1
|
Bakos V, Qiu Y, Nierychlo M, Nielsen PH, Plósz BG. Biokinetic soft-sensing using Thiothrix and Ca. Microthrix bacteria to calibrate secondary settling, aeration and N 2O emission digital twins. WATER RESEARCH 2025; 275:123164. [PMID: 39881474 DOI: 10.1016/j.watres.2025.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Climate resilience in water resource recovery facilities (WRRFs) necessitates improved adaptation to shock-loading conditions and mitigating greenhouse gas emission. Data-driven learning methods are widely utilised in soft-sensors for decision support and process optimization due to their simplicity and high predictive accuracy. However, unlike for mechanistic models, transferring machine-learning-based insights across systems is largely infeasible, which limits communication and knowledge sharing. To harness the benefits of both approaches, this study introduces a mechanistic online soft-sensor (MOSS) developed to calibrate digital twins of secondary settling tanks (hydraulic shock), aeration systems and nitrous oxide (N2O) greenhouse gas emission. MOSS integrates biokinetic models of filamentous microbial predictors to calibrate digital twins through meta-models (data-driven part), updated using offline settling column tests and amplicon sequencing data for microbial analysis. For the first time, this approach employs multi-filamentous-community predictors for dynamic calibration, i.e., Thiothrix and Ca. Microthrix. The calibration and early-warning capabilities of MOSS are demonstrated using experimental data from a laboratory-scale WRRF.
Collapse
Affiliation(s)
- Vince Bakos
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Yuge Qiu
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Benedek Gy Plósz
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; SWING - Department of Built Environment, Oslo Metropolitan University, St Olavs plass 0130, Oslo, Norway.
| |
Collapse
|
2
|
Ge L, Cheng K, Lu W, Cui Y, Yin X, Jiang J, Li Y, Yao H, Liao J, Xue J, Shen Q. Enzymatic Preparation, In-Depth Molecular Analysis, and In Vitro Digestion Simulation of Palmitoleic Acid (ω-7)-Enriched Fish Oil Triacylglycerols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8859-8870. [PMID: 38564481 DOI: 10.1021/acs.jafc.3c09159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, an enzymatic reaction was developed for synthesizing pure triacylglycerols (TAG) with a high content of palmitoleic acid (POA) using fish byproduct oil. The characteristics of synthesized structural TAGs rich in POA (POA-TAG) were analyzed in detail through ultrahigh-performance liquid chromatography Q Exactive orbitrap mass spectrometry. Optimal conditions were thoroughly investigated and determined for reaction systems, including the use of Lipozyme TL IM and Novozym 435, 15 wt % lipase loading, substrate mass ratio of 1:3, and water content of 2.5 and 0.5 wt %, respectively, resulting in yields of 67.50 and 67.45% for POA-TAG, respectively. Multivariate statistical analysis revealed that TAG 16:1/16:1/20:4, TAG 16:1/16:1/16:1, TAG 16:1/16:1/18:1, and TAG 16:0/16:1/18:1 were the main variables in Lipozyme TL IM and Novozym 435 enzyme-catalyzed products under different water content conditions. Finally, the fate of POA-TAG across the gastrointestinal tract was simulated using an in vitro digestion model. The results showed that the maximum release of free fatty acids and apparent rate constants were 71.44% and 0.0347 s-1, respectively, for POA-TAG lipids, and the physical and structural characteristics during digestion depended on their microenvironments. These findings provide a theoretical basis for studying the rational design of POA-structural lipids and exploring the nutritional and functional benefits of POA products.
Collapse
Affiliation(s)
- Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuelian Yin
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jianjun Jiang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318020, China
| | - Yijing Li
- Department of Cardiology, Ningbo Ninth Hospital, Ningbo 315020, China
| | - Haiming Yao
- Yunhe Street Community Health Service Center, Linping, Hangzhou 311100, China
| | - Jie Liao
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
3
|
González-Cardoso MA, Cerón-García MC, Navarro-López E, Molina-Miras A, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F. Alternatives to classic solvents for the isolation of bioactive compounds from Chrysochromulina rotalis. BIORESOURCE TECHNOLOGY 2023; 379:129057. [PMID: 37059341 DOI: 10.1016/j.biortech.2023.129057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
This paper demonstrates a sequential partitioning method for isolating bioactive compounds from Chrysochromulina rotalis using a polarity gradient, replacing classic and hazardous solvents with greener alternatives. Seventeen solvents were evaluated based on their Hansen solubility parameters and for having a similar polarity to the solvents they would replace, four of which were selected as substitutes in the classic fractionation process. Considering the fatty acid and carotenoid recovery yields obtained for each of the solvents, it has been proposed to replace hexane (HEX), toluene (TOL), dichloromethane (DCM) and n-butanol (BUT) with cyclohexane, chlorobenzene, isobutyl acetate and isoamyl alcohol, respectively. In addition, cytotoxic activity was observed when the TOL and DCM solvent extracts were tested against tumour cell lines, demonstrating the antiproliferative potential of compounds containing, for example, fucoxanthin, fatty acids, peptides, isoflavonoids or terpenes, among others.
Collapse
Affiliation(s)
| | - M C Cerón-García
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain.
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Contreras-Gómez
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| |
Collapse
|
4
|
Manikrao Ingle U, Pawar PR, Prakash G. Acid-assisted oil extraction directly from thraustochytrids fermentation broth and its energy assessment for docosahexaenoic acid-enriched oil production. BIORESOURCE TECHNOLOGY 2023; 367:128272. [PMID: 36347480 DOI: 10.1016/j.biortech.2022.128272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Thraustochytrids are the most prominent source of polyunsaturated fatty acids, specifically docosahexaenoic acid (DHA). Downstream processing constitutes a significant fraction of total production cost and thus needs judicious optimization. Currently, hazardous solvent-based extraction methods are used to extract oil from the dry or wet thraustochytrids cell mass. The process is also highly energy-intensive due to involvement of dewatering and drying as unit operations. Current work devised an energy-efficient acid-assisted extraction (AAE) methodology to overcome dry and wet biomass-based extraction limitations. AAE recovered 91 % of total oil with 35-40 % PUFA from the direct fermentation broth, eliminating the need for dewatering and drying of fermentation broth/cell biomass. The current work also presents an all-inclusive comparison of the energy assessment of oil extraction from dry and AAE method. AAE produced PUFA enriched oil with a total energy consumption of 210 MJ/kg, which was four times lower than that of conventional dry cell extraction methodology.
Collapse
Affiliation(s)
- Umesh Manikrao Ingle
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Pratik R Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
5
|
Aguieiras ECG, Abreu KEA, Oliveira RA, Almeida JMAR, Freire DMG. Fatty acid ethyl esters production from distillers corn oil by enzymatic catalysis. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erika C. G. Aguieiras
- Universidade Federal do Rio de Janeiro Campus UFRJ—Duque de Caxias Prof. Geraldo Cidade Duque de Caxias Rio de Janeiro Brazil
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Kévin Enrick A. Abreu
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Renata A. Oliveira
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - João M. A. R. Almeida
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Denise M. G. Freire
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
6
|
Xie D, Ji X, Zhou Y, Dai J, He Y, Sun H, Guo Z, Yang Y, Zheng X, Chen B. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. BIORESOURCE TECHNOLOGY 2022; 349:126886. [PMID: 35217166 DOI: 10.1016/j.biortech.2022.126886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/28/2023]
Abstract
This study firstly addressed real swine wastewater (RSW) treatment by an indigenous Chlorella vulgaris MBFJNU-1 in 5-m3 outdoor open raceway ponds and then direct enzymatic transesterification of the resulting lipids from the wet biomass for sustainable biodiesel production. Compared to the control group, C. vulgaris MBFJNU-1 at 3% CO2 achieved higher microalgal biomass (478.5 mg/L) and total fatty acids content (21.3%), higher CO2 bio-fixation (63.2 mg/L/d) and lipid (9.1 mg/L/d) productivities, and greater nutrients removals (total nitrogen, 82.1%; total phosphorus, 28.4%; chemical oxygen demand, 37.1%). The highest biodiesel conversion (93.3%) was attained by enzymatic transesterification of wet disrupted Chlorella biomass with 5% lipase TL and 5% phospholipase PLA. Moreover, the enzymatic transesterification gave around 83% biodiesel conversion in a 15-L stirred tank bioreactor. Furthermore, the integrated process was a cost-effective approach to treat RSW and mitigate CO2 for microalgal biodiesel production, based on the mass and energy balances analysis.
Collapse
Affiliation(s)
- Dian Xie
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaowei Ji
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, Gustav WiedsVej 10, 8000 Aarhus C, Denmark
| | - Yi Yang
- Fuqing King Dnarmsa Spirulina Co., LTD, Fuzhou 350300, China
| | - Xing Zheng
- Fuqing King Dnarmsa Spirulina Co., LTD, Fuzhou 350300, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
7
|
Lu H, Yadav V, Bilal M, Iqbal HMN. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts. CHEMOSPHERE 2022; 288:132574. [PMID: 34656619 DOI: 10.1016/j.chemosphere.2021.132574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
Current biorefinery approaches comprehend diverse biomass feedstocks and various conversion techniques to produce a variety of high-value biochemicals and biofuels. Lignocellulose is among the most abundant, bio-renewable, and sustainable bioresources on earth. It is regarded as a prodigious alternative raw feedstock to produce a large number of chemicals and biofuels. Producing biofuels and platform chemicals from lignocellulosic biomasses represent advantages in terms of energy and environmental perspectives. Lignocellulose is a main structural constituent of non-woody and woody plants consisting of lignin, cellulose, and hemicellulose. Efficient exploitation of all these components is likely to play a considerable contribution to the economic viability of the processes since lignocellulosic biomass often necessitate pretreatment for liberating fermentable sugars and added value products that might serve as feedstocks for microbial strains to produce biofuels and biochemicals. Developing robust microbial culture and advancements in metabolic engineering approaches might lead to the rapid construction of cell factories for the effective biotechnological transformation of biomass feedstocks to produce biorefinery products. In this comprehensive review, we discuss the recent progress in the valorization of agro-industrial wastes as prospective microbial feedstocks to produce a spectrum of high-value products, such as microbial pigments, biopolymers, industrial biocatalysts, biofuels, biologically active compounds, bioplastics, biosurfactants, and biocontrol agents with therapeutic and industrial potentialities. Lignocellulosic biomass architecture, compositional aspects, revalorization, and pretreatment strategies are outlined for efficient conversion of lignocellulosic biomass. Moreover, metabolic engineering approaches are briefly highlighted to develop cell factories to make the lignocellulose biorefinery platforms appealing.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
8
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
9
|
Singh R, Arora A, Singh V. Biodiesel from oil produced in vegetative tissues of biomass - A review. BIORESOURCE TECHNOLOGY 2021; 326:124772. [PMID: 33551280 DOI: 10.1016/j.biortech.2021.124772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Biodiesel is a green, renewable alternative to petroleum-derived diesel. However, using vegetable oil for biodiesel production significantly challenges the food security. Progress in metabolic engineering, understanding of lipid biosynthesis and storage have enabled engineering of vegetative tissues of plants such as sugarcane, sorghum, and tobacco for lipid production. Such sources could be cultivated on land resources, which are currently not suitable for row crops. Besides achieving significant lipid accumulation, it is imperative to maintain the fatty acid and lipid profile ideal for biodiesel production and engine performance. In this study, genetic modifications used to induce lipid accumulation in transgenic crops and the proposed strategies for efficient recovery of oil from these crops have been presented. This paper highlights that lipids sourced from vegetative biomass in their native form would pose significant challenges in biodiesel production. Therefore, different strategies have been presented for improving feedstock quality to achieve high-quality biodiesel production.
Collapse
Affiliation(s)
- Ramkrishna Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit Arora
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Sales R, Galafat A, Vizcaíno A, Sáez M, Martínez T, Cerón-García M, Navarro-López E, Tsuzuki M, Acién-Fernández F, Molina-Grima E, Alarcón F. Effects of dietary use of two lipid extracts from the microalga Nannochloropsis gaditana (Lubián, 1982) alone and in combination on growth and muscle composition in juvenile gilthead seabream, Sparus aurata. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
12
|
López-Rodríguez M, Cerón-García MC, López-Rosales L, Navarro-López E, Sánchez-Mirón A, Molina-Miras A, Abreu AC, Fernández I, García-Camacho F. Improved extraction of bioactive compounds from biomass of the marine dinoflagellate microalga Amphidinium carterae. BIORESOURCE TECHNOLOGY 2020; 313:123518. [PMID: 32512427 DOI: 10.1016/j.biortech.2020.123518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The extraction of three families of compounds (carotenoids, fatty acids and amphidinols) from the biomass of two strains of Amphidinium carterae (ACRN03 and Dn241EHU) was improved by tuning cell disruption and solvent extraction operations. The extraction of carotenoids was evaluated using alkaline saponification (0%-60% KOH d.w.) at different temperatures (25-80 °C). High levels of carotenoids were obtained at 60 °C using freeze-dried biomass, not subjected to cell disruption methods. The ACRN03 strain required 20% KOH whereas the Dn241EHU strain did not require saponification since carotenoid degradation was observed. The extraction efficiencies were determined with a wide range of pure solvents and mixtures thereof. Two empirical non-linear equations were used to correlate extraction percentages for each family of compounds with the Hildebrand solubility parameter (δT) and the polarity index of the solvents (PI). Thresholds of δT and PI of around 20 MPa1/2 and 6, respectively, were determined for the extraction of amphidinols, consistent with antiproliferative activity measurements.
Collapse
Affiliation(s)
- M López-Rodríguez
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain.
| | - L López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - E Navarro-López
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - A C Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| |
Collapse
|
13
|
Lozano P, Bernal JM, Gómez C, Álvarez E, Markiv B, García-Verdugo E, Luis SV. Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.01.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Piligaev AV, Sorokina KN, Samoylova YV, Parmon VN. Production of Microalgal Biomass with High Lipid Content and Their Catalytic Processing Into Biodiesel: a Review. CATALYSIS IN INDUSTRY 2020. [DOI: 10.1134/s207005041904007x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yew GY, Chew KW, Malek MA, Ho YC, Chen WH, Ling TC, Show PL. Hybrid liquid biphasic system for cell disruption and simultaneous lipid extraction from microalgae Chlorella sorokiniana CY-1 for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:252. [PMID: 31666807 PMCID: PMC6813982 DOI: 10.1186/s13068-019-1591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution. RESULT Several parameters which can affect the biphasic system were analyzed: contact time, volume of solvent, volume ratio, type of organic solvent, biomass amount and concentration of solvents, to extract the highest amount of lipids from microalgae. The results were optimized and up to 83.5% of lipid recovery yield and 94.6% of enhancement was successfully achieved. The results obtain from GC-FID were similar to the analysis of triglyceride lipid standard. CONCLUSION The profound hybrid biphasic system shows great potential to radically disrupt the cell wall of microalgae and instantaneously extract lipids in a single-step approach. The lipids extracted were tested to for its comparability to biodiesel performance.
Collapse
Affiliation(s)
- Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Marlinda Abdul Malek
- Institute of Sustainable Energy (ISE), University Tenaga National, 43000 Kajang, Selangor Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| |
Collapse
|
16
|
Amoah J, Kahar P, Ogino C, Kondo A. Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products. Biotechnol J 2019; 14:e1800494. [DOI: 10.1002/biot.201800494] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jerome Amoah
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Prihardi Kahar
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Akihiko Kondo
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| |
Collapse
|
17
|
Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G. A novel integrated biodegradation-microfiltration system for sustainable wastewater treatment and energy recovery. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:707-715. [PMID: 30472456 DOI: 10.1016/j.jhazmat.2018.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
This work assessed the treatment of wastewater generated from three different industries viz., paper and pulp, biomass gasification and dairy by biodegradation followed by membrane filtration. Batch biodegradation was first carried out using wastewater as the potential substrate for oleaginous Rhodococcus opacus with lipid accumulation intracellular; subsequently, a microfiltration system was applied to recover the bacterial biomass grown as well as for residual chemical oxygen demand (COD) removal from the effluent. The combined process showed excellent results in terms of COD removal from the industrial wastewaters, with the values 56.8%, 46.1% and 68.9% for dairy, paper and pulp and biomass gasification wastewaters, respectively, by biodegradation. These values were further improved to 92.7%, 87.6% and 88.2%, respectively, following the microfiltration step performed by employing a low-cost ceramic membrane. In addition, lipids accumulated by the bacterium were extracted and characterized for biodiesel production potential. Lipid characterization using 1H NMR confirmed the presence of saturated fatty acids. Gas chromatography analysis of the transesterified lipids revealed the presence of methyl palmitate and methyl stearate. In addition, the estimated properties of the transesterified product affirmed its potential for biofuel application.
Collapse
Affiliation(s)
- Lalit Goswami
- Center for the Environment, Indian Institute Technology Guwahati, Guwahati, Assam 781039, India
| | - R Vinoth Kumar
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101, India
| | - Kannan Pakshirajan
- Center for the Environment, Indian Institute Technology Guwahati, Guwahati, Assam 781039, India; Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati, Assam 781039, India.
| | - G Pugazhenthi
- Center for the Environment, Indian Institute Technology Guwahati, Guwahati, Assam 781039, India; Department of Chemical Engineering, Indian Institute Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
18
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
19
|
Ishak S, Kamari A, Yusoff SNM, Halim ALA. Optimisation of biodiesel production of Black Soldier Fly larvae rearing on restaurant kitchen waste. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1097/1/012052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Sánchez-Camargo ADP, Pleite N, Mendiola JA, Cifuentes A, Herrero M, Gilbert-López B, Ibáñez E. Development of green extraction processes for Nannochloropsis gaditana biomass valorization. Electrophoresis 2018; 39:1875-1883. [PMID: 29683520 DOI: 10.1002/elps.201800122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/11/2022]
Abstract
In the present work, the valorization of Nannochloropsis gaditana biomass is proposed within the concept of biorefinery. To this aim, high-pressure homogenization (HPH) was used to break down the strong cell wall and supercritical fluid extraction (SFE) with pure CO2 was applied as a first step to extract valuable compounds (such as non-polar lipids and pigments). Extraction of the remaining residue for the recovery of bioactive compounds was studied by means of an experimental design based on response surface methodology (RSM) employing pressurized liquid extraction (PLE) with green solvents such as water and ethanol. Optimum extract was achieved with pure ethanol at 170°C for 20 min, providing an important antioxidant capacity (0.72 ± 0.03 mmol trolox eq g-1 extract). Complete chemical characterization of the optimum extract was carried out by using different chromatographic methods such as reverse-phase high-performance liquid chromatography with diode array detection (RP-HPLC-DAD), normal-phase HPLC with evaporative light scattering detection (NP-HPLC-ELSD) and gas chromatography coupled to mass spectrometry detection (GC-MS); carotenoids (e.g. violaxanthin), chlorophylls and polar lipids were the main compounds observed while palmitoleic, palmitic, myristic acids and the polyunsaturated eicosapentanoic (EPA) acid were the predominant fatty acids in all PLE extracts.
Collapse
Affiliation(s)
| | - Natalia Pleite
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - José Antonio Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| |
Collapse
|
21
|
How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol 2018; 50:57-64. [DOI: 10.1016/j.copbio.2017.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
|
22
|
Sankaran R, Show PL, Lee SY, Yap YJ, Ling TC. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia. BIORESOURCE TECHNOLOGY 2018; 250:306-316. [PMID: 29174909 DOI: 10.1016/j.biortech.2017.11.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production.
Collapse
Affiliation(s)
- Revathy Sankaran
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Sze Ying Lee
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yee Jiun Yap
- Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Sivaramakrishnan R, Incharoensakdi A. Microalgae as feedstock for biodiesel production under ultrasound treatment - A review. BIORESOURCE TECHNOLOGY 2018; 250:877-887. [PMID: 29221914 DOI: 10.1016/j.biortech.2017.11.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 05/03/2023]
Abstract
The application of ultrasound in biodiesel production has recently emerged as a novel technology. Ultrasound treatment enhances the mass transfer characteristics leading to the increased reaction rate with short reaction time and potentially reduces the production cost. In this review, application of ultrasound-assisted biodiesel production using acid, base and enzyme catalysts is presented. A critical assessment of the current status of ultrasound in biodiesel production was discussed with the emphasis on using ultrasound for efficient microalgae biodiesel production. The ultrasound in the biodiesel production enhances the emulsification of immiscible liquid reactant by microturbulence generated by cavitation bubbles. The major benefit of the ultrasound-assisted biodiesel production is a reduction in reaction time. Several different methods have been discussed to improve the biodiesel production. Overall, this review focuses on the current understanding of the application of ultrasound in biodiesel production from microalgae and to provide insights into future developments.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Moradi-Kheibari N, Ahmadzadeh H, Hosseini M. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess Biosyst Eng 2017; 40:1363-1373. [PMID: 28593457 DOI: 10.1007/s00449-017-1794-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/01/2017] [Indexed: 01/23/2023]
Abstract
Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.
Collapse
Affiliation(s)
| | - Hossein Ahmadzadeh
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran.
| | - Majid Hosseini
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA.,Manufacturing and Industrial Engineering Department, The University of Texas Rio Grande Valley (UTRGV), Edinburg, 78539, USA
| |
Collapse
|