1
|
Nie W, He Z, Gu M, Zhou T, Xu J, Zhong J, Yang Y, Zhong W. Improved bacterial cellulose production by Acetobacter oryzoeni MGC-N8819 in tobacco waste extract coupled with nicotine removal by Pseudomonas sp. JY-Q/5∆. Int J Biol Macromol 2025; 293:139336. [PMID: 39740714 DOI: 10.1016/j.ijbiomac.2024.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed. In this study, BC production by Acetobacter oryzoeni MGC-N8819 was carried out in four dilutions (5 %, 10 %, 15 %, and 20 %) of TWE. 15 % TWE without nicotine removal resulting in a 3.27 g/L BC production. Considering the inhibitor effect of nicotine on BC synthesis. Pseudomonas sp. JY-Q/5∆, an efficient nicotine-degrading mutant strain without the ability of glucose consumption, was statically co-cultured with MGCN8819, and the BC production was increased to 4.61 g/L after 7 days of cultivation. To eliminate the limitation of insufficient oxygen supply, BC films were harvested on day 7 and cultured for an additional 5 days resulting in a 6.00 g/L final BC production. Remarkably, the co-culture of MGC-N8819 and JY-Q/5∆ improved BC properties in terms of fiber diameter (28 nm), mechanical properties (tensile strength to 67 MPa and elongation at break to 23 %), and thermal stability (the maximum decomposition temperature was 600 °C). This study suggests a valuable strategy for improving BC production using agricultural waste.
Collapse
Affiliation(s)
- Wenxia Nie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Menjie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Tong Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Jian Xu
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China
| | - Jiajun Zhong
- International Division, Hangzhou High School, Hangzhou 310021, Zhejiang Province, PR China
| | - Yang Yang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Yin FW, Sun XL, Zheng WL, Yin LF, Luo X, Zhang YY, Wang YF, Fu YQ. Development of a Strategy for L-Lactic Acid Production by Rhizopus oryzae Using Zizania latifolia Waste and Cane Molasses as Carbon Sources. Molecules 2023; 28:6234. [PMID: 37687063 PMCID: PMC10488812 DOI: 10.3390/molecules28176234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.
Collapse
Affiliation(s)
- Feng-Wei Yin
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Xiao-Long Sun
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Wei-Long Zheng
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Long-Fei Yin
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Xi Luo
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Ying-Ying Zhang
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Yan-Fei Wang
- Taizhou Institute of Product Quality and Safety Inspection, Taizhou 318000, China
| | - Yong-Qian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| |
Collapse
|
3
|
The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review. Bioengineering (Basel) 2022; 9:bioengineering9110695. [DOI: 10.3390/bioengineering9110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Huangjiu lees (HL) is a byproduct in Chinese Huangjiu production with various nutrient and biological functional components. Without efficient treatment, it could cause environmental issues and bioresource wasting. Existing dominant recovery approaches focus on large-scale disposal, but they ignore the application of high-value components. This study discusses the advantages and limitations of existing resourcing approaches, such as feed, food and biogas biological production, considering the efficiency and value of HL resourcing. The extraction of functional components as a suggestion for HL cascade utilization is pointed out. This study is expected to promote the application of HL resourcing.
Collapse
|
4
|
Engineered Microbial Cell Factories for Sustainable Production of L-Lactic Acid: A Critical Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With the increasing demand for the biodegradable polymer material polylactic acid and its advantage of being metabolized by the human body, L-lactic acid (L-LA) is becoming increasingly attractive in environmental protection and food industry applications. However, the supply of L-LA is not satisfied, and the price is still high. Compared to enzymatic and chemical synthesis methods, L-LA production by microbial fermentation has the advantages of low cost, large yield, simple operation, and environmental protection. This review summarizes the advances in engineering microbial cell factories to produce L-LA. First, the synthetic pathways and microorganisms for L-LA production are outlined. Then, the metabolic engineering strategies for constructing cell factories to overproduce L-LA are summarized and fermentation modes for L-LA production are also given. Finally, the challenges and prospects of the microbial production of L-LA are discussed. This review provides theoretical guidance for researchers engaged in L-LA production.
Collapse
|
5
|
Baidurah S, Kobayashi T, Aziz AA. PLA Based Plastics for Enhanced Sustainability of the Environment. ENCYCLOPEDIA OF MATERIALS: PLASTICS AND POLYMERS 2022:511-519. [DOI: 10.1016/b978-0-12-820352-1.00175-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Augustiniene E, Valanciene E, Matulis P, Syrpas M, Jonuskiene I, Malys N. Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering. Crit Rev Biotechnol 2021; 42:342-360. [PMID: 34412525 DOI: 10.1080/07388551.2021.1940088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactic acid is an important platform chemical used in the food, agriculture, cosmetic, pharmaceutical, and chemical industries. It serves as a building block for the production of polylactic acid (PLA), a biodegradable polymer, which can replace traditional petroleum-based plastics and help to reduce environmental pollution. Cost-effective production of optically pure l- and d-lactic acids is necessary to achieve a quality and thermostable PLA product. This paper evaluates research advances in the bioproduction of l- and d-lactic acids using microbial fermentation. Special emphasis is given to the development of metabolically engineered microbial strains and processes tailored to alternative and flexible feedstock concepts such as: lignocellulose, glycerol, C1-gases, and agricultural-food industry byproducts. Alternative fermentation concepts that can improve lactic acid production are discussed. The potential use of inducible gene expression systems for the development of biosensors to facilitate the screening and engineering of lactic acid-producing microorganisms is discussed.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Valanciene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Paulius Matulis
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Michail Syrpas
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilona Jonuskiene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Naglis Malys
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
7
|
Zheng Y, Zhang T, Lu Y, Wang L. Monascus pilosus YX-1125: An efficient digester for directly treating ultra-high-strength liquor wastewater and producing short-chain fatty acids under multiple-stress conditions. BIORESOURCE TECHNOLOGY 2021; 331:125050. [PMID: 33812744 DOI: 10.1016/j.biortech.2021.125050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Ultra-high-strength liquor wastewater (UHS-LWW) is rich in organic matter, and the required treatment is expensive. Here, an extremophilic strain Monascus pilosus YX-1125 was isolated for the direct conversion of UHS-LWW to short-chain fatty acids (SCFAs). Strain YX-1125 is an efficient SCFA producer with carbohydrate metabolic flexibility under multiple-stress conditions. Moreover, strain YX-1125 could tolerate up to 75 g/L, 100 g/L, and 50 g/L of ethanol, organic acids, and salt, respectively, without inhibition. In repeated-cycle fermentations, 17.8 g/L of butyric acid and 2.0 g/L of propionic acid were produced from UHS-LWW at the fifth cycle, which are the highest concentrations of wastewater-derived SCFAs reported to date. After SCFA recovery, a 98.9% COD reduction was achieved, which is estimated to reduce treatment costs by 91.7%. Results indicate that M. pilosus YX-1125 is a promising strain for the direct treatment of UHS-LWW, and for converting it into valuable biochemicals without any pre-treatment.
Collapse
Affiliation(s)
- Yuxi Zheng
- Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Tianyuan Zhang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua University, Jiangsu Province 215163, China
| | - Yun Lu
- Moutai Institute, Renhuai 564500, Guizhou Province, China
| | - Li'ao Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
8
|
Li F, Foucat L, Bonnin E. Effect of solid loading on the behaviour of pectin-degrading enzymes. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:107. [PMID: 33910612 PMCID: PMC8082855 DOI: 10.1186/s13068-021-01957-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pectin plays a role in the recalcitrance of plant biomass by affecting the accessibility of other cell wall components to enzymatic degradation. Elimination of pectin consequently has a positive impact on the saccharification of pectin-rich biomass. This work thus focused on the behaviour of different pectin-degrading enzymes in the presence of low (5%) to high (35%) solid loading of lemon peel. RESULTS High solid loading of lemon peel affected pectin solubilisation differently depending on the pectinase used. Pectin lyase was less sensitive to a reduction of water content than was a mixture of endopolygalacturonase and pectin methylesterase, regardless of whether or not the latter's mode of action is processive or not. Marked changes in water mobility were observed along with enzymatic degradation depending on the enzyme used. However, the pectin lyase resulted in less pronounced shifts in water distribution than polygalacturonase-pectin methylesterase mixtures. At similar pectin concentration, pectin solutions hindered the diffusion of hydrolases more than the solid substrate. This can be attributed to the high viscosity of the highly concentrated pectin solutions while the solid substrate may provide continuous diffusion paths through pores. CONCLUSIONS The increase in solid substrate loading reduced the efficiency of pectin-degrading enzymes catalysing hydrolysis more significantly than those catalysing β-elimination. LF-NMR experiments highlighted the impact of solid loading on water mobility. Compared to other enzymes and whatever the solid loading, pectin lyase led to longer relaxation times linked with the most destructuration of the solid substrate. This new information could benefit the biorefinery processing of pectin-rich plant material when enzymes are used in the treatment.
Collapse
Affiliation(s)
- Fan Li
- INRAE, UR 1268, Biopolymers Interactions Assemblies BIA, F-44316, Nantes, France
- School of Life Sciences, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Loïc Foucat
- INRAE, UR 1268, Biopolymers Interactions Assemblies BIA, F-44316, Nantes, France
- INRAE, BIBS facility, F-44316, Nantes, France
| | - Estelle Bonnin
- INRAE, UR 1268, Biopolymers Interactions Assemblies BIA, F-44316, Nantes, France.
| |
Collapse
|
9
|
Li J, Tang X, Qian H, Yang Y, Zhu X, Wu Q, Mu Y, Huang Z. Analysis of Saccharification Products of High-Concentration Glutinous Rice Fermentation by Rhizopus nigricans Q3 and Alcoholic Fermentation of Saccharomyces cerevisiae GY-1. ACS OMEGA 2021; 6:8038-8044. [PMID: 33817463 PMCID: PMC8014914 DOI: 10.1021/acsomega.0c05452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/02/2021] [Indexed: 06/01/2023]
Abstract
A two-stage process was used to prepare rice alcohol, i.e., saccharification of glutinous rice by Rhizopus nigricans Q3, followed by Saccharomyces cerevisiae's fermentation. Rhizopus nigricans Q3 was cultured during the saccharification stage, and Saccharomyces cerevisiae GY-1 was added in the fermentation stage. Total sugar content and reducing sugar content in these two stages were analyzed. The relationship between the production proportion and consumption of the reducing sugar in the saccharification interval was analyzed using reducing sugar indices. It is an important rule that the high-concentration syrup and oligosaccharides prepared by glutinous rice could reach 42°Bx and 250 mg/mL by high-concentration fermentation in the growth stage of R. nigricans Q3.
Collapse
Affiliation(s)
- Junjun Li
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Xianghua Tang
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Hong Qian
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Yunjuan Yang
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Xuan Zhu
- Guangdong
Haid Group Co., Ltd., Guangzhou 51400, P. R. China
| | - Qian Wu
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- Key
Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P. R. China
| | - Yuelin Mu
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- Key
Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P. R. China
| | - Zunxi Huang
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- Key
Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P. R. China
| |
Collapse
|
10
|
Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. SUSTAINABILITY 2020. [DOI: 10.3390/su12208360] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in 1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste, 79% is either in landfills or the environment. The purpose of the review is to establish the current global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable plastics. This integrative and consolidated review thus builds on previous studies that have focused either on one or a few of the aspects considered in this paper. Three broad items to strongly consider are: Biodegradable plastics and other alternatives are not always environmentally superior to fossil-based plastics; less investment has been made in plastic waste management than in plastics production; and there is no single solution to plastic waste management. Some strategies to push for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one has its own challenges, and country-specific scientific evidence is necessary to justify any suggested solutions. In conclusion, governments from all countries and stakeholders should work to strengthen waste management infrastructure in low- and middle-income countries while extended producer responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in plastic waste management, as they have been found to be effective in Australia, France, Germany, and Ecuador.
Collapse
|
11
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
12
|
Ibarruri J, Hernández I. Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess Biosyst Eng 2019; 42:1285-1300. [DOI: 10.1007/s00449-019-02127-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/05/2019] [Indexed: 02/07/2023]
|
13
|
Ye J, Zheng S, Zhang Z, Yang F, Ma K, Feng Y, Zheng J, Mao D, Yang X. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. BIORESOURCE TECHNOLOGY 2019; 274:518-524. [PMID: 30553964 DOI: 10.1016/j.biortech.2018.12.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In this study, bacterial cellulose (BC) was synthesized by Acetobacter xylinum ATCC 23767 using tobacco waste extract (TWE) as a carbon source. Nicotine was found to be an inhibitory factor for BC synthesis, but it can be removed at pH 9.0 by steam distillation. After removing nicotine, the BC production was 2.27 g/L in TWE prepared with solid-liquid (S-L) ratio at 1:10. To further enhance the BC production, two fermentation stages were performed over 16 days by re-adjusting the pH to 6.5 at 7 days, after the first fermentation stage was completed. Using this two-stage fermentation, the BC production could reach 5.2 g/L. Structural and thermal analysis by FE-SEM, FT-IR, XRD and TGA showed the properties of BC obtained from TWE were similar to that from Hestrin-Schramm (HS) medium. Considering the huge disposal tobacco waste in China, the present study provides an alternative methodology to synthesize BC.
Collapse
Affiliation(s)
- Jianbin Ye
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Shanshan Zheng
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Feng Yang
- Henan Cigarette Industrial Tobacco Sheet Co, Ltd, Henan, Xuchang 461000, China
| | - Ke Ma
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Yinjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, China
| | - Jianqiang Zheng
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Duobin Mao
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China
| | - Xuepeng Yang
- School of Food and Biological Engineering, Henan Provincial Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Dongfeng Road 5#, Zhengzhou 450002, Henan Province, China.
| |
Collapse
|
14
|
Zhang M, Zeng G, Pan Y, Qi N. Difference research of pectins extracted from tobacco waste by heat reflux extraction and microwave-assisted extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Zheng YX, Wang YL, Pan J, Zhang JR, Dai Y, Chen KY. Semi-continuous production of high-activity pectinases by immobilized Rhizopus oryzae using tobacco wastewater as substrate and their utilization in the hydrolysis of pectin-containing lignocellulosic biomass at high solid content. BIORESOURCE TECHNOLOGY 2017; 241:1138-1144. [PMID: 28673517 DOI: 10.1016/j.biortech.2017.06.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
In this study, highly reactive endo- and exo-polygalacturonases (PGs) were produced from the tobacco industry wastewater using immobilized Rhizopus oryzae. Compared with free cells, immobilized cells increased enzyme activity 2.8-fold and reduced production time to 24h by shake-flask production. Moreover, the immobilized cells enabled the semi-continuous production of enzymes through repeated-batch mode for seven consecutive cycles in a scale-up bioreactor. During the first five cycles, the average endo-PG and exo-PG activities reached 307.5 and 242.6U/ml, respectively. The addition of crude enzyme for the hydrolysis of pectin-containing lignocellulosic biomass under high-gravity conditions increased glucose release 4.2-fold (115.4 vs. 29.0g/L), compared with hydrolysis using cellulase alone. This process achieves the efficient production of pectin-degrading enzymes, provides a cost-effective method for tobacco wastewater treatment, and offers the possibility to obtain fermentable sugars with high-titer from pectin-containing lignocellulosic biomass, which has important potential for the commercial production of bio-fuels.
Collapse
Affiliation(s)
- Yu-Xi Zheng
- Chongqing University, Chongqing 400044, China; Research Center for Tobacco Bioengineering and Technology of Chongqing Science and Technology Commission, Chongqing 401147, China; China Tobacco Chongqing Industrial Co. Ltd., Chongqing 400000, China
| | - Yuan-Liang Wang
- Chongqing University, Chongqing 400044, China; Research Center for Tobacco Bioengineering and Technology of Chongqing Science and Technology Commission, Chongqing 401147, China.
| | - Jun Pan
- Chongqing University, Chongqing 400044, China; Research Center for Tobacco Bioengineering and Technology of Chongqing Science and Technology Commission, Chongqing 401147, China
| | - Jian-Rong Zhang
- Research Center for Tobacco Bioengineering and Technology of Chongqing Science and Technology Commission, Chongqing 401147, China
| | - Ya Dai
- China Tobacco Chongqing Industrial Co. Ltd., Chongqing 400000, China
| | - Kun-Yan Chen
- China Tobacco Chongqing Industrial Co. Ltd., Chongqing 400000, China
| |
Collapse
|