1
|
Narayanasamydamodaran S, Kumar N, Zuo J. Profiling and metabolic analysis of microorganisms in bioretention cells vegetated with vetiver and cattail species treating nitrogen and phosphorous. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:861-873. [PMID: 39960092 DOI: 10.1080/15226514.2025.2452942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Bioretention cells (BRCs) are increasingly used to treat nutrients in stormwater runoff, with plants known to enhance nitrogen (TN) and phosphorus (TP) uptake. This study investigated the role of rhizosphere microbial communities in TN, TP, and COD removal across three BRCs: an unvegetated control (CP), one vegetated with vetiver (P1), and another with cattail (P2). Detailed microbiome profiling revealed key taxa across phylum, family, and genus levels contributing to nutrient cycling, with P2 showing the highest species richness and diversity based on OTU counts and diversity indices. Proteobacteria, Acidobacteria, and Verrucomicrobiota were the most prominent phyla, aligning with their known roles in nutrient uptake. Key functional taxa included denitrifiers (e.g., Ramlibacter, TRA3-20), Ammonia Oxidizing Bacteria (AOBs) (e.g., MND1, Ellin 6067), and Phosphate Accumulating Organisms (PAOs) (e.g., Comamonadaceae, Vicinamibacteria), supporting TN (>79%) and TP (>84%) removal rates. Distinct microbial compositions between vegetated BRCs confirmed the role of root exudates in microbial selection and enhanced nutrient removal. These findings emphasize the importance of plant-specific rhizosphere effects and microbial selection in optimizing BRC design for stormwater treatment applications.
Collapse
Affiliation(s)
- Sanjena Narayanasamydamodaran
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Nawnit Kumar
- State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing, China
| | - Jian'e Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| |
Collapse
|
2
|
Men C, Ma Y, Liu J, Zhang Y, Li Z, Zuo J. The difference between tire wear particles and polyethylene microplastics in stormwater filtration systems: Perspectives from aging process, conventional pollutants removal and microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124736. [PMID: 39147222 DOI: 10.1016/j.envpol.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Tire wear particles (TWPs) in stormwater runoff have been widely detected and were generally classified into microplastics (MPs). TWPs and conventional MPs can be intercepted and accumulated in stormwater filtration systems, but their impacts on filtration, adsorption and microbial degradation processes of conventional pollutants (organic matters, nitrate and ammonium) have not been clarified. TWPs are different from MPs in surface feature, chemical components, adsorption ability and leaching of additives, which might lead to their different impacts on conventional pollutants removal. In this study, five different levels of aged polyethylene MPs (PEMPs) and aged TWPs contamination in stormwater filtration systems were simulated using thirty-three filtration columns. Results showed that ultraviolet aging treatment was less influential for the aging of TWPs than that of PEMPs, the specific surface area of aged PEMPs (1.603 m2/g) was over two times of unaged TWPs (0.728 m2/g) in the same size. Aged PEMPs and aged TWPs had different impacts on conventional pollutants removal performance and microbial communities, and the difference might be enlarged with exposure duration. The intensified aged PEMPs contamination generally promoted conventional pollutants removal, whereas aged TWPs showed an opposite trend. Mild contamination (0.01% and 0.1%, wt%) of aged PEMP/TWPs was beneficial to the richness and diversity of microbial communities, whereas higher contamination of aged PEMPs/TWPs was harmful. Aged PEMPs and TWPs had different impact on microbial community structure. Overall, the study found that TWPs were more detrimental than PEMPs in filtration systems. The research underscores the need for more comprehensive investigation into the occurrence, effects and management strategies of TWPs, as well as the importance of distinguishing between TWPs and MPs in future studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Narayanasamydamodaran S, Kumar N, Zuo J. The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail. CHEMOSPHERE 2024; 364:143276. [PMID: 39243897 DOI: 10.1016/j.chemosphere.2024.143276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel. CP served as the unvegetated control, while P1 and P2 were vegetated with vetiver and cattail, respectively. The removal efficiencies of NO₃⁻-N, NH₃⁻-N, NO₂⁻-N, TN, TP, and COD from rainwater were evaluated under saturated and unsaturated conditions. The unvegetated control reactor (CP) achieved TN and TP removal rates of 40.44% and 82.52%, respectively. Reactor P1 (vetiver) demonstrated TN and TP removal rates of 62.92% and 97.19%, respectively. Reactor P2 (cattail) showed TN and TP removal rates of 49.71% and 87.78%, respectively. With the introduction of a saturation zone, TN removal efficiencies increased to 51.69%, 89.22%, and 79.91% for CP, P1, and P2, respectively. However, TP removal efficiencies decreased to 74.81%, 95.04%, and 84.58% for CP, P1, and P2, respectively. Plant tissue uptake tests indicated that vetiver could retain 5 times more TN and twice as much TP compared to cattail. This enhanced performance is attributed to vetiver's high photosynthetic potential as a C4 plant, resilience to varying environmental and nutrient conditions, extensive root network, secretion of oil sesquiterpenes from its root cortex, and the presence of arbuscular mycorrhizal fungi, which secrete glomalin, a substance that promotes water retention and nutrient uptake. Findings from this study indicate that the efficacy of traditional bioretention cells can be augmented through the strategic selection and integration of locally adapted plant species, coupled with the incorporation of saturation zones, to enhance pollutant removal capabilities and resilience to drought conditions.
Collapse
Affiliation(s)
- Sanjena Narayanasamydamodaran
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nawnit Kumar
- State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing, China
| | - Jian'e Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Zhou Z, Liu Y, Wang S, Xiao J, Cao X, Zhou Y, Song C. Interactions between Phosphorus Enrichment and Nitrification Accelerate Relative Nitrogen Deficiency during Cyanobacterial Blooms in a Large Shallow Eutrophic Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2992-3001. [PMID: 36753734 DOI: 10.1021/acs.est.2c07599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regime shifts between nitrogen (N) and phosphorus (P) limitation, which trigger cyanobacterial succession, occur in shallow eutrophic lakes seasonally. However, the underlying mechanism is not yet fully illustrated. We provide a novel insight to address this from interactions between sediment P and nitrification through monthly field investigations including 204 samples and microcosm experiments in Lake Chaohu. Total N to P mass ratios (TN/TP) varied significantly across seasons especially during algal bloom in summer, with the average value being 26.1 in June and descending to 7.8 in September gradually, triggering dominant cyanobacterial succession from Microcystis to Dolichospermum. The regulation effect of sediment N/P on water column TN/TP was stronger in summer than in other seasons. Iron-bound P and alkaline phosphatase activity in sediment, rather than ammonium, contributed to the higher part of nitrification. Furthermore, our microcosm experiments confirmed that soluble active P and enzymatic hydrolysis of organic P, accumulating during algal bloom, fueled nitrifiers and nitrification in sediments. These processes promoted lake N removal and led to relative N deficiency in turn. Our results highlight that N and P cycles do not exist independently but rather interact with each other during lake eutrophication, supporting the dual N and P reduction program to mitigate eutrophication in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Zijun Zhou
- Institute of Yellow River Water Resources Protection, Zhengzhou 450004, PR China
| | - Yuqian Liu
- Institute of Yellow River Water Resources Protection, Zhengzhou 450004, PR China
| | - Siyang Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, PR China
| | - Jian Xiao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
5
|
Zhang W, Tao K, Sun H, Che W. Influence of urban runoff pollutant first flush strength on bioretention pollutant removal performance. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1478-1495. [PMID: 36178818 DOI: 10.2166/wst.2022.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bioretention is commonly used for runoff pollution control. The first flush strength of pollutants can affect bioretention performance. To examine the influence of the first flush strength on bioretention performance, bioretention columns filled with garden soil as the main media were established. Activated carbon and water treatment residuals (WTR) were added and compared for their ability to enhance phosphorus removal. Waste edible fungus culture medium (WEFCM) as a carbon source was also explored. When WEFCM was used as a carbon source instead of wood chips, total nitrogen (TN) removal increased from 60.83 ± 21.22 to 62.21 ± 16.43%, but chemical oxygen demand (COD) leaching was observed. WTR was better able than activated carbon to enhance phosphorus removal (87.97 ± 8.87 vs. 81.66 ± 9.27%) without impacting TN removal. NH4+-N removal increased with increasing first flush strength, but there was no trend for suspended solids (SS), COD, TN, or total phosphorus. First leaching phenomenon in bioretention outflow was proposed in this study. A low first leaching was observed in the outflow when the inflow had a uniform pollutant mass (i.e., no first flush) because of media leaching. A weak first leaching outflow was observed for SS and COD when they were present at strong first flush inflow.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail: ; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing 100044, China
| | - Kexin Tao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail:
| | - Huichao Sun
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail:
| | - Wu Che
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China E-mail: ; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
6
|
Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water. WATER 2022. [DOI: 10.3390/w14060957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In rural toilets, black water still remains polluted by nitrogen and phosphorus after being pre-treated by septic tanks. This study uses aerated biofilters to purify black water, screen the biofilter filler, and determine its effect on nitrogen and phosphorus purification in rural black water. This study introduced the concept of the “shape factor” into the Langmuir and Freundlich equations and optimized the isotherm adsorption model to better fit the actual dynamics of nitrogen and purification in black water. Combined with the first-order kinetic equation, the double constant equation, and the Elovich equation, the adsorption performance of seven kinds of biofilter fillers (i.e., zeolite, volcanic rock, sepiolite, ceramsite, anthracite, vermiculite, and peat) was studied. Then, the biofilter was constructed using a combination of fillers with better adsorption properties, and its ability to purify rural black water was studied. Results showed that vermiculite and zeolite had little effect on nitrogen and a high saturated adsorption of 654.50 and 300.89 mg·kg−1, respectively; peat and ceramsite had little effect on phosphorus and a high saturated adsorption of 282.41 mg·kg−1 and 233.89 mg·kg−1, respectively. The adsorption rate of nitrogen from fast to slow was vermiculite > peat > zeolite > volcanic rock > sepiolite > ceramsite > anthracite. The adsorption rate of phosphorus from fast to slow was peat > ceramsite > zeolite > sepiolite > vermiculite > volcanic rock > anthracite. Four combined biological filter fillers aided the removal of nitrogen and phosphorus from rural high-concentration black water. The combination of zeolite and ceramsite filler had a good nitrogen and phosphorus removal effect in high-concentration black water. After the system was stable, the nitrogen removal rate attained 71–73%, and the phosphorus removal rate attained 73–76% under the influent condition of total nitrogen and phosphorus concentrations of 150–162 and 10–14 mg·L−1, respectively. This study provides technical support and reference for the purification and treatment of rural black water.
Collapse
|
7
|
Sun F, Deng Q, Li X, Tang M, Ma X, Cao X, Zhou Y, Song C. Organic carbon quantity and quality jointly triggered the switch between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in biofilters. CHEMOSPHERE 2021; 280:130917. [PMID: 34162105 DOI: 10.1016/j.chemosphere.2021.130917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
The effect of organic carbon (OC) quality and quantity on switch between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification (DEN) was studied in biofilter systems. High OC in matrix could promote significantly nitrate (NO3--N) removal due to the reinforce of DEN. Sodium acetate (SA) addition in influent further fueled NO3--N removal in groups with low OC in matrix but increased ammonium (NH4+-N) and nitrite (NO2--N) accumulation in groups with high OC in matrix. This indicated that high OC combined different species, facilitated the DNRA over DEN. Compared to bagasse, corncob was the better suitable OC source in matrix for DEN due to slow and continuous release of OC. Hence, in order to promote NO3--N removal and decline NH4+-N accumulation in biofilters, it is very important to screen suitable OC source (mixed utilization of multiple C sources is recommended) and regulate its dosage (below 80 mg L-1).
Collapse
Affiliation(s)
- Feng Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Qinghui Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | | | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
Biswal BK, Vijayaraghavan K, Adam MG, Lee Tsen-Tieng D, Davis AP, Balasubramanian R. Biological nitrogen removal from stormwater in bioretention cells: a critical review. Crit Rev Biotechnol 2021; 42:713-735. [PMID: 34486441 DOI: 10.1080/07388551.2021.1969888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Excess nitrogen in stormwater degrades surface water quality via eutrophication and related processes. Bioretention has been recognized as a highly effective low-impact development (LID) technology for the management of high runoff volumes and reduction of nitrogen (N) pollutants through various mechanisms. This paper provides a comprehensive and critical review of recent developments on the biological N removal processes occurring in bioretention systems. The key plant- and microbe-mediated N transformation processes include assimilation (N uptake by plants and microbes), nitrification, denitrification, and anammox (anaerobic ammonia oxidation), but denitrification is the major pathway of permanent N removal. Overall, both laboratory- and field-scale bioretention systems have demonstrated promising N removal performance (TN: >70%). The phyla Bacteroidetes and Proteobacteria are the most abundant microbial communities found to be enriched in biofilter media. Furthermore, the denitrifying communities contain several functional genes (e.g., nirK/nirS, and nosZ), and their concentrations increase near the surface of media depth. The N removal effectiveness of bioretention systems is largely impacted by the hydraulics and environmental factors. When a bioretention system operates at: low hydraulic/N loading rate, containing a saturation zone, vegetated with native plants, having deeper and multilayer biofilter media with warm climate temperature and wet storm events periods, the N removal efficiency can be high. This review highlights shortcomings and current knowledge gaps in the area of total nitrogen removal using bioretention systems, as well as identifies future research directions on this topic.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Kuppusamy Vijayaraghavan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Daryl Lee Tsen-Tieng
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Abstract
Bioretention is considered one of the best management practices (BMPS) for managing stormwater quality and quantity. The bioretention system has proven good performance in removing total suspended solids, oil, and heavy metals. The nitrogen (N) removal efficiency of the bioretention system is insufficient, however, due to the complex forms of nitrogen. Therefore, this paper aims to review recent enhancement approaches to nitrogen (N) removal and to discuss the factors influencing bioretention efficiency. To improve bioretention efficiency, several factors should be considered when designing bioretention systems, including nitrogen concentration, climate factors, and hydrological factors. Further, soil and plant selection should be appropriate for environmental conditions. Three design improvement approaches have been reviewed. The first is the inclusion of a saturated zone (SZ), which has been used widely. The SZ is shown to have the best performance in nitrogen removal. The second approach (which is less popular) is the usage of additives in the form of a mixture with soil media or as a separated layer. This concept is intended to be applied in tropical regions with wet soil conditions and a short dry period. The third approach combines the previous two approaches (enhanced filter media and applying a SZ). This approach is more efficient and has recently attracted more attention. This study suggests that further studies on the third approach should be carried out. Applying amendment material through filter media and integrating it with SZ provides appropriate conditions to complete the nitrogen cycle. This approach is considered a promising method to enhance nitrogen removal. In general, the bioretention system offers a promising tool for improving stormwater quality.
Collapse
|
10
|
Deng Q, Wan L, Li X, Cao X, Zhou Y, Song C. Metagenomic evidence reveals denitrifying community diversity rather than abundance drives nitrate removal in stormwater biofilters amended with different organic and inorganic electron donors. CHEMOSPHERE 2020; 257:127269. [PMID: 32531490 DOI: 10.1016/j.chemosphere.2020.127269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Various sole and mixed electron donors were tested to promote the denitrification rate and nitrate removal efficiency in biofilter systems with high phosphate and ammonia removal efficiency (92.6% and 95.3% respectively). Compared to sole electron donors, complex organic carbon (bits of wood and straw) substantially improved the denitrification rate and nitrate removal efficiency (from 6.3%-18.5% to35.4%) by shifting the denitrifying microbial community composition, even though the relative abundance of functional genes mediating denitrification decreased. The mixed electron donor combining complex organic carbon with sulfur, iron and CH4 further promoted nitrate removal efficiency by 37.2%. The significantly higher abundance and diversity of bacteria mediating organic carbon decomposition in the treatments with complex organic carbon indicated the continuous production of organic carbon with small molecular weights, which provided sustainable and effective electron donor for denitrification. However, sole sulfur or iron did not effectively promote the denitrification rate and nitrogen removal efficiency, even though the related microbial community had been formed.
Collapse
Affiliation(s)
- Qinghui Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Lingling Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
11
|
Wen D, Chang NB, Wanielista MP. Assessing Nutrient Removal in Stormwater Runoff for Urban Farming with Iron filings-based Green Environmental Media. Sci Rep 2020; 10:9379. [PMID: 32523005 PMCID: PMC7287050 DOI: 10.1038/s41598-020-66159-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/13/2020] [Indexed: 01/31/2023] Open
Abstract
Ensuring urban areas have access to clean drinking water, safe food supply, and uncontaminated water bodies is essential to the good health of millions of urban residents. This paper presents the functionality of Iron Filings-based Green Environmental Media (IFGEM) in terms of nutrient removal efficiencies to support water quality management and urban farming. IFGEM uses recycled materials such as tire crumb and iron filings to help remove nutrients with essential physicochemical properties. In this study, IFGEM were proven effective and sustainable through an isotherm study, a column study of reaction kinetics, and a microstructure examination under various inlet nutrient concentration levels. IFGEMs exhibited over 90% nitrate removal, as well as 50–70% total phosphorus removal, under most inlet conditions. These promising results make IFGEM suitable for treating stormwater runoff, wastewater effluent, and agricultural discharge via varying ex situ treatment units in flexible landscape environments. In addition, the byproduct of ammonia generation permits possible reuse of spent IFGEM as soil amendments in crop land, gardens and yards, and green roofs for urban farming. Findings may help secure urban food supply chains and harmonize nutrients, soil, water, and waste management in different urban environments.
Collapse
Affiliation(s)
- Dan Wen
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.
| | - Martin P Wanielista
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
12
|
The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. SUSTAINABILITY 2019. [DOI: 10.3390/su11195415] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
One of the best management practices (BMPs) for stormwater quality and quantity control is a bioretention system. The removal efficiency of different pollutants under this system is generally satisfactory, except for nitrogen which is deficient in certain bioretention systems. Nitrogen has a complex biogeochemical cycle, and thus the removal processes of nitrogen are typically slower than other pollutants. This study summarizes recent studies that have focused on nitrogen removal for urban stormwater runoff and discusses the latest advances in bioretention systems. The performance, influencing factors, and design enhancements are comprehensively reviewed in this paper. The review of current literature reveals that a bioretention system shows great promise due to its ability to remove nitrogen from stormwater runoff. Combining nitrification and denitrification zones with the addition of a carbon source and selecting different plant species promote nitrogen removal. Nevertheless, more studies on nitrogen transformations in a bioretention system and the relationships between different design factors need to be undertaken.
Collapse
|
14
|
Effect of a Submerged Zone and Carbon Source on Nutrient and Metal Removal for Stormwater by Bioretention Cells. WATER 2018. [DOI: 10.3390/w10111629] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A bioretention system is a low-impact and sustainable treatment facility for treating urban stormwater runoff. To meet or maintain a consistently satisfactory performance, especially in terms of increasing nitrogen removal efficiency, the introduction of a submerged (anoxic) zone (SZ) combined with a module-based carbon source (C) has been recommended. This study investigated the removal of nitrogen (N), phosphorus (P) and heavy metals with a retrofitted bioretention system. A significant (p < 0.05) removal enhancement of N as well as total phosphorus (TP) was observed, in the mesocosms with additions of exogenous carbon as opposed to those without such condition. However, even in the mesocosm with SZ alone (without exogenous C), TP removal showed significant enhancement. With regard to the effects of SZ depth on nutrient removal, the results showed that the removal of both N and P in module with a shallow SZ (200 mm) showed significant enhancement compared to that in module with a deep SZ (300 mm). Removal efficiencies greater than 93% were observed for all three heavy metals tested (Cu, Pb, and Zn) in all mesocosms, even in the bioretention module without an SZ or plants, and it indicated that adsorption by the filtration media itself is probably the most important removal mechanism. Only Cu (but not Pb or Zn) showed significantly enhanced removal in module with an SZ as compared to those without an SZ. Carbon source played a minor role in metal removal as no significant (p > 0.05) improvement was observed in module with C as compared to that without C. Based on these results, the incorporation of SZ with C in stormwater biofilters is recommended.
Collapse
|