1
|
Yang Y, Zhang J, Dong S, Li M, Yang P, Meng H, Xiao J. Sustainable Cr(VI) reduction in a membrane-less TPBC-MFC driven by solid watermelon rind. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122637. [PMID: 39326072 DOI: 10.1016/j.jenvman.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Sustainable Cr(VI) reduction by microbial fuel cell (MFC) is a major challenge due to the electrode passivation and available electron donors. In this study, the chromate removal across a period of more than three months in a membrane-less TPBC-MFC with solid watermelon rind (SWMR) as electron donors was investigated. The TPBC benefited the Cr(VI) reduction and voltage output owing to the enhanced mass transfer. The average Cr(VI) removal efficiency (RE) of 97%, effluent COD of 80 mg/L and voltage output of 130 mV were achieved during the long-term operation on the TPBC-MFC. The SEM-EDS analysis showed that all biofilms were predominated by rod- and coccus-shaped bacteria and the Cr(VI) reduction was mainly carried out by the S-cathode. The XPS, XRD and FT-IR analysis revealed that the major product of cathodic Cr(VI) reduction was a Cr(III) precipitate in the form of Cr(OH)3. Microbial community structure disclosed that fermentation microorganisms (e.g. Anaeroarcus) and electroactive bacteria (e.g. Porphyromonadaceae) jointly responsible for SWMR degradation and electricity generation were dominant at the anode, while the chromate-associated microorganisms (e.g. Comamonadaceae and Cloacibacterium) dominated at the cathode. The biofilms adsorbing Cr(OH)3 precipitates fell off from the cathode periodically to avoid the passivation. Overall, our study suggests a really sustainable approach with which a goal of simultaneously reusing watermelon rind, reducing Cr(VI) and producing electricity was attained perfectly.
Collapse
Affiliation(s)
- Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Jinkui Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Sijia Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Minjie Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Pan Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Heng Meng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou Chuangyuan Environment Technology Co. Ltd., Wenzhou, Zhejiang, 325036, China.
| |
Collapse
|
2
|
Bhattacharya A, Neena M, Chatterjee P. Microbial nutrient recovery cell as an efficient and sustainable nutrient recovery option in sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121753. [PMID: 38981265 DOI: 10.1016/j.jenvman.2024.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Globally, nutrient pollution is a serious and challenging concern. Wastewater treatment plants (WWTPs) are designed to prevent the discharge of contaminants resulting from anthropogenic sources to the receiving water bodies. In this study, seasonal nutrient pollution load, and biological nutrient removal efficiency of an anoxic aerobic unit based WWTP were investigated. Seasonal assessment revealed that the average total nitrogen removal efficiency and total phosphorus removal efficiency of the WWTP do not meet the discharge standard of 10 mg/L and 1 mg/L, respectively. Furthermore, the WWTP does not utilize the energy contained in the wastewater. In this regard, dual chamber MFC (D-MFC) has emerged as a promising solution that can not only treat wastewater but can also convert chemical energy present in the wastewater into electrical energy. However, higher N O3- (57 ± 4 mg/L) and P-P O43- (6 ± 0.52 mg/L) concentration in cathodic effluent is a major drawback in D-MFC. Therefore, to solve this issue, D-MFC was transformed into a microbial nutrient recovery cell (MNRC) which demonstrated a final N H4+-N and P-P O43- concentration of nearly 1 mg/L with N H4+-N and P-P O43- recovery up to 74 % and 69 %, respectively in the recovery chamber. Besides, MNRC attained a maximum power density of 307 mW/m3 and a current density of 1614 mA/m3, thus indicating MNRC is an eco-friendly, energy-neutral, and promising technology for electricity generation and recovering nutrients.
Collapse
Affiliation(s)
| | - Margret Neena
- Department of Environmental Studies, Sacred Heart College, Kerala, India
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India; Department of Climate Change, Indian Institute of Technology Hyderabad, India.
| |
Collapse
|
3
|
Sonawane JM, Mahadevan R, Pandey A, Greener J. Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon 2022; 8:e12353. [PMID: 36582703 PMCID: PMC9792797 DOI: 10.1016/j.heliyon.2022.e12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing untreated environmental outputs from industry and the rising human population have increased the burden of wastewater and other waste streams on the environment. The most prevalent wastewater treatment methods include the activated sludge process, which requires aeration and is, therefore, energy and cost-intensive. The current trend towards a circular economy facilitates the recovery of waste materials as a resource. Along with the amount, the complexity of wastewater is increasing day by day. Therefore, wastewater treatment processes must be transformed into cost-effective and sustainable methods. Microbial fuel cells (MFCs) use electroactive microbes to extract chemical energy from waste organic molecules to generate electricity via waste treatment. This review focuses use of MFCs as an energy converter using wastewater from various sources. The different substrate sources that are evaluated include industrial, agricultural, domestic, and pharmaceutical types. The article also highlights the effect of operational parameters such as organic load, pH, current, and concentration on the MFC output. The article also covers MFC functioning with respect to the substrate, and the associated performance parameters, such as power generation and wastewater treatment matrices, are given. The review also illustrates the success stories of various MFC configurations. We emphasize the significant measures required to fill in the gaps related to the effect of substrate type on different MFC configurations, identification of microbes for use as biocatalysts, and development of biocathodes for the further improvement of the system. Finally, we shortlisted the best performing substrates based on the maximum current and power, Coulombic efficiency, and chemical oxygen demand removal upon the treatment of substrates in MFCs. This information will guide industries that wish to use MFC technology to treat generated effluent from various processes.
Collapse
Affiliation(s)
- Jayesh M. Sonawane
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
- CHU de Québec, Centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC, Canada
| |
Collapse
|
4
|
Lee YJ, Lin BL, Xue M, Tsunemi K. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review. BIORESOURCE TECHNOLOGY 2022; 363:127927. [PMID: 36096326 DOI: 10.1016/j.biortech.2022.127927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This review updates the current research efforts on using BES to recover NH3/NH4+, highlighting the novel configurations and introducing the working principles and the applications of microbial fuel cell (MFC), microbial electrolysis cell (MEC), microbial desalination cell (MDC), and microbial electrosynthesis cell (MESC) for NH3/NH4+ removal/recovery. However, commonly studied BES processes for NH3/NH4+ removal/recovery are energy intensive with external aeration needed for NH3 stripping being the largest energy input. In such a process bipolar membranes used for yielding a local alkaline pool recovering NH3 is not cost-effective. This gives a chance to microbial electrosynthesis which turned out to be a potential alternative option to approach circular bioeconomy. Furtherly, the reactor volume and NH3/NH4+ removal/recovery efficiency has a weakly positive correlation, indicating that there might be other factors controlling the reactor performance that are yet to be investigated.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Mianqiang Xue
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kiyotaka Tsunemi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
5
|
Sugioka M, Yoshida N, Yamane T, Kakihana Y, Higa M, Matsumura T, Sakoda M, Iida K. Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor. ENVIRONMENTAL RESEARCH 2022; 205:112416. [PMID: 34808126 DOI: 10.1016/j.envres.2021.112416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Although the treatment of municipal wastewater using microbial fuel cells (MFCs) has been extensively studied, scaling the systems up for practical use remains challenging. In this study, a 226 L sewage treatment reactor was equipped with 27 MFC units, and its chemical oxygen demand (COD) removal and electricity production were evaluated. The MFC units were tubular air cores with a diameter of 5 cm and length of 100 cm, which were wrapped with a carbon-based cathode, anion exchange membrane (AEM), and nonwoven graphite fabric. The air-cathode-AEM MFC generated 0.12-0.30 A/m2, 0.072-0.51 W/m3, and 1.7-4.6 Wh/m3 in a chemostat reactor with a COD of 140-36 mg/L and hydraulic retention time (HRT) of 9-42 h throughout a year. The decrease in the COD was represented as the first-order rate constant of 0.038. The rate constant was comparable to that of other air-cathode MFCs with cation exchange membranes, indicating the necessity of a posttreatment to meet the discharge standard. It has been estimated that the MFC operation for 24 h before post-aeration can reduce the energy required to meet the discharge standard by 70%, suggesting the potential applicability of MFC in long HRT-treatments such as oxidation ditch. The resistances of the anode, cathode, and AEM were 15, 7.0, and 0.51 mΩ m2, respectively, and surface dirt rather than deterioration primarily increased the AEM resistance. A current exceeding 0.2 A/m2 significantly increases the anode potential, indicating that the current was limited by low COD. Increasing the anode-specific surface area can improve air-AEM MFCs used for practical applications.
Collapse
Affiliation(s)
- Mari Sugioka
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan.
| | - Taiki Yamane
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Yuriko Kakihana
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | | | - Mitsuhiro Sakoda
- Water & Sewage Department, Tamano Consultants Co., Ltd., 2-17-14, Higashisakura, Higashi-ku, Nagoya, Aichi, Japan
| | - Kazuki Iida
- River & Water Resources Division, NIPPON KOEI Co., Ltd., 5-4 Kojimachi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
6
|
Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Kamalesh R, Karishma S. Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. CHEMOSPHERE 2022; 290:133295. [PMID: 34914952 DOI: 10.1016/j.chemosphere.2021.133295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is one of the promising alternative energy systems where the catalytic conversion of chemical energy into electrical energy takes places with the help of microorganisms. The basic configuration of MFC consists of three major components such as electrodes (anode and cathode), catalyst (microorganism) and proton transport/exchange membrane (PEM). MFC classified into four types based on the substrate utilized for the catalytic energy conversion process such as Liquid-phase MFC, Solid-phase MFC, Plant-MFC and Algae-MFC. The core performance of MFC is organic substrate oxidation and electron transfer. Microorganisms and electrodes are the key factors that decide the efficiency of MFC system for electricity generation. Microorganism catalysis degradation of organic matters and assist the electron transfer to anode surface, the conductivity of anode material decides the rate of electron transport to cathode through external circuit where electrons are reduced with hydrogen and form water with oxygen. Not limited to electricity generation, MFC also has diverse applications in different sectors including wastewater treatment, biofuel (biohydrogen) production and used as biosensor for detection of biological oxygen demand (BOD) of wastewater and different contaminants concentration in water. This review explains different types of MFC systems and their core performance towards energy conversion and waste management. Also provides an insight on different factors that significantly affect the MFC performance and different aspects of application of MFC systems in various sectors. The challenges of MFC system design, operations and implementation in pilot scale level and the direction for future research are also described in the present review.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| |
Collapse
|
7
|
Yamane T, Yoshida N, Sugioka M. Estimation of total energy requirement for sewage treatment by a microbial fuel cell with a one-meter air-cathode assuming Michaelis-Menten COD degradation. RSC Adv 2021; 11:20036-20045. [PMID: 35479885 PMCID: PMC9033653 DOI: 10.1039/d1ra03061b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
Calculations of chemical oxygen demand (COD) degradation in sewage by a microbial fuel cell (MFC) were used to estimate the total energy required for treatment of the sewage. Mono-exponential regression (MER) and the Michaelis-Menten equation (MME) were used to describe the MFC's COD removal rate (CRR). The tubular MFC used in this study (ϕ 5.0 × 100 cm) consisted of an air core surrounding a carbon-based cathode, an anion exchange membrane, and graphite non-woven fabric immersed in sewage. The MFC generated 0.26 A m-2 of the electrode area and 0.32 W m-3 of the sewage water, and 3.9 W h m-3 in a chemostat reactor supplemented continuously with sewage containing 180 mg L-1 of COD with a hydraulic retention time (HRT) of 12 h. The COD removal and coulombic efficiency (CE) were 46% and 19%, respectively, and the energy generation efficiency (EGE) was 0.054 kW h kg-1-COD. The CRR and current in the MFC were strongly dependent on the COD, which could be controlled by varying the HRT. The MER model predicted first-order rate constants of 0.054 and 0.034 for reactors with and without MFC, respectively. The difference in these values indicated that using MFC significantly increased the COD removal. The results of fitting the experimental data to the MME suggested that the total COD can be separated into nondegradable CODs (C n) and degradable CODs (C d) via MFC. The values of CRR for C d and CE suggest that MFC pretreatment for 12 hours prior to aeration results in a 75% decrease in net energy consumption while reducing sewage COD from 180 to 20 mg L-1.
Collapse
Affiliation(s)
- Taiki Yamane
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech) Gokiso-Cho, Showa-Ku Nagoya Aichi Japan
| | - Naoko Yoshida
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech) Gokiso-Cho, Showa-Ku Nagoya Aichi Japan
| | - Mari Sugioka
- Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech) Gokiso-Cho, Showa-Ku Nagoya Aichi Japan
| |
Collapse
|
8
|
Electro-Oxidation of Humic Acids Using Platinum Electrodes: An Experimental Approach and Kinetic Modelling. WATER 2020. [DOI: 10.3390/w12082250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humic acids (HA) are a potential hazard to aquatic ecosystems and human health. Because biological treatment of contaminated water does not satisfactorily remove these pollutants, novel approaches are under evaluation. This work explores electrochemical oxidation of HA in aqueous solution in a lab-scale apparatus using platinum-coated titanium electrodes. We evaluated the effects of HA concentration, current density, chloride concentration and ionic strength on the rate of HA oxidation. The initial reaction rate method was used for determining the rate law of HA degradation. The results showed that the reaction rate was first-order relative to HA concentration, chloride concentration and current density. An appreciable effect of ionic strength was also observed, most likely due to the polyanionic character of HA. We propose a kinetic model that satisfactorily fits the experimental data.
Collapse
|
9
|
|
10
|
Deng Y, Chen N, Feng C, Chen F, Wang H, Feng Z, Zheng Y, Kuang P, Hu W. Research on complexation ability, aromaticity, mobility and cytotoxicity of humic-like substances during degradation process by electrochemical oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:811-820. [PMID: 31125811 DOI: 10.1016/j.envpol.2019.05.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The humic-like substances were the main organic components in most wastewater (e.g. domestic sewage, toilet wastewater and landfill leachate). Two types of actual humic-like substances (fulvic acid (FA) and biologically treated landfill leachate (BTLL)) were selected to describe the changes in the properties of humic-like substances (complexation ability, aromaticity and mobility) during electrochemical oxidation. Meanwhile, the acute cytotoxicity of FA and BTLL was also tested by acute toxicological test of luminescent bacteria. The results showed that the consumption of coordinating groups such as phenolic groups and hydrogen bonds reduced the complexation ability of FA and BTLL. The functional groups were degraded with the removal order of quinone group, phenolic group and aromatic group, and finally realized the molecular saturation and aromaticity decrease for humic-like substances. The mobility of FA and BTLL was decreased because of the enhancement of hydrophobicity during electrolysis process. Furthermore, the available chlorine produced during electrochemical oxidation was the main acute cytotoxicity substance, therefore, it is necessary to remove it before discharge in order to reduce ecological risks. This study provides a basis for understanding and evaluating the electrochemical degradation process of humic-like substances in detail.
Collapse
Affiliation(s)
- Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Fangxin Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zhengyuan Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Yuhan Zheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Peijing Kuang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Weiwu Hu
- China University of Geosciences (Beijing), Journal Center, Beijing, 100083, PR China
| |
Collapse
|
11
|
Ren J, Li J, Li J, Chen Z, Cheng F. Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments. CHEMOSPHERE 2019; 222:431-439. [PMID: 30716545 DOI: 10.1016/j.chemosphere.2019.01.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Aromatic compounds are widely contained in coking wastewater (CWW), drawing great attention due to their potential risks to environment and human health. Integrated systems combining biological processes with advanced treatments are the current trend of CWW reclamation. However, the variations of aromatic composition throughout these processes are poorly understood. This study investigated the occurrence, fate and removal of aromatic compounds in a full scale CWW reclamation plant with eight treatment stages by gas chromatography-mass spectrometry and optical spectrum. The results showed that polycyclic aromatic hydrocarbons (PAHs), phenols and heterocyclic compounds accounted for 38.9%, 33.5% and 22.6% of the total organics in CWW, respectively. Among them, PAHs were more sensitive to anaerobic digestion, while phenols and heterocyclics had higher bioavailability in aerobic process. Although more than 90% DOC could be removed in biological processes, the bio-effluent was still brown in color, implying the residues of aromatics to the advanced treatments. The interaction between the bio-refractory organics and the advanced treatments suggested that multiple aromatic compounds were selectively removed along the treatment train. Specifically, coagulation, sand filtration, ultrafiltration, adsorption, nanofiltration and reverse osmosis were found to be highly related to the elimination of residual isoquinoline, phenol, cresol, fluoranthene, benzene and humic-like organics, correspondingly. Findings in this study indicated that adsorption was a key step for removing chromophoric PAHs with more aromatic rings, while fouling control in the end-point membrane systems should be focused on the elimination of BTEXs and humic-like substances.
Collapse
Affiliation(s)
- Jing Ren
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China
| | - Jianfeng Li
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Jianguo Li
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China
| | - Zuliang Chen
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Ni BJ. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:910-920. [PMID: 29929329 DOI: 10.1016/j.scitotenv.2018.05.136] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Wastewater is now considered to be a vital reusable source of water reuse and saving energy. However, current wastewater has multiple limitations such as high energy costs, large quantities of residuals being generated and lacking in potential resources. Recently, great attention has been paid to microbial fuel cells (MFCs) due to their mild operating conditions where a variety of biodegradable substrates can serve as fuel. MFCs can be used in wastewater treatment facilities to break down organic matter, and they have also been analysed for application as a biosensor such as a sensor for biological oxygen which demands monitoring. MFCs represent an innovation technology solution that is simple and rapid. Despite the advantages of this technology, there are still practical barriers to consider including low electricity production, current instability, high internal resistance and costly materials used. Thus, many problems must be overcome and doing this requires a more detailed analysis of energy production, consumption, and application. Currently, real-world applications of MFCs are limited due to their low power density level of only several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This paper explores several aspects of MFCs such as anode, cathode and membrane, and in an effort to overcome the practical challenges of this system.
Collapse
Affiliation(s)
- M H Do
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Y Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea.
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - L D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - B J Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
13
|
Shortcut Biological Nitrogen Removal (SBNR) in an MFC Anode Chamber under Microaerobic Conditions: The Effect of C/N Ratio and Kinetic Study. SUSTAINABILITY 2018. [DOI: 10.3390/su10041062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the feasibility of the Shortcut Biological Nitrogen Removal (SBNR) in the anodic chamber of a Microbial Fuel Cell (MFC) was investigated. Thirty day experiments were carried out using synthetic wastewaters with a Total Organic Carbon vs. nitrogen ratio (TOC/N) ranging from 0.1 to 1. Ammonium, nitrite, nitrate, pH, and TOC were daily monitored. Results showed that microaerobic conditions in the anodic chamber favored the development of nitritation reaction, due to oxygen transfer from the cathodic chamber through the membrane. Nitritation was found to depend on TOC/N ratio: at TOC/N equal to 0.1 an ammonium removal efficiency of up to 76% was observed. Once the oxygen supply to the cathodic chamber was stopped, denitritation occurred, favored by an increase of the TOC/N ratio: a nitrite removal of 80.3% was achieved at TOC/N equal to 0.75. The presence of nitrogen species strongly affected the potential of the electrochemical system: in the nitritation step, the Open Circuit Voltage (OCV) decreased from 180 mV to 21 mV with the decrease of the TOC/N ratio in the investigated range. Lower OCV values were observed in the denitritation steps since the organic carbon acted as the energy source for the conversion of nitrite to nitrogen gas. A kinetic analysis was also performed. Monod and Blackman models described the ammonium and the organic carbon removal processes well during the nitritation step, respectively, while Blackman-Blackman fitted experimental results of the denitritation step better.
Collapse
|
14
|
Wang J, Song X, Wang Y, Bai J, Li M, Dong G, Lin F, Lv Y, Yan D. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:53-62. [PMID: 28686895 DOI: 10.1016/j.scitotenv.2017.06.243] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Rhizodeposits excreted by various macrophytes might lead to the potential discrepancy of microbial community distribution in constructed wetland coupled with microbial fuel cell (CW-MFC), which has been considered as main factors for the variations of bioelectricity generation during wastewater treatment. In this study, CW-MFC has been associated with three macrophytes (J. effuses, T. orientalis and S. validus) for domestic sewage treatment, also unplanted CW-MFC was performed as a control system. Macrophyte T. orientalis and S. validus can significantly strengthen the bioenergy output in CW-MFC. Highest current (94.27mAm-2) and power densities (21.53mWm-2) were obtained in CW-MFC planted with T. orientalis. Removal efficiencies of COD, NO3-N and NH3-N in CW-MFC planted with S. validus was respectively 5.8%, 7.2%, and 23.9% higher than that of unplanted system. Notably, the oxygen depletion in S. validus CW-MFC reactor during the dark cycle was higher that of other reactors. Results of high-throughput sequencing analysis showed that higher biodiversity was observed in rhizosphere than that of anode material, and the relative abundance of Desulfobulbus sp. and Geobacter sp. has been apparently promoted in the samples of rhizosphere. However, a higher relative abundance of electrochemically active bacteria (Proteobacteria) was observed on the surface of anode electrode material. In addition, microbes (Cytophagales, Clostridium sp., and Dechloromonas sp., and so forth) found in rhizosphere show a capability to decompose refractory contaminants. These contaminants and death roots in the upper part of wetland could be oxidized to fat acids, which may be used as the electrons acceptors for promoting the bioelectricity generation during wastewater treatment.
Collapse
Affiliation(s)
- Junfeng Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100038, China
| | - Manjie Li
- State Key Laboratory Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqiang Dong
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Fanda Lin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yanfeng Lv
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Denghua Yan
- China Institute of Water Resource and Hydropower Research, Beijing 100038, China
| |
Collapse
|
15
|
Xiao B, Luo M, Wang X, Li Z, Chen H, Liu J, Guo X. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:346-352. [PMID: 28778783 DOI: 10.1016/j.wasman.2017.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
To produce energy and reduce sludge production from the treatment of municipal wastewater, four identical microbial fuel cells (MFCs) were constructed in an anoxic-oxic (A/O) process (MFCs-A/O system). Experimental results indicated that this system enhance the removals of chemical oxygen demand (COD) and total nitrogen (TN). The electricity produced by each MFC were ranged from 0.371 to 0.477V (voltage) and from 138 to 227mW/m3 (power density) at the stable stage, when the external resistance was fixed at 1000Ω. The coulombic efficiency of the MFCs-A/O system ranged from 0.31% to 1.68% (mean=0.72%) at the stable stage, respectively. The removals of COD and TN in the MFCs-A/O system were slightly higher than those in the control system. Compared with the control system, the MFCs-A/O system can reduce waste activated sludge production and sludge yield by 24.0% and 24.2%, respectively. The experimental results indicated that the MFC constructed in A/O system improves wastewater treatment and the MFCs-A/O system can produce electricity while reducing sludge production and increasing wastewater treatment efficiency.
Collapse
Affiliation(s)
- Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Zuoxing Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|