1
|
Wang Y, Chen Y, Xie H, Cao W, Chen R, Kong Z, Zhang Y. Insight into the effects and mechanism of cellulose and hemicellulose on anaerobic digestion in a CSTR-AnMBR system during swine wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161776. [PMID: 36702270 DOI: 10.1016/j.scitotenv.2023.161776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The cellulose and hemicellulose content in swine wastewater significantly affected the performance of a continuous stirred tank reactor-anaerobic membrane bioreactor (CSTR-AnMBR). When the influent content of cellulose and hemicellulose was controlled at 3.88 ± 0.89 and 9.72 ± 2.05 g/L, respectively, the CSTR-AnMBR showed a low methane yield (0.04-0.06 L CH4/g COD) at both HRT of 12 d and HRT 30 d. The functional microbes preferred to use the freshly added degradable COD, and the decomposition of refractory COD was paused. Meanwhile, the AnMBR unit was troubled by rapidly growing membrane fouling. The trans-membrane pressure increased with a rate of 1.63 kPa/d (HRT = 12d), and 0.99 kPa/d (HRT = 30 d) exacerbated the reactor performance. In high cellulose and hemicellulose-containing environments, the cellulolytic and hemicellulolytic microbes, including Bacteroidetes and Proteobacteria, were stimulated to a certain extent. In addition, cellulose and hemicellulose up-regulated the gene expression for sugar and amino acid metabolism, decreasing the abundance of metabolism related to methane production. When the influent content of cellulose and hemicellulose decreased to 0.62 ± 0.12 and 0.77 ± 0.30 g/L, respectively, the system's performance was significantly improved, microorganisms produced less low-molecular-weight soluble microbial products, which also reduced membrane fouling risk. This study provides significant guidance for treating livestock manure with the CSTR-AnMBR system.
Collapse
Affiliation(s)
- Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Hongyu Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi Province, 710055, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, 215009, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China.
| |
Collapse
|
2
|
Du R, Hu Y, Nitta S, Ji J, Li YY. Material mass balance and elemental flow analysis in a submerged anaerobic membrane bioreactor for municipal wastewater treatment towards low-carbon operation and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158586. [PMID: 36075441 DOI: 10.1016/j.scitotenv.2022.158586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic membrane bioreactor (AnMBR) has gained huge attention as a municipal wastewater (MWW) treatment process that combined high organics removal, a low sludge yield and bioenergy recovery. In this study, a 20 L AnMBR was set up and operated steadily for 70 days in temperate conditions with an HRT of 6 h and a flux of 12 LMH for the treatment of real MWW, focusing on the behavior of the major elements (C, N, P and S) from an elemental balance perspective. The results showed that the AnMBR achieved more than 85 % COD removal, a low sludge yield (0.081 gVSS/gCODremoved) and high methane production (0.31 L-CH4/gCODremoved) close to the theoretical value. The elemental flow analysis revealed that the AnMBR converted 77 % of the influent COD to methane (57 % gaseous and 20 % dissolved) and 6 % of the COD for sludge production. In addition, the AnMBR converted 34 % of the total carbon to energy-generated carbon, and only 3 % was in the form of CO2 in the biogas for further upgradation, which was in line with the concept of carbon neutrality. Since little nitrogen or phosphorus were removed, the permeate was nutrient-rich and further treatment to recover the nutrients would be required. This study illustrates the superior performance of the AnMBR for MWW treatment with a microscopic view of elemental behavior and provides a reference for implementing the mainstream AnMBR process in carbon-neutral wastewater treatment plants.
Collapse
Affiliation(s)
- Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shiori Nitta
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
3
|
Do TM, Choi D, Oh S, Stuckey DC. Anaerobic membrane bioreactor performance with varying feed concentrations of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150108. [PMID: 34525766 DOI: 10.1016/j.scitotenv.2021.150108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic membrane bioreactor (AnMBR) has considerable potential for treating wastewater, although there is very little data on the effect of antibiotics on AnMBR performance. This study examined the effect of Ciprofloxacin (CIP) - an antibiotic that can occur at high concentrations, and has a substantial impact on ecosystems, on AnMBR performance. The long-term (44 days) presence of 0.5 mg/L CIP in the feed did not have a strong effect on COD removal, volatile fatty acid (VFA) accumulation, or methane yield, but did affect the pH, soluble microbial products (SMPs) and suspended solids. However, at 4.7 mg/L CIP, a significant effect on all the parameters tested was seen. 16S rRNA gene-based community analysis demonstrated that CIP changed the phylogenetic structure and altered the species richness and diversity. The relative abundance of various genera was also changed, and this explained much of the change in AnMBR behavior.
Collapse
Affiliation(s)
- Thi Mai Do
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore
| | - Donggeon Choi
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; Department of Civil Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Seungdae Oh
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; Department of Civil Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - David C Stuckey
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Li Y, Ni J, Cheng H, Zhu A, Guo G, Qin Y, Li YY. Methanogenic performance and microbial community during thermophilic digestion of food waste and sewage sludge in a high-solid anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2021; 342:125938. [PMID: 34547708 DOI: 10.1016/j.biortech.2021.125938] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The methanogenic performance and microbial community of the thermophilic anaerobic mono-digestion and co-digestion of food waste and sewage sludge in a high-solid membrane bioreactor were investigated by a continuous experiment. The methane recovery rate of the system reached 98.0% and 89.0% when the substrate was pure food waste and 25% sewage sludge substitution, respectively. Kinetics characterization showed that hydrolysis was the rate-limiting step in both mono-digestion and co-digestion while methanogenic performance and microbial community were significantly affected by feed condition. The dominant archaea for methane generation shifted from Methanothermobacter thermophilus (72.82%) to Methanosarcina thermophila (96.25%) with sewage sludge gradually added from 0% to 100% in the substrate. The relationships between digestion performance, such as the accumulation of soluble proteins in the reactor, and functional microbial groups were also carefully analyzed. Finally, reasonable metabolic pathways for mono-digestion and co-digestion were summarized.
Collapse
Affiliation(s)
- Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Hui Cheng
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Aijun Zhu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Ji J, Ni J, Ohtsu A, Isozumi N, Hu Y, Du R, Chen Y, Qin Y, Kubota K, Li YY. Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: Removal efficiency, biogas, and microbial community. BIORESOURCE TECHNOLOGY 2021; 336:125306. [PMID: 34034012 DOI: 10.1016/j.biortech.2021.125306] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
A submerged anaerobic membrane bioreactor (SAnMBR) was used in the treatment of real municipal wastewater at operation temperatures ranging from 15 °C to 25 °C and hydraulic retention time (HRT) of 6 h. The treatment process was evaluated in terms of organic removal efficiency, biogas production, sludge growth and membrane filtration. During long-term operation, the SAnMBR achieved chemical oxygen demand removal efficiencies of about 90% with a low sludge yield (0.12-0.19 g-VSS/g-CODrem) at 20-25 °C. Approximately 1.82-2.27 kWh/d of electric energy was generated during the wastewater treatment process at 20-25 °C, 0.67 kWh/d was generated at 15 °C. The microbial community analysis results showed that microbial community was dominated by aceticlastic methanogens, coupled by hydrogenotrophic methanogens and a very small quantity of methylotrophic methanogens. It was also shown that the stabilization of the microbial community could be attributed to the carbohydrate-protein degrading bacteria and the carbohydrate degrading bacteria.
Collapse
Affiliation(s)
- Jiayuan Ji
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Akito Ohtsu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Naoko Isozumi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
6
|
Ji J, Chen Y, Hu Y, Ohtsu A, Ni J, Li Y, Sakuma S, Hojo T, Chen R, Li YY. One-year operation of a 20-L submerged anaerobic membrane bioreactor for real domestic wastewater treatment at room temperature: Pursuing the optimal HRT and sustainable flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145799. [PMID: 33621884 DOI: 10.1016/j.scitotenv.2021.145799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 05/27/2023]
Abstract
A 20 L hollow-fiber submerged anaerobic membrane bioreactor (SAnMBR) was used to treat real domestic wastewater at 25 °C with hydraulic retention times (HRTs) ranging from 4 to 12 h. The process performance was evaluated by organic removal efficiency, biogas production, sludge yield, and filtration behaviors during one-year's operation. For HRTs ranging between 6 and 12 h, the AnMBR showed good organic removal efficiency with chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal efficiencies of about 89% and 93%, respectively. The biogas yield was 0.26 L-gas/g-CODfed, with approximately 80% methane content, and the sludge yield was 0.07-0.11 g-VSS/g-CODrem. While at an HRT of 4 h, with the higher wastewater treatment capacity and organic loading rate (OLR), the biogas production was lower (0.17 L-gas/g-CODfed), and the sludge production was higher (0.22 g-VSS/g-CODrem). The organic removal performance (COD 84% and BOD 89%) at HRT of 4 h was acceptable due to the effective separation effect of the membrane filtration process. According to COD balance analysis, the low biogas yield and high sludge yield at HRT of 4 h were due to insufficient biodegradation under an OLR of 2.05 g-COD/L-reactor/d. Theoretical calculations based on Henry's law indicate that the ideal methane content in the biogas should be 82-85% when the operational temperature was 25 °C. To achieve a high flux and sustainable AnMBR operation, the impact of mixed liquor suspended solid (MLSS) and gas sparging velocity (GSV) on the filtration performance was analyzed. The critical flux increased with increase in the GSV from 24.2 to 174.3 m/h, but decreased with increase in the MLSS concentration from 8.2 to 20.2 g/L. Therefore, decreasing fouling rate to 0.8-1.2 kPa/d by efficiently controlling GSV and MLSS, sustainable operation could be achieved at a flux of 0.34 m/d.
Collapse
Affiliation(s)
- Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Akito Ohtsu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Satoshi Sakuma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil Engineering and Management, Tohoku Institute of Technology, 35-1, Yagiyamakasumi-cho, Taihaku-ku, Sendai 982-8577, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
7
|
Ji J, Sakuma S, Ni J, Chen Y, Hu Y, Ohtsu A, Chen R, Cheng H, Qin Y, Hojo T, Kubota K, Li YY. Application of two anaerobic membrane bioreactors with different pore size membranes for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140903. [PMID: 32717601 DOI: 10.1016/j.scitotenv.2020.140903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Pore size is one of the most important properties in the successful operation of membrane-based bioprocesses for the treatment of municipal wastewater. The characteristics of two anaerobic membrane bioreactors (AnMBRs), one with a hollow fiber membrane of 0.4 μm pore size (AnMBR1), and the other with a membrane of 0.05 μm pore size (AnMBR2) were investigated for the treatment of real municipal wastewater at room temperature (25 °C) under varied hydraulic retention times (HRTs). Process performance was evaluated in terms of organic removal efficiency, biogas production and membrane filtration behaviours during a long-term continuous operation. Both AnMBRs showed good organic removal performance with COD and BOD removal efficiencies of around 89% and 93%, respectively. High energy recovery potential was achieved, with the biogas yield ranging between 0.20 and 0.26 L-gas/g-CODrem and a methane content of approximately 75%. The differences in the membrane filtration behaviours in the two AnMBRs included different permeate flux and total filtration resistance (Rt). In the AnMBR with a 0.4 μm pore size membrane, an average Rt of 1.08 × 10^12 m-1 was obtained even when the permeate flux was a high 0.274 m/day, while a higher average Rt of 1.51 × 10^12 m-1 was observed in the AnMBR with 0.05 μm pore size membrane even when the flux was a low 0.148 m/day. The off-line membrane cleaning strategy used for AnMBR1 indicated that the membrane restoration efficiency was 90.2%.
Collapse
Affiliation(s)
- Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Satoshi Sakuma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Akito Ohtsu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Hui Cheng
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
8
|
Optimization of In Situ Backwashing Frequency for Stable Operation of Anaerobic Ceramic Membrane Bioreactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.
Collapse
|
9
|
Ribera-Pi J, Badia-Fabregat M, Arias D, Gómez V, Taberna E, Sanz J, Martínez-Lladó X, Jubany I. Coagulation-flocculation and moving bed biofilm reactor as pre-treatment for water recycling in the petrochemical industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136800. [PMID: 32007876 DOI: 10.1016/j.scitotenv.2020.136800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Water recycling and reuse is of important value in water-using sectors like petrochemical industry. The aim of this research was to optimise the pre-treatment of petrochemical wastewater to undergo a further membrane treatment, with the final objective of water recycling within the same industry. Laboratory coagulation-flocculation tests prior to biological treatment were performed using Actiflo® Veolia commercial technology and an optimal coagulant dose of 30 mg/L ferric chloride was obtained. A bench-scale Moving Bed Biofilm Reactor (MBBR) system with two sequential reactors with working volumes of 5 L was filled with Z-carriers at 35% of their working volume. Organic loading rate (OLR) was varied from 0.2 to 3.25 kg/(m3 d) and the hydraulic retention time (HRT) ranged from 23.4 h to 4.5 h. High soluble chemical oxygen demand (sCOD) removals were obtained in stationary states (80-90%) and the calculated maximum sCOD that the system could degrade was 4.96 ± 0.01 kg/(m3 d) at 23 ± 2 °C. Changes in feed composition did not decrease sCOD removals showing that MBBR is a robust technology and the coagulation-flocculation step could be by-passed. Further removal of total suspended solids (TSS) and turbidity from the MBBR effluent would be required before a reverse osmosis (RO) step could be performed. A biofilm-forming genus, Haliscomenobacter spp., and an oil degrading genus Flavobacterium spp. were found in all the attached biomass samples. Acinetobacter spp. was the major bacterial genera found in suspended biomass. Proteobacteria and Bacteroidetes were the major phyla detected in the carrier samples while Proteobacteria the main one detected in the suspended biomass. The lack of fungal annotated sequences in databases led to a major proportion of fungal sequences being categorized as unclassified Fungi. The results obtained indicate that MBBR is an appropriate technology for hydrocarbon-degrading microorganism growth and, thus, for petrochemical wastewater pre-treatment for water regeneration.
Collapse
Affiliation(s)
- Judit Ribera-Pi
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Manresa, Spain.
| | | | - David Arias
- DuPont Water Solutions, Global Water Technology Center, Tarragona, Spain
| | - Verónica Gómez
- DuPont Water Solutions, Global Water Technology Center, Tarragona, Spain
| | | | - Joan Sanz
- Veolia Water Technologies, Sant Cugat del Vallès, Spain
| | | | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Sustainability Area, Manresa, Spain
| |
Collapse
|
10
|
Liu J, Tian H, Luan X, Zhou X, Chen X, Xu S, Kang X. Submerged anaerobic membrane bioreactor for low-concentration domestic sewage treatment: performance and membrane fouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6785-6795. [PMID: 31873905 DOI: 10.1007/s11356-019-07135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A submerged anaerobic membrane bioreactor (SAnMBR) was used to treat low-concentration domestic sewage. The effects of hydraulic retention time (HRT) and organic load (OLR) on chemical oxygen demand (COD) removal, methanogenesis, and membrane fouling of the system were investigated. The SAnMBR achieved good COD removal efficiency as well as stable methane production, which were significantly affected by both OLR and HRT. The influent dissolved organic matter (DOM) was decomposed and transformed over time, and DOM concentration was gradually reduced. It can be inferred that the SAnMBR can effectively intercept the production of extracellular polymeric substances and improve effluent quality. The phenomenon of membrane fouling was investigated using various analytical tools. Results demonstrated that the SAnMBR was achieved good transmembrane pressures (TMP) (10-15 kPa), and the hydraulic force generated by the stirring device has a dynamic physical shearing action on the surface of the membrane, which can partly alleviate membrane fouling.
Collapse
Affiliation(s)
- Jianwei Liu
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Hongyu Tian
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinrong Luan
- China Railway 16 Bureau Group Metro Engineering Co. Ltd., Beijing, 100124, China
| | - Xiao Zhou
- Xinkai Water Environment Investment Co., Beijing, 101101, China
| | - Xuewei Chen
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Song Xu
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinyue Kang
- College of Environmental and Energy Engineering, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Research Center of the sustainable urban drainage system and risk control, Beijng University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
11
|
Characterization of the effect of surfactant on biomass adaptation and microbial community in sewage treatment by anaerobic membrane bioreactor. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zamorano-López N, Moñino P, Borrás L, Aguado D, Barat R, Ferrer J, Seco A. Influence of food waste addition over microbial communities in an Anaerobic Membrane Bioreactor plant treating urban wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:788-796. [PMID: 29660704 DOI: 10.1016/j.jenvman.2018.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Notorious changes in microbial communities were observed during and after the joint treatment of wastewater with Food Waste (FW) in an Anaerobic Membrane Bioreactor (AnMBR) plant. The microbial population was analysed by high-throughput sequencing of the 16S rRNA gene and dominance of Chloroflexi, Firmicutes, Synergistetes and Proteobacteria phyla was found. The relative abundance of these potential hydrolytic phyla increased as a higher fraction of FW was jointly treated. Moreover, whereas Specific Methanogenic Activity (SMA) rose from 10 to 51 mL CH4 g-1 VS, Methanosarcinales order increased from 34.0% over 80.0% of total Archaea, being Methanosaeta the dominant genus. The effect of FW over AnMBR biomass was observed during the whole experience, as methane production rose from 49.2 to 144.5 L CH4 · kg-1 influent COD. Furthermore, biomethanization potential was increased over 82% after the experience. AnMBR technology allows the established microbial community to remain in the bioreactor even after the addition of FW, improving the anaerobic digestion of urban wastewater.
Collapse
Affiliation(s)
- N Zamorano-López
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain.
| | - P Moñino
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - L Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| | - D Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - R Barat
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - J Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, Valencia, 46022, Spain
| | - A Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
13
|
Mannacharaju M, Natarajan P, Villalan AK, Jothieswari M, Somasundaram S, Ganesan S. An innovative approach to minimize excess sludge production in sewage treatment using integrated bioreactors. J Environ Sci (China) 2018; 67:67-77. [PMID: 29778175 DOI: 10.1016/j.jes.2017.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 06/08/2023]
Abstract
The present investigation deals with an application of integrated sequential oxic and anoxic bioreactor (SOABR) and fluidized immobilized cell carbon oxidation (FICCO) reactor for the treatment of domestic wastewater with minimum sludge generation. The performance of integrated SOABR-FICCO system was evaluated on treating the domestic wastewater at hydraulic retention time (HRT) of 3hr and 6hr for 120days at organic loading rate (OLR) of 191±31mg/(L·hr). The influent wastewater was characterized by chemical oxygen demand (COD) 573±93mg/L; biochemical oxygen demand (BOD5) 197±35mg/L and total suspended solids (TSS) 450±136mg/L. The integrated SOABR-FICCO reactors have established a significant removal of COD by 94%±1%, BOD5 by 95%±0.6% and TSS by 95%±4% with treated domestic wastewater characteristics COD 33±5mg/L; BOD5 9±0.8mg/L and TSS 17±9mg/L under continuous mode of operation for 120days. The mass of dry sludge generated from SOABR-FICCO system was 22.9g/m3. The sludge volume index of sludge formed in the SOABR reactor was 32mL/g and in FICCO reactor it was 46mL/g. The sludge formed in SOABR and FICCO reactor was characterized by TGA, DSC and SEM analysis. Overall, the results demonstrated that the integrated SOABR-FICCO reactors substantially removed the pollution parameters from domestic wastewater with minimum sludge production.
Collapse
Affiliation(s)
- Mahesh Mannacharaju
- Department of Environmental Science and Engineering, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai 20, India
| | - Prabhakaran Natarajan
- Department of Environmental Science and Engineering, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai 20, India
| | - Arivizhivendhan Kannan Villalan
- Department of Environmental Science and Engineering, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai 20, India
| | - Madasamy Jothieswari
- Department of Environmental Science and Engineering, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai 20, India
| | - Swarnalatha Somasundaram
- Department of Environmental Science and Engineering, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai 20, India
| | - Sekaran Ganesan
- Department of Environmental Science and Engineering, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai 20, India.
| |
Collapse
|
14
|
Berkessa YW, Yan B, Li T, Tan M, She Z, Jegatheesan V, Jiang H, Zhang Y. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration. BIORESOURCE TECHNOLOGY 2018; 250:281-289. [PMID: 29174906 DOI: 10.1016/j.biortech.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Performance of two novel designed anaerobic membrane bioreactor (AnMBRs) for wastewater treatment at long hydraulic retention time (HRT, 47 days) and high sludge concentration (22 g·L-1) was investigated. Results showed steady chemical oxygen demand (COD) removal (>98%) and mean biogas generation of 0.29 LCH4·g-1COD. Average permeates flux of 58.70 L·m-2·h-1 and 54.00 L·m-2·h-1 were achieved for reactors A and B, respectively. On top of reactor configuration, long HRT caused biofilm reduction by heterotrophic bacteria Chloroflexi resulting in high membrane flux. Mean total membrane resistances (2.23 × 109 m-1) and fouling rates (4.00 × 108 m-1·day-1) of both reactors were low suggesting better membrane fouling control ability of both AnMBRs. Effluent quality analysis showed the effluent soluble microbial products (SMP) were dominated by proteins compared to carbohydrates, and specific ultraviolet absorbance (SUVA) analysis revealed effluent from both reactors had low aromaticity with SUVA < 1 (L·mg-1·m-1) except for the first ten days.
Collapse
Affiliation(s)
- Yifru Waktole Berkessa
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Binghua Yan
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| | - Tengfei Li
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Ming Tan
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, PR China
| | | | - Heqing Jiang
- Lab of Membrane Separation and Catalysis Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China
| | - Yang Zhang
- Lab of Waste Valorization and Water Reuse Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
15
|
Chen R, Nie Y, Tanaka N, Niu Q, Li Q, Li YY. Enhanced methanogenic degradation of cellulose-containing sewage via fungi-methanogens syntrophic association in an anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 245:810-818. [PMID: 28926913 DOI: 10.1016/j.biortech.2017.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
An anaerobic membrane bioreactor was configured for methanogenic degradation of cellulose-containing sewage. The degradation performance and microbial changes were evaluated under five hydraulic retention times (HRTs). The results indicated the methane production was largely enhanced with 92.6% efficiency of chemical oxygen demand (COD) converting to methane and 80% proportion of methane in produced biogas, meanwhile the biomass yield presented the fewest at the shortest HRT 8h. Enhanced methane production with decreased biomass yield was attributed to an association between fungi and methanogens. Microbial analysis showed fungi Basidiomycota and methanogen Methanoregula apparently established the association, especially Basidiomycota reaching 93% relative abundance at HRT 8h. Specific methanogenic activity (SMA) and biochemical methane potential (BMP) tests suggested the association was derived from H2 production by fungi and H2 consumption by methanogens, during the process of cellulose degradation. The methanogenic degradation of cellulose-containing sewage was markedly promoted via the fungi-methanogens syntrophic association.
Collapse
Affiliation(s)
- Rong Chen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Nobuyuki Tanaka
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qigui Niu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qian Li
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
16
|
Chen R, Nie Y, Kato H, Wu J, Utashiro T, Lu J, Yue S, Jiang H, Zhang L, Li YY. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature. BIORESOURCE TECHNOLOGY 2017; 228:69-76. [PMID: 28056372 DOI: 10.1016/j.biortech.2016.12.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature.
Collapse
Affiliation(s)
- Rong Chen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Hiroyuki Kato
- Sewerage Works Division, Sewerage and Wastewater Management Department, Water and Disaster Management Bureau, 2-1-3 Kasumigaseki, Chiyodaku, Tokyo, Japan
| | - Jiang Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tetsuya Utashiro
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianbo Lu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Shangchao Yue
- Tianjin Municipal Engineering Design & Research Institute, Tianjin 300051, PR China
| | - Hongyu Jiang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Lu Zhang
- International S&T Cooperation Center for Urban Alternative Water Resources Development, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|