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
Stability of algal-bacterial granules was investigated in two continuous-flow systems to treat synthetic domestic wastewater using single (R1) and series (R2=R2-1+R2-2 with automatically internal recirculation) reactors by seeding 50% (w/w) algal-bacterial granules. Almost similar organics and phosphorus removal efficiencies were obtained from the two systems, with no significant difference found for each between the designed two operation stages. However, R2 exhibited superior performance on total nitrogen (TN) removal (76%). When double increased strength influent fed to R1, R1 achieved better denitrification with TN removal increased from 29% to 80%, possibly due to the increased influent organics concentration favored the denitrification process. Most importantly, the two systems well maintained their granular stability, and all granules became algal-bacterial ones with very little change detected in algae content in granules after 120days' operation. At last, the mechanisms were proposed regarding the formation and enhanced stability of new algal-bacterial granules in continuous-flow reactors.
Collapse
Affiliation(s)
- Johan Syafri Mahathir Ahmad
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia
| | - Wei Cai
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
23
|
Shen N, Chen Y, Zhou Y. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature. WATER RESEARCH 2017; 114:308-315. [PMID: 28259067 DOI: 10.1016/j.watres.2017.02.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/08/2016] [Accepted: 02/21/2017] [Indexed: 05/25/2023]
Abstract
Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors.
Collapse
Affiliation(s)
- Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|