1
|
Cedeno FRP, Olubiyo OJ, Ferreira S. From microbial proteins to cultivated meat for alternative meat-like products: a review on sustainable fermentation approaches. J Biol Eng 2025; 19:44. [PMID: 40369620 PMCID: PMC12077041 DOI: 10.1186/s13036-025-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
The global demand for protein is rapidly increasing due to population growth and changing dietary preferences, highlighting the need for sustainable alternatives to traditional animal-based proteins. This review explores cultivated meat and microbial alternative proteins, focusing on their potential to meet nutritional needs while mitigating environmental impacts. It also examines the production of cultivated meat as well as various sources of microbial proteins, including mycoproteins, bacterial proteins, and microalgae, highlighting their nutritional profiles, production methods, and commercial applications. This includes an evaluation of the state of commercialization of mycoproteins and the innovative use of agricultural and industrial by-products as substrates for microbial fermentation. The integration of microbial protein production with the bioenergy sector is evaluated as a relevant alternative to attain a synergetic effect between energy and food production systems. Ultimately, this work aims to underscore the importance of microbial proteins in advancing towards a more sustainable protein production system, offering insights into current challenges and future opportunities in the field of fermentation to produce alternative proteins.
Collapse
Affiliation(s)
- Fernando Roberto Paz Cedeno
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Olumide Joseph Olubiyo
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Sungil Ferreira
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Li R, Fan X, Jiang Y, Wang R, Guo R, Zhang Y, Fu S. From anaerobic digestion to single cell protein synthesis: A promising route beyond biogas utilization. WATER RESEARCH 2023; 243:120417. [PMID: 37517149 DOI: 10.1016/j.watres.2023.120417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The accumulation of a large amount of organic solid waste and the lack of sufficient protein supply worldwide are two major challenges caused by rapid population growth. Anaerobic digestion is the main force of organic waste treatment, and the high-value utilization of its products (biogas and digestate) has been widely concerned. These products can be used as nutrients and energy sources for microorganisms such as microalgae, yeast, methane-oxidizing bacteria(MOB), and hydrogen-oxidizing bacteria(HOB) to produce single cell protein(SCP), which contributes to the achievement of sustainable development goals. This new model of energy conversion can construct a bioeconomic cycle from waste to nutritional products, which treats waste without additional carbon emissions and can harvest high-value biomass. Techno-economic analysis shows that the SCP from biogas and digestate has higher profit than biogas electricity generation, and its production cost is lower than the SCP using special raw materials as the substrate. In this review, the case of SCP-rich microorganisms using anaerobic digestion products for growth was investigated. Some of the challenges faced by the process and the latest developments were analyzed, and their potential economic and environmental value was verified.
Collapse
Affiliation(s)
- Rui Li
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - XiaoLei Fan
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - YuFeng Jiang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RuoNan Wang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - RongBo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - ShanFei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
3
|
Onyeaka H, Anumudu CK, Okpe C, Okafor A, Ihenetu F, Miri T, Odeyemi OA, Anyogu A. Single Cell Protein for Foods and Feeds: A Review of Trends. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Predictions on the world’s population in the next few decades suggest that the global demand for animal-derived proteins may not be met if current conventional agriculture approaches are used. One promising solution to this complex crisis lies in the use of single-cell proteins (SCP). SCP refers to the edible biomass of unicellular microorganisms and can be developed as animal feeds or human foods. This paper provides a detailed overview on research towards the production and utilisation of SCPs and trends within the field.
Study Design:
A bibliometric based study was conducted on 425 SCP research articles collected from the Web of Science database, analysing the most cited papers using VOSviewer software, and contributing authors, affiliations and country of origin. Research publications on SCP started in 1961 and has grown steadily over the years.
Discussion:
Emerging research topics within SCP production focused on the use of improved fungal strains, the composition and characteristics of SCPs based on the type of substrates used, industrial production processes and the use of waste for SCP production, which serves the dual purpose of mitigating the cost associated with waste disposal and production of a valuable product.
Collapse
|
4
|
Yang F, Jin Z, Nawaz M, Xiao Y, Jiang Y, Hu J, Li J, Gao MT. Oligosaccharides in straw hydrolysate could improve the production of single-cell protein with Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2928-2936. [PMID: 34762318 DOI: 10.1002/jsfa.11633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Using agricultural wastes to produce single-cell proteins (SCP) can reduce production costs effectively. The aims of this study were to investigate the effects of enzyme loading on the components of rice straw (RS) hydrolysate and their effects on the growth of yeast. RESULTS At the same glucose concentration, the dry weight of cells produced in the hydrolysate was 2.89 times higher than that in 2 g L-1 yeast extract (YE) medium, indicating that the hydrolysate was a suitable substrate for yeast growth. Ethanol precipitation followed by analysis showed that there were many oligosaccharides in the hydrolysate. The amount of cellulase had an important effect on the production of monosaccharides but had a smaller effect on the amounts and compositions of oligosaccharides. Adding oligosaccharides to the medium had no effect on ethanol production, but it promoted yeast growth and increased SCP production effectively. The results indicate that oligosaccharides were an important growth factor for yeast in the hydrolysate. Compared with YE medium, the cost of the medium with the hydrolysate was reduced by 68.47% when the same dry cell weight was obtained. CONCLUSION Oligosaccharides in the hydrolysate can improve SCP production with low nutrient cost. This finding could reduce the amounts of cellulase required during saccharification and nutrients during culture, providing a new low-cost method for SCP production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheng Jin
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Muhammad Nawaz
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Xiao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yipeng Jiang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- Shandong Yunqing Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
5
|
Lu S, Zheng F, Wen L, He Y, Wang D, Wu M, Wang B. Yeast engineering technologies and their applications to the food industry. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1942037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siyan Lu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Donghui Wang
- SBU of Agriculture, Sinochem Group Co., Ltd., Beijing, China
| | - Manyu Wu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
7
|
Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose. Appl Biochem Biotechnol 2017; 185:163-178. [PMID: 29098561 PMCID: PMC5937888 DOI: 10.1007/s12010-017-2644-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg−1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L−1 h−1 and the yield of 0.40 g g−1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L−1 h−1 and yield of 0.17 g g−1 straw. C. intermedia FL023 was tolerant to 0.5 g L−1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L−1 xylitol from xylose with the productivity of 0.38 g L−1 h−1 and the yield of 0.57 g g−1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.
Collapse
|
8
|
Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Front Microbiol 2017; 8:2009. [PMID: 29081772 PMCID: PMC5645522 DOI: 10.3389/fmicb.2017.02009] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/29/2017] [Indexed: 12/24/2022] Open
Abstract
By 2050, the world would need to produce 1,250 million tonnes of meat and dairy per year to meet global demand for animal-derived protein at current consumption levels. However, growing demand for protein will not be met sustainably by increasing meat and dairy production because of the low efficiency of converting feed to meat and dairy products. New solutions are needed. Single cell protein (SCP), i.e., protein produced in microbial and algal cells, is an option with potential. Much of the recent interest in SCP has focused on the valorisation of side streams by using microorganisms to improve their protein content, which can then be used in animal feed. There is also increased use of mixed populations, rather than pure strains in the production of SCP. In addition, the use of methane as a carbon source for SCP is reaching commercial scales and more protein-rich products are being derived from algae for both food and feed. The following review addresses the latest developments in SCP production from various organisms, giving an overview of commercial exploitation, a review of recent advances in the patent landscape (2001–2016) and a list of industrial players in the SCP field.
Collapse
Affiliation(s)
- Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Marilyn G Wiebe
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|