1
|
Li Y, Kang X, You Z, He T, Su T, Zhang J, Zhuang X, Zhang Z, Ragauskas AJ, Song X, Li K. Establishment of efficient system for bagasse bargaining: Combining fractionation of saccharides, recycling of high-viscosity solvent and dismantling. BIORESOURCE TECHNOLOGY 2024; 413:131482. [PMID: 39270989 DOI: 10.1016/j.biortech.2024.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Sugarcane bagasse (SCB) has a recalcitrant structure, which hinders its component dismantling and subsequent high value utilization. Some organic solvents are favorable to dismantle lignocellulose, but their high viscosity prevents separation of components and reuse of solvents. Herein, ethylene glycol phenyl ether (EGPE)-acid system is used as an example to develop green and efficient methods to dismantle SCB, purify polysaccharides and lignin, and reuse solvents. Results show that dismantling SCB at 130 °C, 0.5 % H2SO4, and 100 min can obtain 85.5 % cellulose recovery, 94.1 % hemicellulose removal and 83.7 % lignin removal. Different molecular weight saccharides are separated by membranes filtration and centrifugation, and lignin recovered by antisolvent precipitation. The solvent recovered by distillation, achieving high dismantling efficiency of 89.2 % cellulose recovery, 94.1 % hemicellulose removal and 94.4 % lignin removal after four recycles. Results show a promising approach for the closed-loop process of dismantling lignocellulose, fractionating saccharides, and reusing solvents in high-viscosity systems.
Collapse
Affiliation(s)
- Yihan Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China
| | - Xiheng Kang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zi You
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Tianming Su
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Junhua Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Kai Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China.
| |
Collapse
|
2
|
Pan Z, Liu X, Zhang Z, Xu F, Zhang X. Low-temperature pretreatment by AlCl 3-catalyzed 1,4-butanediol solution for producing 'ideal' lignin with super-high content of β-O-4 linkages. Int J Biol Macromol 2023; 253:127306. [PMID: 37813212 DOI: 10.1016/j.ijbiomac.2023.127306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
High contents of internal β-O-4 linkages in lignin are critical for high-yield production of high-value aromatic monomers by depolymerization. However, it remains great challenge due to lack of suitable protection strategy. In this work, a very effective lignin-first strategy was developed to produce ideal lignin with a super high content of β-O-4 linkages (up to 72 %) from poplar, in which the pretreatment was undertaken at low temperatures of 90-130 °C with the use of AlCl3-catalyzed 1, 4-butanediol solution. 2D-HSQC NMR spectra revealed that lignin β-O-4 linkages were protected from etherification of the OH group by 1, 4-butanediol at the α position of lignin aliphatic chains. Besides, the OH groups at the γ position of lignin was also etherified, leading the formation of a structure of Ph-CH=CHCH2O(CH2)4OH. Interestingly, structure protection facilitated the formation of lignin nanoparticles via self-assembly (<100 nm). In addition, it was observed from pyrolysis results that addition of 1, 4-butanediol remarkably protected the structure of lignin by avoiding condensation, promoting the production of aromatics. The cellulose-rich fraction possessed a high cellulose digestibility of 91.64 % by enzymatic hydrolysis at a cellulase dosage of 15 FPU/g cellulose, approximately 6-fold untreated poplar (15.91 %). This low-temperature lignin-first strategy was of great importance for multi-products biorefining lignocellulose because it leads to the production of both lignin with super high content of β-O-4 linkages for depolymerization and highly digestible cellulose for sugar production.
Collapse
Affiliation(s)
- Zhenying Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinyue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Gao K, Wang H, Chen Y, Zhang J. Delignification of switchgrass for xylo-oligosaccharides production using sorbic acid hydrolysis. BIORESOURCE TECHNOLOGY 2023:129390. [PMID: 37364647 DOI: 10.1016/j.biortech.2023.129390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Organic acid as a class of hydrolysis catalysts shows great potential in the production of xylo-oligosaccharides (XOS) from lignocelluloses. However, sorbic acid (SA) hydrolysis in XOS production from lignocellulose has not been reported and it was still unclear how lignin removal affected XOS production. Herein, two factors affecting the XOS production from switchgrass by SA hydrolysis were explored: hydrolysis severity factor (Log R0) and lignin removal. Benefiting from the lignin removal (58.4%) in switchgrass, a desired XOS yield of 50.8% with low by-products was obtained from delignified switchgrass by 3% SA hydrolysis at Log R0 = 3.84. Under these conditions, 92.1% of glucose was obtained by cellulase hydrolysis with Tween 80 addition. From a mass balance perspective, 10.3 g of XOS and 23.7 g of glucose could be produced from 100 g switchgrass. This work proposes a novel strategy for XOS and monosaccharides production from delignified switchgrass.
Collapse
Affiliation(s)
- Kaikai Gao
- College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Hanxing Wang
- College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Yu Chen
- College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, PR China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, PR China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
4
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Abe C, Miyazawa T, Miyazawa T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022; 27:molecules27175451. [PMID: 36080218 PMCID: PMC9457891 DOI: 10.3390/molecules27175451] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is the most abundant mineral in the human body and plays essential roles in sustaining life, such as the transport of oxygen to systemic organs. The Fenton reaction is the reaction between iron and hydrogen peroxide, generating hydroxyl radical, which is highly reactive and highly toxic to living cells. “Ferroptosis”, a programmed cell death in which the Fenton reaction is closely involved, has recently received much attention. Furthermore, various applications of the Fenton reaction have been reported in the medical and nutritional fields, such as cancer treatment or sterilization. Here, this review summarizes the recent growing interest in the usefulness of iron and its biological relevance through basic and practical information of the Fenton reaction and recent reports.
Collapse
|
6
|
Effect and optimization of NaOH combined with Fenton pretreatment conditions on enzymatic hydrolysis of poplar sawdust. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Wu R, Liu W, Li L, Ren Q, Jiang C, Hou Q. Combination of hydrothermal and chemi-mechanical pretreatments to enhance enzymatic hydrolysis of poplar branches and insights on cellulase adsorption. BIORESOURCE TECHNOLOGY 2021; 342:126024. [PMID: 34600090 DOI: 10.1016/j.biortech.2021.126024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
An integration of different pretreatments is important to overcome recalcitrance and realize efficient bioconversion of lignocellulosic biomass. This study aims at the effects of combination of hydrothermal pretreatment and different chemi-mechanical pretreatments on enzymatic hydrolysis, and understanding the enzymes adsorption mechanism. The combination of hydrothermal and chemi-mechanical pretreatments effectively improved the enzymatic hydrolysis of poplar substrates, in which the enzymatic hydrolysis of substrates pretreated by hydrothermal pretreatment + Fenton pretreatment + mechanical refining (HFM) was the highest (92.39% of glucose conversion yield, and 20.88 g/L of glucose concentration). The substrates' main characteristics were obviously changed after combined pretreatments, such as swelling ability and specific surface area of substrates were increased. The Langmuir adsorption model (R2 > 0.98) and pseudo second-order adsorption kinetic model (R2≈1) were well suitable to describe the adsorption of enzymes on substrates, meanwhile the adsorption mechanism was summarized.
Collapse
Affiliation(s)
- Ruijie Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Long Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Ren
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuang Jiang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Bu J, Wang YT, Deng MC, Zhu MJ. Enhanced enzymatic hydrolysis and hydrogen production of sugarcane bagasse pretreated by peroxyformic acid. BIORESOURCE TECHNOLOGY 2021; 326:124751. [PMID: 33535152 DOI: 10.1016/j.biortech.2021.124751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Pretreatment plays a key role in biofuel production from lignocellulosic biomass. In this study, the main factors of peroxyformic acid (PA) pretreatment were optimized in the light of enzymolysis efficiency and composition analysis of pretreated sugarcane bagasse (SCB). Lignin was significantly removed (59.0%) and a complete saccharification level (103.6%) was obtained for the pretreated SCB with slight cellulose loss (9.2%) under the optimized pretreatment conditions. The effects of PA pretreatment on the structural characteristics of SCB were also studied and the digestibility of pretreated SCB was also evaluated by dark fermentative hydrogen production with an enriched anaerobic cellulolytic microbial consortium MC1. The hydrogen production increased by 195.5% (based on initial SCB) and the abundance of dominant hemicellulose-degradation genus Thermoanaerobacterium increased from 23.8% to 40.2% due to the remaining and accessible hemicellulose in PA pretreated SCB.
Collapse
Affiliation(s)
- Jie Bu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yu-Tao Wang
- The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Mao-Cheng Deng
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China
| | - Ming-Jun Zhu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China.
| |
Collapse
|
9
|
Liu W, Wu R, Hu Y, Ren Q, Hou Q, Ni Y. Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment. BIORESOURCE TECHNOLOGY 2020; 316:123920. [PMID: 32763803 DOI: 10.1016/j.biortech.2020.123920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The combination of different pretreatment methods can effectively overcome recalcitrance of lignocellulosic biomass to ensure its highly efficient conversion into bio-based products. In this study, the combined pretreatments of chemical methods (hydrothermal treatment and Fenton treatment) with mechanical refining were used to improve the enzymatic hydrolysis efficiency of poplar branches. The results indicated that hydrothermal pretreatment and Fenton pretreatment can effectively improve the enzymatic hydrolysis of poplar substrates, e.g., the maximum glucose conversion yield and glucose concentration reached 92.4% and 20.8 g/L, respectively. The pre-hydrolysates contained some valuable components such as monosaccharides, oligosaccharides, acetic acid, furfural, and hydroxymethylfurfural. The main characteristics (specific surface area, water retention value, fines content, and surface lignin concentration) of poplar substrates were obviously changed by the combined pretreatment, which benefit the enzymatic hydrolysis.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Ruijie Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Hu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Ren
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
10
|
Fan Z, Lin J, Wu J, Zhang L, Lyu X, Xiao W, Gong Y, Xu Y, Liu Z. Vacuum-assisted black liquor-recycling enhances the sugar yield of sugarcane bagasse and decreases water and alkali consumption. BIORESOURCE TECHNOLOGY 2020; 309:123349. [PMID: 32299049 DOI: 10.1016/j.biortech.2020.123349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Black liquor (BL) remains a critical problem during alkaline pretreatment. To solve this issue, a novel pretreatment strategy termed vacuum-assisted black liquor-recycling pretreatment, was established to pretreat sugarcane bagasse (SCB). Firstly, SCB was pretreated with 2% NaOH at 121 °C for 1 h under vacuum conditions. The produced BL was used for subsequent pretreatments after pH recovery with NaOH. The pretreated SCBs were subject to enzymatic hydrolysis and separate hydrolyzation and fermentation (SHF) without washing to neutral pH. BL was recycled on seven occasions. The results indicated that glucose yields did not significantly differ between pretreatment with NaOH and recovered BL. The enzymatic hydrolysis and the fermentation resulted in maximum 0.35 g/g of glucose yield and 116.5 g/kg of ethanol yield respectively. Compared with conventional pretreatment with NaOH, the VABLR method showed high conversion rates of cellulose into monosaccharaides, whilst preserving ~20% and ~46% of alkali and water usage, respectively.
Collapse
Affiliation(s)
- Zhaodi Fan
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jiahui Wu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Licheng Zhang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiaojing Lyu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yuan Xu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
11
|
Wu K, Wu H, Zhang H, Zhang B, Wen C, Hu C, Liu C, Liu Q. Enhancing levoglucosan production from waste biomass pyrolysis by Fenton pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 108:70-77. [PMID: 32335489 DOI: 10.1016/j.wasman.2020.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Levoglucosan is served as a significant versatile product to generate high value-added chemicals and pharmaceutical additives. Levoglucosan was predominately produced from pyrolysate of cellulose. However, the direct fast pyrolysis of waste biomass produces a small quantity of levoglucosan in comparison with the theoretical value of cellulose. This study explored Fenton pretreatment as a possible route to enhance levoglucosan yield during the fast pyrolysis of the waste corncob. The experimental results showed that different Fenton pretreated conditions and pyrolytic temperatures played vital roles in the formation of levoglucosan. The levoglucosan yield from fast pyrolysis at 500 °C of corncob pretreated by Fenton reaction of 14 mL/g H2O2 and 16 mM FeSO4 was about 95% higher than that of the untreated corncob. Additionally, Fenton pretreated corncob was capable of obtaining the levoglucosan at a low pyrolytic temperature (300 °C). It was mainly attributed to the effective disrupting of biomass structures and the selective degradation of lignin and hemicellulose during pretreatment. Furthermore, the powerful removal of alkali and alkaline earth metals during Fenton pretreatment was beneficial to increasing the levoglucosan yield. These findings demonstrate that Fenton pretreatment can provide a novel effective method to enhance levoglucosan yield during biomass fast pyrolysis.
Collapse
Affiliation(s)
- Kai Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Han Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Bo Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chengyan Wen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Changsong Hu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qingyu Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
12
|
Yan X, Cheng JR, Wang YT, Zhu MJ. Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. BIORESOURCE TECHNOLOGY 2020; 301:122756. [PMID: 31981908 DOI: 10.1016/j.biortech.2020.122756] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Pretreatment process plays a key role in biofuel production from lignocellulosic feedstocks. A study on dilute NaOH pretreatment supplemented with H2O2 under mild condition was conducted to overcome the recalcitrance of grass waste (GW). The optimized process could selectively increase lignin removal (73.2%), resulting in high overall recovery of holocellulose (73.8%) as well as high enzymolysis efficiency (83.5%) compared to H2O2 or NaOH pretreatment. The analyses by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) revealed that supplementary H2O2 disrupted the structure of GW to facilitate the removal of lignin by NaOH, and exhibited synergistic effect on lignin removal and enzymolysis with dilute NaOH. Moreover, high titer of ethanol (100.7 g/L) was achieved by SSCF on 30% (w/v) pretreated GW loading. The present study suggests that the established synergistic pretreatment is a simple, efficient, and promising process for GW biorefinery.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| | - Jing-Rong Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China.
| |
Collapse
|
13
|
Hu B, Zhu M. Reconstitution of cellulosome: Research progress and its application in biorefinery. Biotechnol Appl Biochem 2019; 66:720-730. [DOI: 10.1002/bab.1804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/03/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Bin‐Bin Hu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- Yunnan Academy of Tobacco Agricultural Sciences Kunming People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
| | - Ming‐Jun Zhu
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals School of Biology and Biological Engineering South China University of Technology, Guangzhou Higher Education Mega Center Panyu Guangzhou People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou People's Republic of China
- College of Life and Geographic Sciences Kashi University Kashi People's Republic of China
- The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region Kashi University Kashi People's Republic of China
| |
Collapse
|
14
|
Zhang Y, Liang J, Zhou W, Xiao N. Comparison of Fenton and bismuth ferrite Fenton-like pretreatments of sugarcane bagasse to enhance enzymatic saccharification. BIORESOURCE TECHNOLOGY 2019; 285:121343. [PMID: 31004952 DOI: 10.1016/j.biortech.2019.121343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
This study compared enzymatic saccharification of sugarcane bagasse (SCB) after application of two different pretreatment methods, Fenton pretreatment (FP) and BiFeO3 Fenton-like pretreatment (BFP). The composition, morphology and structural properties of SCB with different pretreatments were analyzed. Results showed that, after BFP, the yield of reducing sugar of SCB under enzymatic saccharification for 72 h was 25.8%, and the sugar conversion rate was 36.6%, which were 2.2 and 2.4-fold those of the FP, respectively. Moreover, the removal of hemicellulose and delignification in the BFP was more severe than that in the FP. The determination of hydroxyl radical (OH) in the two different Fenton processes revealed that the OH generated in the BiFeO3 Fenton-like system was higher in concentration and longer in action time than that in the Fenton system, which was likely key to the stronger effect of BFP than FP on the enzymatic saccharification of SCB.
Collapse
Affiliation(s)
- Yuting Zhang
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ju Liang
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbing Zhou
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Sustainable Pig Production, Hubei Province, China.
| | - Naidong Xiao
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Sustainable Pig Production, Hubei Province, China
| |
Collapse
|
15
|
Gan YY, Zhou SL, Dai X, Wu H, Xiong ZY, Qin YH, Ma J, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 265:394-398. [PMID: 29933186 DOI: 10.1016/j.biortech.2018.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Fenton-based processes with four different iron salts in two different dosing modes were used to pretreat rice straw (RS) samples to increase their enzymatic digestibility. The composition analysis shows that the RS sample pretreated by the dosing mode of iron salt adding into H2O2 has a much lower hemicellulose content than that pretreated by the dosing mode of H2O2 adding into iron salt, and the RS sample pretreated by the chloride salt-based Fenton process has a much lower lignin content and a slightly lower hemicellulose content than that pretreated by the sulphate salt-based Fenton process. The higher concentration of reducing sugar observed on the RS sample with lower lignin and hemicellulose contents justifies that the Fenton-based process could enhance the enzymic hydrolysis of RS by removing hemicellulose and lignin and increasing its accessibility to cellulase. FeCl3·6H2O adding into H2O2 is the most efficient Fenton-based process for RS pretreatment.
Collapse
Affiliation(s)
- Yu-Yan Gan
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Si-Li Zhou
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao Dai
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Han Wu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zi-Yao Xiong
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan-Hang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jiayu Ma
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Li Yang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zai-Kun Wu
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Tie-Lin Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei-Guo Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cun-Wen Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
16
|
Den W, Sharma VK, Lee M, Nadadur G, Varma RS. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Front Chem 2018; 6:141. [PMID: 29755972 PMCID: PMC5934431 DOI: 10.3389/fchem.2018.00141] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/12/2018] [Indexed: 01/30/2023] Open
Abstract
Anthropogenic climate change, principally induced by the large volume of carbon dioxide emission from the global economy driven by fossil fuels, has been observed and scientifically proven as a major threat to civilization. Meanwhile, fossil fuel depletion has been identified as a future challenge. Lignocellulosic biomass in the form of organic residues appears to be the most promising option as renewable feedstock for the generation of energy and platform chemicals. As of today, relatively little bioenergy comes from lignocellulosic biomass as compared to feedstock such as starch and sugarcane, primarily due to high cost of production involving pretreatment steps required to fragment biomass components via disruption of the natural recalcitrant structure of these rigid polymers; low efficiency of enzymatic hydrolysis of refractory feedstock presents a major challenge. The valorization of lignin and cellulose into energy products or chemical products is contingent on the effectiveness of selective depolymerization of the pretreatment regime which typically involve harsh pyrolytic and solvothermal processes assisted by corrosive acids or alkaline reagents. These unselective methods decompose lignin into many products that may not be energetically or chemically valuable, or even biologically inhibitory. Exploring milder, selective and greener processes, therefore, has become a critical subject of study for the valorization of these materials in the last decade. Efficient alternative activation processes such as microwave- and ultrasound irradiation are being explored as replacements for pyrolysis and hydrothermolysis, while milder options such as advanced oxidative and catalytic processes should be considered as choices to harsher acid and alkaline processes. Herein, we critically abridge the research on chemical oxidative techniques for the pretreatment of lignocellulosics with the explicit aim to rationalize the objectives of the biomass pretreatment step and the problems associated with the conventional processes. The mechanisms of reaction pathways, selectivity and efficiency of end-products obtained using greener processes such as ozonolysis, photocatalysis, oxidative catalysis, electrochemical oxidation, and Fenton or Fenton-like reactions, as applied to depolymerization of lignocellulosic biomass are summarized with deliberation on future prospects of biorefineries with greener pretreatment processes in the context of the life cycle assessment.
Collapse
Affiliation(s)
- Walter Den
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | - Virender K. Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Mengshan Lee
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan
| | - Govind Nadadur
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czechia
| |
Collapse
|
17
|
Lv X, Xiong C, Li S, Chen X, Xiao W, Zhang D, Li J, Gong Y, Lin J, Liu Z. Vacuum-assisted alkaline pretreatment as an innovative approach for enhancing fermentable sugar yield and decreasing inhibitor production of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2017; 239:402-411. [PMID: 28538197 DOI: 10.1016/j.biortech.2017.04.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Sodium hydroxide pretreatment of sugarcane bagasse under vacuum conditions was established and evaluated in this study. Compared to pretreatment under conventional moderate pressure conditions, only half of the total phenolic compounds and less than half of the formic acid were produced under vacuum conditions, while the yield of total fermentable sugar was significantly increased by 31.38%. The pretreatment parameters: NaOH concentration, pretreatment time, and pretreatment temperature, were optimized using response surface methodology based on the response values of the total fermentable sugar yield (TFSY) and the total fermentable sugar concentration (TFSC), respectively. Under the optimal conditions, the TFSY of 0.5146g/g and the TFSC of 17.37g/L were achieved, respectively. By adjusting the ratio of cellulases to xylanase, the TFSY reached a maximum of 0.5213g/g when the ratio was 1:1, while the maximum TFSC of 17.71g/L was achieved when the ratio was 1:4.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Chunjiang Xiong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Research and Development Department, Guangdong Qizhi Biotechnology Co., Ltd., Guangzhou, PR China
| | - Shuai Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiaodong Chen
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Dou Zhang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jiasheng Li
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
18
|
Zhang T, Zhu MJ. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse. BIORESOURCE TECHNOLOGY 2017; 229:204-210. [PMID: 28119226 DOI: 10.1016/j.biortech.2017.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production.
Collapse
Affiliation(s)
- Teng Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Ming-Jun Zhu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
19
|
Terán Hilares R, Orsi CA, Ahmed MA, Marcelino PF, Menegatti CR, da Silva SS, Dos Santos JC. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. BIORESOURCE TECHNOLOGY 2017; 230:76-81. [PMID: 28161623 DOI: 10.1016/j.biortech.2017.01.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Pullulan is a polymer produced by Aureobasidium pullulans and the main bottleneck for its industrial production is the presence of melanin pigment. In this study, light-emitting diodes (LEDs) of different wavelengths were used to assist the fermentation process aiming to produce low-melanin containing pullulan by wild strain of A. pullulans LB83 with different carbon sources. Under white light using glucose-based medium, 11.75g.L-1 of pullulan with high melanin content (45.70UA540nm.g-1) was obtained, this production improved in process assisted by blue LED light, that resulted in 15.77g.L-1 of pullulan with reduced content of melanin (4.46UA540nm.g-1). By using sugarcane bagasse (SCB) hydrolysate as carbon source, similar concentration of pullulan (about 20g.L-1) was achieved using white and blue LED lights, with lower melanin contents in last. Use of LED light was found as a promising approach to assist biotechnological process for low-melanin containing pullulan production.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil.
| | - Camila Ayres Orsi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Muhammad Ajaz Ahmed
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Paulo Franco Marcelino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Carlos Renato Menegatti
- Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, CEP 12602-810, Brazil
| |
Collapse
|