1
|
Sun C, Huang C, Wang P, Yin J, Tian H, Liu Z, Xu H, Zhu J, Hu X, Liu Z. Low-cost eggshell-fly ash adsorbent for phosphate recovery: A potential slow-release phosphate fertilizer. WATER RESEARCH 2024; 255:121483. [PMID: 38508039 DOI: 10.1016/j.watres.2024.121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Fly ash (FA) and eggshells (ES) are common solid wastes with significant potential for the recovery of phosphorus from water. This study focuses on synthesizing a low-cost and environmental-friendly phosphate adsorbent called eggshell-fly ash geopolymer composite (EFG) using eggshells instead of chemicals. The CaO obtained from the high-temperature pyrolysis of eggshells provides active sites for phosphate adsorption, and CO2 serves as a pore-forming agent. The phosphate adsorption performance of EFG varied with the eggshell-fly ash ratios and achieved a maximum of 49.92 mg P/g at an eggshell-fly ash ratio of 40 %. The adsorption process was well described by the pseudo-second-order model and the Langmuir model. EFG also exhibited a good regeneration performance through six-cycle experiments and achieved the highest phosphate desorption at pH 4.0. The results of the column experiment showed that EFG can be used as a filter media for phosphorus removal in a real-scale application with low cost. Soil burial test indicated saturated EFG has a good phosphate slow-release performance (maintained for up to 60 days). Overall, EFG has demonstrated to be a promising adsorbent for phosphorus recovery.
Collapse
Affiliation(s)
- Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zili Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
2
|
Silva AFR, Lebron YAR, Moreira VR, Ribeiro LA, Koch K, Amaral MCS. High-retention membrane bioreactors for sugarcane vinasse treatment: Opportunities for environmental impact reduction and wastewater valorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117001. [PMID: 36565496 DOI: 10.1016/j.jenvman.2022.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ethanol production has increased over the years, and Brazil ranking second in the world using sugarcane as the main raw material. However, 10-15 L of vinasse are generated per liter of ethanol produced. Besides large volumes, this wastewater has high polluting potential due to its low pH and high concentrations of organic matter and nutrients. Given the high biodegradability of the organic matter, the treatment of this effluent by anaerobic digestion and membrane separation processes results in the generation of high value-added byproducts such as volatile fatty acids (VFAs), biohydrogen and biogas. Membrane bioreactors have been widely evaluated due to the high efficiency achieved in vinasse treatment. In recent years, high retention membrane bioreactors, in which high retention membranes (nanofiltration, reverse osmosis, forward osmosis and membrane distillation) are combined with biological processes, have gained increasing attention. This paper presents a critical review focused on high retention membrane bioreactors and the challenges associated with the proposed configurations. For nanofiltration membrane bioreactor (NF-MBR), the main drawback is the higher fouling propensity due to the hydraulic driving force. Nonetheless, the development of membranes with high permeability and anti-fouling properties is uprising. Regarding osmotic membrane bioreactor (OMBR), special attention is needed for the selection of a proper draw solution, which desirably should be low cost, have high osmolality, reduce reverse salt flux, and can be easily reconcentrated. Membrane distillation bioreactor (MDBR) also exhibit some shortcomings, with emphasis on energy demand, that can be solved with the use of low-grade and residual heat, or renewable energies. Among the configurations, MDBR seems to be more advantageous for sugarcane vinasse treatment due to the lower energy consumption provided by the use of waste heat from the effluent, and due to the VFAs recovery, which has high added value.
Collapse
Affiliation(s)
- A F R Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Y A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - V R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L A Ribeiro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - K Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28407-28421. [PMID: 36680723 DOI: 10.1007/s11356-023-25388-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.
Collapse
Affiliation(s)
- Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Yuye Xu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Ting Guo
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Hongliang Dai
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212018, China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
4
|
Sun C, Cao H, Huang C, Wang P, Yin J, Liu H, Tian H, Xu H, Zhu J, Liu Z. Eggshell based biochar for highly efficient adsorption and recovery of phosphorus from aqueous solution: Kinetics, mechanism and potential as phosphorus fertilizer. BIORESOURCE TECHNOLOGY 2022; 362:127851. [PMID: 36031128 DOI: 10.1016/j.biortech.2022.127851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Development of an efficient and green adsorbent is of great significance for phosphorus removal and recovery from eutrophic water. This work prepared an eggshell modified biochar (ESBC) by co-pyrolysis of eggshells and corn stalk. ESBC exhibited an excellent performance for phosphorus adsorption over a wide pH range (5-13), and achieved a maximum adsorption of 557.0 mg P/g. The adsorption process was well fitted by pseudo-second-order model (R2 > 0.962) and Sips model (R2 > 0.965), and it was endothermic (ΔH0 > 0) and spontaneous (ΔG0 < 0) according to thermodynamic analysis. The column experiment confirmed the feasibility of ESBC as a filter media for phosphorus removal in flow condition, and obtained a P removal of 460.0 mg/g. Soil burial tests indicated P-laden ESBC has a good P slow-release performance (maintained for up to 25 days). Overall, ESBC has a promising application potential as an efficient adsorbent for phosphorus recovery and subsequently as a slow-release fertilizer.
Collapse
Affiliation(s)
- Chengyou Sun
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Heng Cao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
5
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Liu S, Song W, Meng M, Xie M, She Q, Zhao P, Wang X. Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154048. [PMID: 35202696 DOI: 10.1016/j.scitotenv.2022.154048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.
Collapse
Affiliation(s)
- Shuyue Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Manli Meng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Qianhong She
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
7
|
Viet ND, Jang A. Fertilizer draw solution index in osmotic membrane bioreactor for simultaneous wastewater treatment and sustainable agriculture. CHEMOSPHERE 2022; 296:134002. [PMID: 35181424 DOI: 10.1016/j.chemosphere.2022.134002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the feasibility of applying a novel protocol for constructing a fertilizer draw solution (DS) index used in osmotic membrane bioreactor (OMBR) for simultaneous wastewater treatment and sustainable fertigation. The results indicated that system performance (i.e., water flux, reverse salt flux, contaminant removal) varied critically under different fertilizers. In which, the highest water recovery (∼60%) was observed with potassium chloride (KCl), whereas the lowest value (∼20%) was observed with ammonium nitrate (NH4NO3), which corresponded to the highest reverse salt flux. With all fertilizers, the membrane fouling layer thickness was in the range of 15.7-45.7 μm. The foulant were mostly irreversible and hydrophilic, with protein and polysaccharides were the dominant compounds. NH4NO3 and NH4H2PO4 (MAP) fertilizers caused the highest and lowest fouling resistances, respectively. Based on the matrix of performance aspects, the very first DSI was constructed for the assessment of fertilizer suitability. Principal component analysis (PCA) showed that fouling resistance played a pivotal role in the total variation of the system. The multi-criteria decision analysis (MCDA) suggested MAP as the most appropriate fertilizer with the highest fertilizer DS index (0.90), followed by KH2PO4 (0.67), KCl (0.65), NaNO3 (0.58), and NH4NO3 (0.16). A numerical simulation using an artificial intelligence-based technique revealed that MAP is also capable of maintaining high performance during long-term operations.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
8
|
Manzoor K, Khan SJ, Khan A, Abbasi H, Zaman WQ. Woven-fiber microfiltration coupled with anaerobic forward osmosis membrane bioreactor treating textile wastewater: Use of fertilizer draw solutes for direct fertigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Application of membrane separation processes in phosphorus recovery: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144346. [PMID: 33422961 DOI: 10.1016/j.scitotenv.2020.144346] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
The depletion of phosphorus resources and the excess discharge of phosphorus into waste streams are contrasting problems. The key to solving both problems is to recover phosphorus from the waste streams. Current phosphorus recovery technologies require high phosphorus concentrations and lack the ability to separate toxic substances from recovered phosphorus products. Membrane separation processes such as nanofiltration, forward osmosis, and electrodialysis are examples of effective methods for solving some of these issues. In this paper, the mechanisms, performance, and influential factors affect phosphorus recovery from membrane separation are reviewed. Membrane fouling, energy consumption, and the selectivity of toxic substances in membrane separation processes were evaluated. This work will serve as a basis for future research and development of phosphorus recovery by membrane separation processes and as a response to the increasingly pressing issues of eutrophication and the growing depletion of phosphorus resources.
Collapse
Affiliation(s)
- Xiang Li
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| | - Shuting Shen
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Yuye Xu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Ting Guo
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Hongliang Dai
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, PR China.
| | - Xiwu Lu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| |
Collapse
|
11
|
Deng J, Zhang B, Xie J, Wu H, Li Z, Qiu G, Wei C, Zhu S. Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system. PLoS One 2020; 15:e0243748. [PMID: 33301488 PMCID: PMC7728250 DOI: 10.1371/journal.pone.0243748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
The pre-aerobic process of coking wastewater treatment has strong capacity of decarbonization and detoxification, which contribute to the subsequent dinitrogen of non-carbon source/heterotrophic denitrification. The COD removal rate can reach > 90% in the first aerobic bioreactor of the novel O/H/O coking wastewater treatment system during long-term operation. The physico-chemical characteristics of influent and effluent coking wastewater in the first aerobic bioreactor were analyzed to examine how they correlated with bacterial communities. The diversity of the activated sludge microbial community was investigated using a culture-independent molecular approach. The microbial community functional profiling and detailed pathways were predicted from the 16S rRNA gene-sequencing data by the PICRUSt software and the KEGG database. High-throughput MiSeq sequencing results revealed a distinct microbial composition in the activated sludge of the first aerobic bioreactor of the O/H/O system. Proteobacteria, Bacteroidetes, and Chlorobi were the decarbonization and detoxification dominant phyla with the relative abundance of 84.07 ± 5.45, 10.89 ± 6.31, and 2.96 ± 1.12%, respectively. Thiobacillus, Rhodoplanes, Lysobacter, and Leucobacter were the potential major genera involved in the crucial functional pathways related to the degradation of phenols, cyanide, benzoate, and naphthalene. These results indicated that the comprehensive understanding of the structure and function diversity of the microbial community in the bioreactor will be conducive to the optimal coking wastewater treatment.
Collapse
Affiliation(s)
- Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Qiu G, Wong GKW, Ting YP. Electrostatic interaction governed solute transport in forward osmosis. WATER RESEARCH 2020; 173:115590. [PMID: 32062225 DOI: 10.1016/j.watres.2020.115590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Electrolytes are commonly employed as draw solutes in forward osmosis (FO). This work demonstrates that electrostatic interactions play a key role in ion transport in the FO process. The difference in diffusivity between the constituent ions of the draw electrolyte significantly impact the forward transport of the feed ions. Draw electrolyte composed of low-diffusivity cations and high diffusivity anions promoted forward transport of the feed anions and retarded that of the feed cation, and vice versa. The effects were remarkable even for the most commonly used draw electrolytes (NaCl or MgCl2), where the forward flux of NO3- and NO2- was found to increase by a few folds and that of NH4+ was reduced by similar magnitudes than that observed in a nonelectrolyte draw solute (glucose) system. More profound increase/reduction (up to 10 times) was observed for draw electrolytes composed of highly asymmetric cations and anions. An analytical model is developed by considering the electrostatic interaction between the draw and the feed ions, to predict its effect on the forward transport of the feed ions. The normalized diffusivity difference (θD) between the constituent ions of the draw electrolyte is found as a key factor that determines the transport behaviors of the feed ions. These results may have important implications in enhancing our understanding of bidirectional ion transport in FO. The findings may also be useful in the design and development of FO processes for enhanced removal of charged pollutants via draw solute selection and formulation.
Collapse
Affiliation(s)
- Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Gordon Kai Wai Wong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
13
|
Qiang J, Zhou Z, Wang K, Qiu Z, Zhi H, Yuan Y, Zhang Y, Jiang Y, Zhao X, Wang Z, Wang Q. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. WATER RESEARCH 2020; 170:115280. [PMID: 31759237 DOI: 10.1016/j.watres.2019.115280] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, an ammonium nitrogen (NH4+-N) adsorption and regeneration (AAR) was constructed by a zeolite-packed column and NaClO-NaCl regeneration unit, and coupled with an anoxic/aerobic (AO) system to achieve efficient removal of carbon, nitrogen and phosphorus under short hydraulic retention time (HRT) and sludge retention time (SRT). Compared to conventional anaerobic/anoxic/aerobic (AAO) process, the proposed AO-AAR process achieved more efficient and stable nitrogen removal with greatly shorter HRT (5.6 h) and SRT (8 d) at 10.4 °C, with NH4+-N and total nitrogen in the effluent below 1.5 and 8.0 mg/L, respectively. The AO-AAR also obtained efficient phosphorus removal (<0.5 mg/L) by dosing aluminum in aerobic tank. High load and short SRT deteriorated sludge settleability and dewaterability, but enhanced methane production by improving sludge biodegradability. Dosing aluminum made the AO operating module more stable with improved settleability and dewaterability, and further enhanced methane production. Short HRT and SRT also resulted in the thriving of filamentous bacteria (Thiothrix) and heterotrophic nitrifiers (Acinetobacter, Pseudomonas and Rhodobacter) in the AO module, which helped in enhancing denitrification potential and nitrification efficiency under low temperature. Long-term operation showed that exchange capacity and physicochemical properties of zeolite were unchanged under NaClO-NaCl regeneration by introducing the tail gas from aerobic tank into the used regenerant to remove Ca2+ and Mg2+ exchanged from effluent of the AO module. Techno-economic analysis showed that the AO-AAR process is attractive and sustainable for municipal wastewater treatment by significantly improving nitrogen removal, greatly reducing land occupancy, enhancing methane production and achieving efficient reduction of carbon dioxide emission.
Collapse
Affiliation(s)
- Jiaxin Qiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Kaichong Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Hui Zhi
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yao Yuan
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yubin Zhang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yuexi Jiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xiaodan Zhao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiaoying Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Viet ND, Cho J, Yoon Y, Jang A. Enhancing the removal efficiency of osmotic membrane bioreactors: A comprehensive review of influencing parameters and hybrid configurations. CHEMOSPHERE 2019; 236:124363. [PMID: 31325824 DOI: 10.1016/j.chemosphere.2019.124363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The amount of research conducted on osmotic membrane bioreactors (OMBRs) has increased over the past decade because of the advantages of these reactors over conventional membrane bioreactors (MBRs). OMBR process is a hybrid process involving a forward osmosis membrane and biologically activated sludge. It is a promising technology to reduce membrane fouling, enhance effluent water quality, and lower energy consumption compared to conventional MBR processes. Eleven years since the OMBR process was first proposed, about 60 papers regarding the OMBR process have been published. In this article, we address recent advances in OMBR technology based on a review of the literature. Typical factors that influence the performance of the OMBR process are discussed to provide a clear understanding of the current state of this technology. We also provide a critical review of OMBR applications in organic matter, nutrient, and micropollutant removal as well as direct recovery of nutrients from wastewater. We propose several hybrid configurations that can enhance the removal efficiency of OMBR systems. Finally, we present potential research directions for future OMBR research.
Collapse
Affiliation(s)
- Nguyen Duc Viet
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jaeweon Cho
- School of Urban and Environmental Engineering, Ulsan Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 689-798, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
15
|
Cai Y, Li X, Zaidi AA, Shi Y, Zhang K, Feng R, Lin A, Liu C. Effect of hydraulic retention time on pollutants removal from real ship sewage treatment via a pilot-scale air-lift multilevel circulation membrane bioreactor. CHEMOSPHERE 2019; 236:124338. [PMID: 31319308 DOI: 10.1016/j.chemosphere.2019.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Developing a real ship sewage treatment system that not only satisfies the requirement of small space onboard but also meets the latest emission standards of International Maritime Organization (IMO) is still a challenging task for ship industry. To overcome these problems, in this study, a novel pilot-scale air-lift multilevel circulation membrane bioreactor (AMCMBR) was used to explore the effect of hydraulic retention time (HRT) on effluent chemical oxygen demand (COD) and total nitrogen (TN) while treating real ship sewage. Results indicated that the satisfactory removal efficiencies of COD and TN was achieved in the former stages (Re(COD) = 91.57% and 87.82%; Re(TN) = 77.17% and 81.19%). When HRT decreased to 4 h, the removal efficiencies of COD and TN was 86.93% and 70.49% respectively, which still met the strict IMO discharge standards. This mainly because the biofilm-assistant membrane filtration lead to the increase of physical removal rate. The high ratio of mixed liquor volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) (i.e. 0.75) indicated a high biomass content in the attached sludge and resulted into perfect pollutants removal effort. The compliance rate of COD and TN was 100% and 89%, respectively, which indicated stable operation of the pilot-scale AMCMBR throughout the whole experiment. Fluorescence in situ Hybridization (FISH) analysis revealed that the abundance of β-Proteobacteria was a key microbial reason for TN removal. In addition, wavelet neural network (WNN) model was proved to be suitable to simulate and predict the COD and TN removal. These conclusions indicated that the pilot-scale AMCMBR technology is an effective way for real ship sewage treatment.
Collapse
Affiliation(s)
- Yuhang Cai
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Xin Li
- China Aviation Development Institute, No. 1 Wanlian Road, Shenhe District, Shenyang City, PR China
| | - Asad A Zaidi
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Yue Shi
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China.
| | - Kun Zhang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China.
| | - Ruizhe Feng
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Aqiang Lin
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Chen Liu
- College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, PR China
| |
Collapse
|
16
|
Zhu S, Wu H, Wu C, Qiu G, Feng C, Wei C. Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system. WATER RESEARCH 2019; 164:114963. [PMID: 31421512 DOI: 10.1016/j.watres.2019.114963] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
A novel full-scale prefix oxic coking wastewater (CWW) biological treatment O/H/O system had been operated steadily six years with the effluent quality meeting national discharge standard. Comparing to the traditional CWW biological treatment process, which usually have an anaerobic unit at the start of the process, here the O/H/O system has obvious advantages in COD removal, total nitrogen removal and reduced energy consumption. It is very necessary to illustrate the structure and function of the microbial community involved in different bioreactors of the O/H/O system. High-throughput MiSeq sequencing was used to examine the 16S rRNA genes in this system. Results revealed a contrasting microbial composition among the activated sludge samples of three sequential bioreactors: the β-Proteobacteria related sequences dominated in the O1 activated sludge with the relative abundance of 56.44% while 7.53% of the sequences were assigned to Thiobacillus; Rhodoplanes related sequences dominated in the bioreactor H and O2 activated sludge with relative abundance of 8.86% and 8.92%, respectively. The physico-chemical characteristics of CWW were analyzed by standard methods and the operational parameters were routinely monitored to examine their effects on the microbial communities. The bioinformatics software package of phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was used to predict the microbial community functional profiling and found three dominant genera of Rhodoplanes, Lysobacter and Leucobacter enriched the xenobiotics biodegradation and metabolism pathway. The diverse and distinct microbial community involved in biological treatment processes of CWW treatment indicating that water characteristics and operational parameters determined the microbial community composition. These results significantly expanded our knowledge of the biodiversity and population dynamics of microorganisms and discerned the relationships between bacterial communities and environmental variables in the biological treatment processes. Moreover, in this study, we proposed a comprehensive biodegradation model of CWW treatment and defined as O/H/O system.
Collapse
Affiliation(s)
- Shuang Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Center for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaofei Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
17
|
Chang HM, Sun YC, Chien IC, Chang WS, Ray SS, Cao DTN, Cong Duong C, Chen SS. Innovative upflow anaerobic sludge osmotic membrane bioreactor for wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 287:121466. [PMID: 31108413 DOI: 10.1016/j.biortech.2019.121466] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
A novel upflow anaerobic sludge-forward osmotic membrane bioreactor was developed for simultaneous wastewater treatment, membrane fouling reduction, and nutrient recovery. An upflow anaerobic sludge blanket (UASB) reactor was incorporated into the system, suspending the anaerobic sludge at the bottom of the reactor. A forward osmosis membrane replaced the traditional three-phase separator of the UASB technology. The removals of chemical oxygen demand, PO43-, and NH4+ were all more than 95% with low membrane fouling in this system. Halotolerant Fusibacter, which can ferment organics to acetate, was increased rapidly from 0.1% to 5% in this saline environment. Acetoclastic Methanosaeta was the most dominant prokaryotes and responsible for majority of methane production. Reduction of membrane fouling in this system was verified by the fluorescence excitation-emission matrix spectrophotometry. Furthermore, phosphorus recovery and salinity build-up mitigation were achieved using periodic microfiltration to recover 57-105 mg/L phosphorus from pH 9 to 12.
Collapse
Affiliation(s)
- Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Yung-Chun Sun
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - I-Chieh Chien
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, Taiwan
| | | | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Dan Thanh Ngoc Cao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chinh Cong Duong
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan; Southern Institute of Water Resources Research, Ho Chih Ming City, Viet Nam
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
18
|
Chang YR, Lee YJ, Lee DJ. Membrane fouling during water or wastewater treatments: Current research updated. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2017.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Jeong D, Cho K, Lee CH, Lee S, Bae H. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Ansari AJ, Hai FI, Price WE, Ngo HH, Guo W, Nghiem LD. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery. BIORESOURCE TECHNOLOGY 2018; 260:221-226. [PMID: 29626781 DOI: 10.1016/j.biortech.2018.03.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical.
Collapse
Affiliation(s)
- Ashley J Ansari
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Huu H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia.
| |
Collapse
|
21
|
Song X, Xie M, Li Y, Li G, Luo W. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures. BIORESOURCE TECHNOLOGY 2018; 257:301-310. [PMID: 29500063 DOI: 10.1016/j.biortech.2018.02.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development.
Collapse
Affiliation(s)
- Xiaoye Song
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Seker M, Buyuksari E, Topcu S, Babaoglu DS, Celebi D, Keskinler B, Aydiner C. Effect of pretreatment and membrane orientation on fluxes for concentration of whey with high foulants by using NH 3/CO 2 in forward osmosis. BIORESOURCE TECHNOLOGY 2017; 243:237-246. [PMID: 28672186 DOI: 10.1016/j.biortech.2017.06.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Usage of forward osmosis membrane in FO mode, in which active and support layers of the membrane were in contact with the feed and the draw solutions respectively, provided higher initial water flux (12L/m2h) than the usage of membrane in PRO mode (6L/m2h) having opposite orientation but fluxes approached to each other after 4h during concentration of whey with NH3/CO2 as draw salt. High organic and inorganic foulants of whey was considered as reason for observed result in addition to lower solute resistivity. Initial water flux (8,5L/m2h) was lower when pre-treatment was applied before forward osmosis process but final flux (4L/m2h) was equal flux of non pre-treatment. Reduction of solute resistivity or absence of hydraulic pressure can be reasons for lower initial flux. Detection of organic carbon but absence of lactose in draw solution showed passage of molecules being different than lactose into draw solution.
Collapse
Affiliation(s)
- M Seker
- Gebze Technical University, Department of Chemical Engineering, Gebze, Kocaeli 41400, Turkey.
| | - E Buyuksari
- Gebze Technical University, Department of Chemical Engineering, Gebze, Kocaeli 41400, Turkey
| | - S Topcu
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli 41400, Turkey
| | - D S Babaoglu
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli 41400, Turkey
| | - D Celebi
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli 41400, Turkey
| | - B Keskinler
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli 41400, Turkey
| | - C Aydiner
- Gebze Technical University, Department of Environmental Engineering, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
23
|
A comparative in situ decomposition study using still born piglets and leaf litter from a deciduous forest. Forensic Sci Int 2017; 276:85-92. [DOI: 10.1016/j.forsciint.2017.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022]
|
24
|
Wang X, Wang C, Tang CY, Hu T, Li X, Ren Y. Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Luo H, Song Y, Zhou Y, Yang L, Zhao Y. Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5509-5520. [PMID: 28028705 DOI: 10.1007/s11356-016-8233-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N2O production during the denitrification process.
Collapse
Affiliation(s)
- Huilong Luo
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China.
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yudong Song
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuexi Zhou
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liwei Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China
| | - Yaqian Zhao
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|