1
|
Duman-Özdamar ZE, Julsing MK, Verbokkem JAC, Wolbert E, Martins Dos Santos VAP, Hugenholtz J, Suarez-Diez M. Model-driven engineering of Cutaneotrichosporon oleaginosus ATCC 20509 for improved microbial oil production. BIORESOURCE TECHNOLOGY 2025; 421:132142. [PMID: 39894176 DOI: 10.1016/j.biortech.2025.132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Increasing demand for palm oil has drastic effects on the ecosystem as its production is unsustainable. C. oleaginosus is a yeast with great potential for microbial oil production and is a sustainable alternative to palm oil. Herein we deployed the Design-Build-Test-Learn approach to establish C. oleaginosus as an efficient fatty acid production platform. In the design step, we combined transcriptome data analysis and metabolic modeling and selected gene overexpression targets (ATP-citrate lyase, acetyl-CoA carboxylase, threonine synthase, and hydroxymethylglutaryl-CoA synthase) and media supplements (biotin, thiamine, threonine, serine, and aspartate). Characterization of transformants at various carbon-to-nitrogen (C/N) ratios, and medium supplements provided up to 56% (w/w) lipid content and a 1.4-fold increase in lipid yield on glycerol (g/g). Additionally, quadratic regressions suggested C/N ratio of 240 as the optimum value. These results and introduced pipeline for strain and medium optimization establish C. oleaginous as a sustainable alternative to palm as an oil source.
Collapse
Affiliation(s)
- Zeynep Efsun Duman-Özdamar
- Bioprocess Engineering, Wageningen University & Research 6708 PB Wageningen, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research 6708 WE Wageningen, the Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research 6708 WE Wageningen, the Netherlands
| | - Mattijs K Julsing
- Wageningen Food & Biobased Research, Wageningen University & Research 6708 WE Wageningen, the Netherlands
| | - Janine A C Verbokkem
- Wageningen Food & Biobased Research, Wageningen University & Research 6708 WE Wageningen, the Netherlands
| | - Emil Wolbert
- Wageningen Food & Biobased Research, Wageningen University & Research 6708 WE Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- Bioprocess Engineering, Wageningen University & Research 6708 PB Wageningen, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research 6708 WE Wageningen, the Netherlands; LifeGlimmer GmbH, Berlin 12163 Germany
| | - Jeroen Hugenholtz
- Faculty of Science Swammerdam Institute for Life Sciences, University of Amsterdam 1090 GE Amsterdam, the Netherlands; NoPalm Ingredients BV 6709 PA Wageningen, the Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
2
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
3
|
Liu Y, Zhou W, Zhao M, Ma Q, Zhang J, Zhou W, Gong Z. Combination of alkaline biodiesel-derived crude glycerol pretreated corn stover with dilute acid pretreated water hyacinth for highly-efficient single cell oil production by oleaginous yeast Cutaneotrichosporon oleaginosum. BIORESOURCE TECHNOLOGY 2024; 395:130366. [PMID: 38266783 DOI: 10.1016/j.biortech.2024.130366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Single cell oil (SCO) prepared from biodiesel-derived crude glycerol (BCG) and lignocellulosic biomass (LCB) via oleaginous yeasts is an intriguing alternative precursor of biodiesel. Here, a novel strategy combining alkaline BCG pretreated corn stover and dilute acid pretreated water hyacinth for SCO overproduction was developed. The mixed pretreatment liquors (MPLs) were naturally neutralized and adjusted to a proper carbon-to-nitrogen ratio beneficial for SCO overproduction by Cutaneotrichosporon oleaginosum. The toxicity of inhibitors was relieved by dilution detoxification. The enzymatic hydrolysate of solid fractions was suitable for SCO production either separately or simultaneously with MPLs. Fed-batch fermentation of the MPLs resulted in high cell mass, SCO content, and SCO titer of 80.7 g/L, 75.7 %, and 61.1 g/L, respectively. The fatty acid profiles of SCOs implied high-quality biodiesel characteristics. This study offers a novel BCG&LCB-to-SCO route integrating BCG-based pretreatment and BCG/LCB hydrolysates co-utilization, which provides a cost-effective technical route for micro-biodiesel production.
Collapse
Affiliation(s)
- Yantao Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Qishuai Ma
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| |
Collapse
|
4
|
Xu C, Wang Y, Zhang C, Liu J, Fu H, Zhou W, Gong Z. Highly-efficient lipid production from hydrolysate of Radix paeoniae alba residue by oleaginous yeast Cutaneotrichosporon oleaginosum. BIORESOURCE TECHNOLOGY 2024; 391:129990. [PMID: 37931762 DOI: 10.1016/j.biortech.2023.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Valorization of herbal extraction residues (HERs) into value-added products is pivotal for the sustainability of Chinese medicine industry. Here, seven different enzymatic hydrolysates of dilute acid pretreated HERs were evaluated for lipid production by Cutaneotrichosporon oleaginosum. Among them, the highest sugar yield via hydrolysis and the maximum lipid production were obtained from Radix paeoniae alba residue (RPAR). More interestingly, high proportion of sugar polymers was disintegrated into fermentable sugars during the pretreatment step, allowing a cheap non-enzymatic route for producing sugars from RPAR. A repeated dilute acid pretreatment gained a high sugar concentration of 241.6 g/L through reusing the pretreatment liquor (PL) for four times. Biomass, lipid concentration, and lipid content achieved 49.5 g/L, 35.7 g/L and 72.2 %, respectively, using fed-batch culture of PL. The biodiesel parameters indicated lipids produced from HERs were suitable for biodiesel production. This study offers a cost-effective way to upgrade the HERs waste into micro-biodiesel.
Collapse
Affiliation(s)
- Chen Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Yanan Wang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Chuying Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Junheng Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Hanqi Fu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China.
| |
Collapse
|
5
|
Zhang JX, Liu XL, Wang L, Fang Z. Two-stage process production of microbial lipid by co-fermentation of glucose and N-acetylglucosamine from food wastes with Cryptococcus curvatus. BIORESOURCE TECHNOLOGY 2023; 387:129685. [PMID: 37595808 DOI: 10.1016/j.biortech.2023.129685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Microbial lipids were produced through a two-stage process with Cryptococcus curvatus by co-fermenting rice and shrimp shells hydrolysates. In the first stage, biomass production of glucose and N-acetylglucosamine was optimized by response surface methodology with the maximum biomass yield (17.60 g/L) under optimum conditions (43.2 g/L mixed sugar concentration, pH 5.8, 200 rpm, and 28 °C). In the second stage, according to a single-factor optimization setting (43.2 g/L sugar mixture solutions, pH 5.5, and shift time of 36 h), lipid titer of 10.08 g/L with content of 55.30 % was achieved. Scaling up to a 5-L bioreactor increased lipid content to 60.07 % with 0.233 g/g yield. When Cryptococcus curvatus was cultured in the blends of rice hydrolysates and shrimp shells hydrolysate, lipid content and yield were 52.25 % and 0.204 g/g. The fatty acid compositions of lipid were similar to those of typical vegetable oils.
Collapse
Affiliation(s)
- Jia-Xuan Zhang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Xiao-le Liu
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Li Wang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
6
|
Zhang X, Fang Z, Zhao D, Kamal R, Wang X, Jin G, Gong Z, Yang X. Biorefinery of vineyard winter prunings for production of microbial lipids by the oleaginous yeast Cryptococcus curvatus. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:221-229. [PMID: 37311389 DOI: 10.1016/j.wasman.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Spent biomass from agricultural and forestry industries are substantial low-cost carbon source for reducing the input of microbial lipid production. Herein, the components of the vineyard winter prunings (VWPs) from 40 grape cultivars were analyzed. The VWPs contained (w/w) cellulose ranged from 24.8% to 32.4%, hemicellulose 9.6% to 13.8%, lignin 23.7% to 32.4%. The VWPs from Cabernet Sauvignon was processed with the alkali-methanol pretreatment, and 95.8% of the sugars was released from the regenerated VWPs after enzymatic hydrolysis. The hydrolysates from the regenerated VWPs was suitable for lipid production without further treatment as a lipid content of 59% could be achieved with Cryptococcus curvatus. The regenerated VWPs was also used for lipid production via simultaneous saccharification and fermentation (SSF), which led to a lipid yield of 0.088 g/g raw VWPs, 0.126 g/g regenerated VWPs and 0.185 g/g from the reducing sugars. This work demonstrated that the VWPs can be explored for co-production of microbial lipids.
Collapse
Affiliation(s)
- Xueyuan Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhumei Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rasool Kamal
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guojie Jin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Yinchuan 750104, China.
| |
Collapse
|
7
|
Passoth V, Brandenburg J, Chmielarz M, Martín-Hernández GC, Nagaraj Y, Müller B, Blomqvist J. Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol. Yeast 2023; 40:290-302. [PMID: 36597618 DOI: 10.1002/yea.3838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Klinisk Mikrobiologi Falun, Falun Lasarett, Falun, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Yashaswini Nagaraj
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Yang Y, Zhang Y, Liu C, Su Z, Zhao R, Zhou J. Low-temperature phenol-degrading microbial agent: construction and mechanism. Arch Microbiol 2023; 205:193. [PMID: 37060452 DOI: 10.1007/s00203-023-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
In this study, three cold-tolerant phenol-degrading strains, Pseudomonas veronii Ju-A1 (Ju-A1), Leifsonia naganoensis Ju-A4 (Ju-A4), and Rhodococcus qingshengii Ju-A6 (Ju-A6), were isolated. All three strains can produce cis, cis-muconic acid by ortho-cleavage of catechol at 12 ℃. Response surface methodology (RSM) was used to optimize the proportional composition of low-temperature phenol-degrading microbiota. Degradation of phenol below 160 mg L-1 by low-temperature phenol-degrading microbiota followed first-order degradation kinetics. When the phenol concentration was greater than 200 mg L-1, the overall degradation trend was in accordance with the modified Gompertz model. The experiments showed that the microbial agent (three strains of low-temperature phenol-degrading bacteria were fermented separately and constructed in the optimal ratio) could completely degrade 200 mg L-1 phenol within 36 h. The above construction method is more advantageous in bio-enhanced treatment of actual wastewater. Through the construction of microbial agents to enhance the degradation effect of phenol, it provides a feasible scheme for the biodegradation of phenol wastewater at low temperature and shows good application potential.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China.
| | - Cong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Zhiqiang Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Ruizhi Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China
| |
Collapse
|
9
|
An N, Xie C, Zhou S, Wang J, Sun X, Yan Y, Shen X, Yuan Q. Establishing a growth-coupled mechanism for high-yield production of β-arbutin from glycerol in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 369:128491. [PMID: 36529444 DOI: 10.1016/j.biortech.2022.128491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Biodiesel production has increased significantly in recent years, leading to an increase in the production of crude glycerol. In this study, a novel growth-coupled erythrose 4-phosphate (E4P) formation strategy that can be used to produce high levels of β-arbutin using engineered Escherichia coli and glycerol as the carbon source was developed. In the strategy, E4P formation was coupled with cell growth, and a growth-driving force made the E4P formation efficient. By applying this strategy, efficient microbial synthesis of β-arbutin was achieved, with 7.91 g/L β-arbutin produced in shaking flask, and 28.1 g/L produced in a fed batch fermentation with a yield of 0.20 g/g glycerol and a productivity of 0.39 g/L/h. This is the highest β-arbutin production through microbial fermentation ever reported to date. This study may have significant implications in the large-scale production of β-arbutin as well as other aromatic compounds of importance.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shubin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Saini R, Osorio-Gonzalez CS, Hegde K, Kaur Brar S, Vezina P. A co-fermentation strategy with wood hydrolysate and crude glycerol to enhance the lipid accumulation in Rhodosporidium toruloides-1588. BIORESOURCE TECHNOLOGY 2022; 364:127821. [PMID: 36007764 DOI: 10.1016/j.biortech.2022.127821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Wood hydrolysate has been regarded as sustainable and renewable substrate to produce microbial lipids, a potential feedstock for the biodiesel industry. Moreover, the major by-product of biofuel industries is crude glycerol but its implementation as a carbon source is still constrained due to the presence of impurities resulting in low biomass production and low lipid titer. Thus, this study investigates the effect of different carbon ratios of hydrolysate and crude glycerol on R. toruloides-1588. Hydrolysate to crude glycerol ratio of 60:40 resulted in maximum lipid accumulation of 49% (w/w), more than 90% of sugars and glycerol consumption. Further, scale-up to bench-scale fermenter resulted in 12% higher lipid accumulation (56.3% w/w, 0.15 g/L∙h) in 50% less time than flask fermentation. Hence, the ability of R. toruloides-1588 to flourish on different carbohydrates and accumulate high lipid content will be beneficial for the further development of biorefinery industries.
Collapse
Affiliation(s)
- Rahul Saini
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Carlos Saul Osorio-Gonzalez
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Deparment of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Pierre Vezina
- Director of Energy and the Environment, Council of the Quebec Forestry Industry, 1175 Avenue Lavigerie Suite 200, Quebec G1V 4P1, Canada
| |
Collapse
|
11
|
An Approach for Incorporating Glycerol as a Co-Substrate into Unconcentrated Sugarcane Bagasse Hydrolysate for Improved Lipid Production in Rhodotorula glutinis. FERMENTATION 2022. [DOI: 10.3390/fermentation8100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sugarcane bagasse is a potential raw material for microbial lipid production by oleaginous yeasts. Due to the limited sugar concentrations in bagasse hydrolysate, increasing carbon the concentration is necessary in order to improve lipid production. We aimed to increase carbon concentration by incorporating glycerol as a co-substrate into unconcentrated bagasse hydrolysate in the cultivation of Rhodotorula glutinis TISTR 5159. Cultivation in hydrolysate without nitrogen supplementation (C/N = 42) resulted in 60.31% lipid accumulation with 11.45 ± 0.75 g/L biomass. Nitrogen source supplementation increased biomass to 26.29 ± 2.05 g/L without losing lipid accumulation at a C/N of 25. Yeast extract improved lipid production in the hydrolysate due to high growth without altering the lipid content of the cells. Mixing glycerol up to 10% v/v into the unconcentrated hydrolysate improved biomass and lipid production. A further increase in glycerol concentrations drastically decreased growth and lipid accumulation by the yeast. By maintaining C/N at 27 using yeast extract as the sole nitrogen source, hydrolysate mixed with 10% v/v glycerol resulted in the highest lipid yield, at 19.57 ± 0.53 g/L with 50.55% lipid content, which was a 2.8-fold increase compared to using the hydrolysate alone. In addition, yeast extracts were superior for promoting growth and lipid production compared to inorganic nitrogen sources.
Collapse
|
12
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
13
|
Li M, Alotaibi MKH, Li L, Abomohra AEF. Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. BIOMASS AND BIOENERGY 2022; 159:106410. [DOI: 10.1016/j.biombioe.2022.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
15
|
Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes. Catalysts 2021. [DOI: 10.3390/catal11111291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneotrichosporon oleaginosus is an oleaginous yeast with several favourable qualities: It is fast growing, accumulates high amounts of lipids and has a very broad substrate spectrum. Its resistance to hydrolysis by-products makes it a promising biocatalyst for custom tailored microbial oils. C. oleaginosus can accumulate up to 60 wt.% of its biomass as lipids. This species is able to grow by using several compounds as a substrate, such as acetic acid, biodiesel-derived glycerol, N-acetylglucosamine, lignocellulosic hydrolysates, wastepaper and other agro-industrial wastes. This review is focused on state-of-the-art innovative and sustainable biorefinery schemes involving this promising yeast and second- and third-generation biomasses. Moreover, this review offers a comprehensive and updated summary of process strategies, biomass pretreatments and fermentation conditions for enhancing lipid production by C. oleaginosus as a whole-cell biocatalyst. Finally, an overview of the main industrial applications of single-cell oil is reported together with future perspectives.
Collapse
|
16
|
Chmielarz M, Blomqvist J, Sampels S, Sandgren M, Passoth V. Microbial lipid production from crude glycerol and hemicellulosic hydrolysate with oleaginous yeasts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:65. [PMID: 33712047 PMCID: PMC7953724 DOI: 10.1186/s13068-021-01916-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Crude glycerol (CG) and hemicellulose hydrolysate (HH) are low-value side-products of biodiesel transesterification and pulp-and paper industry or lignocellulosic ethanol production, respectively, which can be converted to microbial lipids by oleaginous yeasts. This study aimed to test the ability of oleaginous yeasts to utilise CG and HH and mixtures of them as carbon source. RESULTS Eleven out of 27 tested strains of oleaginous yeast species were able to grow in plate tests on CG as sole carbon source. Among them, only one ascomycetous strain, belonging to Lipomyces starkeyi, was identified, the other 10 strains were Rhodotorula spec. When yeasts were cultivated in mixed CG/ HH medium, we observed an activation of glycerol conversion in the Rhodotorula strains, but not in L. starkeyi. Two strains-Rhodotorula toruloides CBS 14 and Rhodotorula glutinis CBS 3044 were further tested in controlled fermentations in bioreactors in different mixtures of CG and HH. The highest measured average biomass and lipid concentration were achieved with R. toruloides in 10% HH medium mixed with 55 g/L CG-19.4 g/L and 10.6 g/L, respectively, with a lipid yield of 0.25 g lipids per consumed g of carbon source. Fatty acid composition was similar to other R. toruloides strains and comparable to that of vegetable oils. CONCLUSIONS There were big strain differences in the ability to convert CG to lipids, as only few of the tested strains were able to grow. Lipid production rates and yields showed that mixing GC and HH have a stimulating effect on lipid accumulation in R. toruloides and R. glutinis resulting in shortened fermentation time to reach maximum lipid concentration, which provides a new perspective on converting these low-value compounds to microbial lipids.
Collapse
Affiliation(s)
- Mikolaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sabine Sampels
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
17
|
Kumar LR, Kaur R, Tyagi RD, Drogui P. Identifying economical route for crude glycerol valorization: Biodiesel versus polyhydroxy-butyrate (PHB). BIORESOURCE TECHNOLOGY 2021; 323:124565. [PMID: 33360115 DOI: 10.1016/j.biortech.2020.124565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Crude glycerol, a by-product of biodiesel industry, has been used for production of biodiesel and polyhydroxy-alkanoates. But question is: which product is economically favorable using crude glycerol as substrate? In this study, energy balance and economic assessment has been carried out for crude glycerol valorization for B10 biodiesel and polyhydroxy-butyrate (PHB) production. For same quantity of crude glycerol utilized, energy ratio for B10 production was higher than PHB production while unit production cost for B10 was lower than that of PHB. For 50 million L plant capacity of biodiesel, unit production cost was 0.77 $/L B10 while for 2 million kg plant capacity of PHB, unit production cost was 4.88 $/kg PHB. Thus, in present scenario production of biodiesel seems economically better than production of PHA with crude glycerol as raw material. This study is useful for researchers, environmental scientists and industries in identifying effective route for crude glycerol valorization.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, Huzhou, China; BOSK Bioproducts, 100-399 rue Jacquard, Québec G1N 4J6, Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
18
|
Zhang L, Loh KC, Kuroki A, Dai Y, Tong YW. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123543. [PMID: 32739727 DOI: 10.1016/j.jhazmat.2020.123543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
This review aims to encourage the technical development of microbial biodiesel production from industrial-organic-wastes-derived volatile fatty acids (VFAs). To this end, this article summarizes the current status of several key technical steps during microbial biodiesel production, including (1) acidogenic fermentation of bio-wastes for VFA collection, (2) lipid accumulation in oleaginous microorganisms, (3) microbial lipid extraction, (4) transesterification of microbial lipids into crude biodiesel, and (5) crude biodiesel purification. The emerging membrane-based bioprocesses such as electrodialysis, forward osmosis and membrane distillation, are promising approaches as they could help tackle technical challenges related to the separation and recovery of VFAs from the fermentation broth. The genetic engineering and metabolic engineering approaches could be applied to design microbial species with higher lipid productivity and rapid growth rate for enhanced fatty acids synthesis. The enhanced in situ transesterification technologies aided by microwave, ultrasound and supercritical solvents are also recommended for future research. Technical limitations and cost-effectiveness of microbial biodiesel production from bio-wastes are also discussed, in regard to its potential industrial development. Based on the overview on microbial biodiesel technologies, an integrated biodiesel production line incorporating all the critical technical steps is proposed for unified management and continuous optimization for highly efficient biodiesel production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
19
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
20
|
Hassanpour M, Abbasabadi M, Strong J, Gebbie L, Te'o VSJ, O'Hara IM, Zhang Z. Scale-up of two-step acid-catalysed glycerol pretreatment for production of oleaginous yeast biomass from sugarcane bagasse by Rhodosporidium toruloides. BIORESOURCE TECHNOLOGY 2020; 313:123666. [PMID: 32562969 DOI: 10.1016/j.biortech.2020.123666] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Two-step dilute acid and acid-catalysed glycerol pretreatment was developed to maximise sugar yield from sugarcane bagasse. At the laboratory scale, dilute acid pretreatment at 130 °C followed by acid-catalysed glycerol pretreatment at 170 °C led to a total sugar (C5 + C6) yield of 82%, 31% higher than that from one-step acid-catalysed glycerol pretreatment. At the pilot scale, the two-step dilute acid and acid-catalysed glycerol pretreatment led to a maximum sugar yield of 74%, 13% higher than that from one-step pretreatment with 52% reduction in glycerol usage. The enzymatic hydrolysate containing glucose and residual glycerol were used to produce microbial oils by a Rhodosporidium toruloides strain. A fed-batch cultivation strategy led to the production of 44.8 g/L cell mass, including 26.6 g/L oil, 8.6 g/L protein and 12.7 mg/L carotenoid. The cell mass and oil yields were 19% higher than those from batch cultivation as feedstock inhibition and catabolite repression were alleviated.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Mahsa Abbasabadi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - James Strong
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Leigh Gebbie
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Valentino Setoa Junior Te'o
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| |
Collapse
|
21
|
Tang S, Dong Q, Fang Z, Cong WJ, Zhang H. Microbial lipid production from rice straw hydrolysates and recycled pretreated glycerol. BIORESOURCE TECHNOLOGY 2020; 312:123580. [PMID: 32502891 DOI: 10.1016/j.biortech.2020.123580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Microbial lipids were produced by both rice straw hydrolysates and recycled pretreated glycerol. First, lipid fermentation of glucose via Cryptococcus curvatus was optimized by response surface methodology. Variables were selected by Plackett-Burman design, and optimized by central composite design, achieving 4.9 g/L total lipid and 0.16 g/g lipid yield, and increased further as glucose increased from 30 to 50 g/L. Secondly, after pretreatment, 72% lignin of rice straw was removed with glucose yield increased by 2.4 times to 74% at 20% substrate and 3 FPU/g. Subsequently, its hydrolysates produced high total lipid (8.8 g/L) and lipid yield (0.17 g/g). Finally, recycled glycerol reached the maximum total lipid of 7.2 g/L and high lipid yield of 0.16 g/g. Based on the calculation, 2.9 g total lipid would be produced from 1 g rice straw and the recycled glycerol, with a similar composition to soybean oil.
Collapse
Affiliation(s)
- Song Tang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Qian Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China.
| | - Wen-Jie Cong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Huan Zhang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| |
Collapse
|
22
|
Concomitant wastewater treatment with lipid and carotenoid production by the oleaginous yeast Rhodosporidium toruloides grown on brewery effluent enriched with sugarcane molasses and urea. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Kamal R, Shen H, Li Q, Wang Q, Yu X, Zhao ZK. Utilization of Amino Acid-Rich Wastes for Microbial Lipid Production. Appl Biochem Biotechnol 2020; 191:1594-1604. [PMID: 32193803 DOI: 10.1007/s12010-020-03296-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
To produce microbial lipids for biofuel production, carbohydrates and related compounds from biomass have been routinely utilized, yet amino acids (AA) from protein-rich wastes have been overlooked so far. We use the oleaginous yeast Cryptococcus curvatus ATCC 20509 as a lipid producer and evaluate the capacity for lipid production on proteinogenic AA individually or in designated blends under two-staged culture conditions. It was found that cellular lipid contents reached 48.8%, 44.5% and 29.0% when yeast cells were cultivated in media-contained AA blends with compositional profiles similar to those of sheep viscera, meat industry by-products and fish muscle, respectively, and that lipid coefficients were more than 0.10 g g-1. Furthermore, cellular lipid contents were higher than 20% when most AA were used individually. High lipid coefficients of over 0.23 g g-1 were observed when Pro, Trp or Leu were used as a substrate. Results also indicated that higher initial media pH or reduced phosphate concentration was beneficial for lipid production on AA. This work demonstrated the potential to use AA and related wastes as substrates for microbial lipid production by the yeast C. curvatus, which fit well with the protein-based biorefinery concept. Further efforts should be devoted to recognizing the metabolic features, identifying more robust lipid producer and optimizing lipid production processes.
Collapse
Affiliation(s)
- Rasool Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hongwei Shen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Qiang Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Xue Yu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China. .,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
24
|
Jathanna HM, Rao CV, Goveas LC. Exploring Pongamia seed cake hydrolysate as a medium for microbial lipid production by Aspergillus ochraceus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Gong Z, Wang X, Yuan W, Wang Y, Zhou W, Wang G, Liu Y. Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:13. [PMID: 31993091 PMCID: PMC6977323 DOI: 10.1186/s13068-019-1639-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/17/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lignocellulosic biomass has been commonly regarded as a potential feedstock for the production of biofuels and biochemicals. High sugar yields and the complete bioconversion of all the lignocellulosic sugars into valuable products are attractive for the utilization of lignocelluloses. It is essential to pretreat and hydrolyze lignocelluloses at high solids loadings during industrial processes, which is more economical and environmentally friendly as capital cost, energy consumption, and water usage can be reduced. However, oligosaccharides are inevitably released during the high solids loading enzymatic hydrolysis and they are more recalcitrant than monosaccharides for microorganisms. RESULTS A fed-batch enzymatic hydrolysis of corn stover pretreated by the sodium hydroxide-methanol solution (SMs) at high solids loading was demonstrated to reach the high concentrations and yields of fermentable sugars. Glucose, xylose, cello-oligosaccharides, and xylo-oligosaccharides achieved 146.7 g/L, 58.7 g/L, 15.6 g/L, and 24.7 g/L, respectively, when the fed-batch hydrolysis was started at 12% (w/v) solids loading, and 7% fresh substrate and a standardized blend of cellulase, β-glucosidase, and hemicellulase were fed consecutively at 3, 6, 24, and 48 h to achieve a final solids loading of 40% (w/v). The total conversion of glucan and xylan reached 89.5% and 88.5%, respectively, when the oligosaccharides were taken into account. Then, a fed-batch culture on the hydrolysates was investigated for lipid production by Cutaneotrichosporon oleaginosum. Biomass, lipid content, and lipid yield were 50.7 g/L, 61.7%, and 0.18 g/g, respectively. The overall consumptions of cello-oligosaccharides and xylo-oligosaccharides reached 74.1% and 68.2%, respectively. CONCLUSIONS High sugars concentrations and yields were achieved when the enzyme blend was supplemented simultaneously with the substrate at each time point of feeding during the fed-batch enzymatic hydrolysis. Oligosaccharides were co-utilized with monosaccharides during the fed-batch culture of C. oleaginosum. These results provide a promising strategy to hydrolyze alkaline organosolv-pretreated corn stover into fermentable sugars with high concentrations and yields for microbial lipid production.
Collapse
Affiliation(s)
- Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Xuemin Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wei Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Guanghui Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
26
|
Díaz-Fernández D, Aguiar TQ, Martín VI, Romaní A, Silva R, Domingues L, Revuelta JL, Jiménez A. Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. BIORESOURCE TECHNOLOGY 2019; 293:122054. [PMID: 31487616 DOI: 10.1016/j.biortech.2019.122054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 05/08/2023]
Abstract
This work presents the exploitation of waste industrial by-products as raw materials for the production of microbial lipids in engineered strains of the filamentous fungus Ashbya gossypii. A lipogenic xylose-utilizing strain was used to apply a metabolic engineering approach aiming at relieving regulatory mechanisms to further increase the biosynthesis of lipids. Three genomic manipulations were applied: the overexpression of a feedback resistant form of the acetyl-CoA carboxylase enzyme; the expression of a truncated form of Mga2, a regulator of the main Δ9 desaturase gene; and the overexpression of an additional copy of DGA1 that codes for diacylglycerol acyltransferase. The performance of the engineered strain was evaluated in culture media containing mixed formulations of corn-cob hydrolysates, sugarcane molasses or crude glycerol. Our results demonstrate the efficiency of the engineered strains, which were able to accumulate about 40% of cell dry weight (CDW) in lipid content using organic industrial wastes as feedstocks.
Collapse
Affiliation(s)
- David Díaz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Victoria Isabel Martín
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rui Silva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José Luis Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| |
Collapse
|
27
|
Kumar LR, Yellapu SK, Tyagi RD, Zhang X. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. BIORESOURCE TECHNOLOGY 2019; 293:122155. [PMID: 31561979 DOI: 10.1016/j.biortech.2019.122155] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Crude glycerol (CG) is a by-product formed during the trans-esterification reaction for biodiesel production. Although crude glycerol is considered a waste stream of the biodiesel industry, it can replace expensive carbon substrates required for lipid production by oleaginous micro-organisms. However, crude glycerol has several impurities, such as methanol, soap, triglycerides, fatty acids, salts and metals, which are created during the trans-esterification process and may affect the cellular metabolism involved in lipid synthesis. This review aims to critically present a variation in crude glycerol composition depending on trans-esterification process and impact of impurities present in the crude glycerol on the cell growth and lipid accumulation by oleaginous microbes. This study also draws comparison between purified and crude glycerol for lipid production. Several techniques for crude glycerol purification (chemical treatment, thermal treatment, membrane technology, ion-exchange chromatography and adsorption) have been presented and discussed with reference to cost and environmental effects.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| | - Xiaolei Zhang
- School of Civil and Environment Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, GuangDong 518055, China
| |
Collapse
|
28
|
Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications. Appl Microbiol Biotechnol 2019; 103:3651-3667. [DOI: 10.1007/s00253-019-09742-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/02/2023]
|
29
|
Ding M, Chen B, Ji X, Zhou J, Wang H, Tian X, Feng X, Yue H, Zhou Y, Wang H, Wu J, Yang P, Jiang Y, Mao X, Xiao G, Zhong C, Xiao W, Li B, Qin L, Cheng J, Yao M, Wang Y, Liu H, Zhang L, Yu L, Chen T, Dong X, Jia X, Zhang S, Liu Y, Chen Y, Chen K, Wu J, Zhu C, Zhuang W, Xu S, Jiao P, Zhang L, Song H, Yang S, Xiong Y, Li Y, Zhang Y, Zhuang Y, Su H, Fu W, Huang Y, Li C, Zhao ZK, Sun Y, Chen GQ, Zhao X, Huang H, Zheng Y, Yang L, Su Z, Ma G, Ying H, Chen J, Tan T, Yuan Y. Biochemical engineering in China. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Chinese biochemical engineering is committed to supporting the chemical and food industries, to advance science and technology frontiers, and to meet major demands of Chinese society and national economic development. This paper reviews the development of biochemical engineering, strategic deployment of these technologies by the government, industrial demand, research progress, and breakthroughs in key technologies in China. Furthermore, the outlook for future developments in biochemical engineering in China is also discussed.
Collapse
Affiliation(s)
- Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Biqiang Chen
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaojun Ji
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Huiyuan Wang
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Xudong Feng
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hailong Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Jianping Wu
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Yu Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Xuming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Gang Xiao
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lei Qin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Jingsheng Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Hong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Linling Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Xiaoqiang Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yanfeng Liu
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Pengfei Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Lei Zhang
- Tianjin Ltd. of BoyaLife Inc. , Tianjin 300457 , China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| | - Sheng Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Xiong
- Shanghai Information Center of Life Sciences (SICLS), Shanghai Institute of Biology Sciences (SIBS), Chinese Academy of Sciences , Shanghai 200031 , China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University , Hangzhou 310058 , China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan 250100 , China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237 , China
| | - Haijia Su
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Weiping Fu
- China National Center of Biotechnology Development , Beijing , China
| | - Yingming Huang
- China National Center of Biotechnology Development , Beijing , China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology , Beijing 100081 , China
| | - Zongbao K. Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University , Nanjing 210009 , China
| | - Yuguo Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lirong Yang
- Institute of Biology Engineering, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 210009 , China
| | - Jian Chen
- School of Biotechnology, Jiangnan University , Wuxi 214122 , China
| | - Tianwei Tan
- Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072 , China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072 , China
| |
Collapse
|
30
|
Hassanpour M, Cai G, Gebbie LK, Speight RE, Junior Te'o VS, O'Hara IM, Zhang Z. Co-utilization of acidified glycerol pretreated-sugarcane bagasse for microbial oil production by a novel Rhodosporidium strain. Eng Life Sci 2019; 19:217-228. [PMID: 32625004 DOI: 10.1002/elsc.201800127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co-utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol-pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by-product. It is expected that microbial oil production can be significantly improved through process optimization.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Guiqin Cai
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Leigh K Gebbie
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Robert E Speight
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Valentino S Junior Te'o
- School of Earth Environmental and Biological Sciences Queensland University of Technology Brisbane QLD Australia
| | - Ian M O'Hara
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| |
Collapse
|
31
|
Zhou W, Tang M, Zou T, Peng N, Zhao M, Gong Z. Phosphate removal combined with acetate supplementation enhances lipid production from water hyacinth by Cutaneotrichosporon oleaginosum. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:148. [PMID: 31223338 PMCID: PMC6570911 DOI: 10.1186/s13068-019-1491-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/09/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Microbial lipids derived from various lignocellulosic feedstocks have emerged as a promising candidate for the biodiesel industry and a potential substitute for high value-added fats. However, lignocellulosic biomass, especially herbaceous biomass, such as water hyacinth, contains high concentrations of nitrogenous components. These compounds impede microbial lipid production, as lipid biosynthesis is commonly induced by imposing a nutrient deficiency, especially nitrogen starvation. Novel strategies and bioprocesses are pivotal for promoting lipid production from nitrogen-rich biomass. RESULTS Here a combined strategy of phosphate removal and acetate supplementation was described for enhanced microbial lipid production on water hyacinth hydrolysates by Cutaneotrichosporon oleaginosum (formerly Cryptococcus curvatus). Lipid production was significantly improved, when the phosphorus limitation and sugars/acetate co-utilization strategies were used separately. In this case, acetate and glucose were consumed simultaneously. Lipid production was observed by the combination of phosphate removal with acetate supplementation. Lipid titer, content, and yield were determined to be 7.3 g/L, 59.7% and 10.1 g/100 g raw water hyacinth, respectively. These data were increased by 4.2, 4.6, and 4.3 times, respectively, compared to those from the unprocessed hydrolysates. The fatty acid compositions of the resulting lipids bear a marked resemblance to those of rapeseed oil, indicating their applicability to the biodiesel industry. CONCLUSIONS The combination of phosphate removal and acetate supplementation was successful in significantly enhancing microbial lipid production. This strategy offers a valuable solution for nitrogen-rich lignocellulosic feedstocks utilization, which should foster more economical nitrogen-rich biomass-to-lipid bioprocesses.
Collapse
Affiliation(s)
- Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Tao Zou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Na Peng
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Mi Zhao
- China Carbon Balance Energy and Tech LTD, 1 Jianguomenwai Avenue, Beijing, 100004 People’s Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| |
Collapse
|
32
|
Cai G, Moghaddam L, O'Hara IM, Zhang Z. Microbial oil production from acidified glycerol pretreated sugarcane bagasse by Mortierella isabellina. RSC Adv 2019; 9:2539-2550. [PMID: 35520487 PMCID: PMC9059841 DOI: 10.1039/c8ra08971j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
An integrated microbial oil production process consisting of acidified glycerol pretreatment of sugarcane bagasse, enzymatic hydrolysis, microbial oil production by Mortierella isabellina NRRL 1757 and oil recovery by hydrothermal liquefaction (HTL) of fungal biomass in fermentation broth was assessed in this study. Following pretreatment, the effect of residual pretreatment hydrolysate (containing glycerol) on enzymatic hydrolysis was firstly studied. The residual pretreatment hydrolysate (corresponding to 2.0–7.5% glycerol) improved glucan enzymatic digestibilities by 10–11% compared to the enzymatic hydrolysis in water (no buffer). Although residual pretreatment hydrolysate at 2.0–5.0% glycerol slightly inhibited the consumption of glucose in enzymatic hydrolysate by M. isabellina NRRL 1757, it did not affect microbial oil production due to the consumption of similar amounts of total carbon sources including glycerol. When the cultivation was scaled-up to a 1 L bioreactor, glucose was consumed more rapidly but glycerol assimilation was inhibited. Finally, HTL of fungal biomass in fermentation broth without any catalyst at 340 °C for 60 min efficiently recovered microbial oils from fungal biomass and achieved a bio-oil yield of 78.7% with fatty acids being the dominant oil components (∼89%). HTL also led to the hydrogenation of less saturated fatty acids (C18:2 and C18:3) to more saturated forms (C18:0 and C18:1). A microbial oil production process consisting of acidified glycerol pretreatment of sugarcane bagasse, enzymatic hydrolysis, microbial oil production by M. isabellina NRRL 1757 and oil recovery by hydrothermal liquefaction of fungal biomass in fermentation broth was assessed.![]()
Collapse
Affiliation(s)
- Guiqin Cai
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| | - Ian M. O'Hara
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
33
|
Zhang X, Liu M, Zhang X, Tan T. Microbial lipid production and organic matters removal from cellulosic ethanol wastewater through coupling oleaginous yeasts and activated sludge biological method. BIORESOURCE TECHNOLOGY 2018; 267:395-400. [PMID: 30031278 DOI: 10.1016/j.biortech.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a novel strategy for lipid production through coupling oleaginous yeasts and activated sludge biological methods by cultivation of Rhodotorula glutinis in cellulosic ethanol wastewater was studied. Under optimal conditions in wastewater medium (dilution ratio of 1:2 and glucose supplement of 40 g/L), the maximum biomass and lipid content as well as the lipid yield reached 11.31 g/L, 18.35% and 2.08 g/L, with the associated removal rates of COD, TOC, NH4+-N, TN and TP reaching 83.15%, 81.81%, 85.49%, 70.52% and 67.46%, respectively. Cellulosic ethanol wastewater treated by the anaerobic-aerobic biological process resulted in removal of COD, NH4+-N, TP and TN reaching 67.55%, 94.17%, 90.16% and 48.89%, respectively. The reused water was used to dilute medium of R. glutinis for microbial lipid production reaching 2.38 g/L and caused positive effects on the accumulation of biomass and lipid.
Collapse
Affiliation(s)
- Xueling Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xu Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
34
|
Tang M, Zhou W, Liu Y, Yan J, Gong Z. A two-stage process facilitating microbial lipid production from N-acetylglucosamine by Cryptococcus curvatus cultured under non-sterile conditions. BIORESOURCE TECHNOLOGY 2018; 258:255-262. [PMID: 29533885 DOI: 10.1016/j.biortech.2018.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/21/2023]
Abstract
N-acetylglucosamine (GlcNAc), the monomeric constituent of chitin, is rarely studied for lipid production by oleaginous species. This study demonstrated that Cryptococcus curvatus had a great capacity to convert GlcNAc into lipid with high yield using a two-stage production process. Optimal inoculum age and inoculation size strongly improved the two-stage lipid production efficiency. More interestingly, this process rendered superior lipid production under non-sterile condition. The acetate liberated from GlcNAc was consumed timely, while the NH4+ released was rarely assimilated. Lipid titre, lipid content and lipid yield reached 9.9 g/L, 56.9% and 0.23 g/g, respectively, which were significantly higher than those from the conventional process where cell growth and lipid accumulation were coupled. The resulting lipid samples had similar fatty acid compositional profiles to those of vegetable oil, suggesting their potential for biodiesel production. These findings strongly supported the two-stage process as an attractive strategy for better techno-economics of the chitin-to-biodiesel routes.
Collapse
Affiliation(s)
- Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, PR China.
| |
Collapse
|
35
|
Borba CM, Tavares MDN, Moraes CC, Burkert JFDM. CAROTENOID PRODUCTION BY Sporidiobolus pararoseus IN AGROINDUSTRIAL MEDIUM: OPTIMIZATION OF CULTURE CONDITIONS IN SHAKE FLASKS AND SCALE-UP IN A STIRRED TANK FERMENTER. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180352s20160545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
37
|
Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Chen J, Yan S, Zhang X, Tyagi RD, Surampalli RY, Valéro JR. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:164-175. [PMID: 29097125 DOI: 10.1016/j.wasman.2017.10.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
In this study, crude, purified, and pure glycerol were used to cultivate Trichosporon oleaginosus for lipid production which was then used as feedstock of biodiesel production. The purified glycerol was obtained from crude glycerol by removing soap with addition of H3PO4 which converted soap to free fatty acids and then separated from the solution. The results showed that purified glycerol provided similar performance as pure glycerol in lipid accumulation; however, crude glycerol as carbon source had negatively impacted the lipid production of T. oleaginosus. Purified glycerol was later used to determine the optimal glycerol concentration for lipid production. The highest lipid yield 0.19g/g glycerol was obtained at 50g/L purified glycerol in which the biomass concentration and lipid content were 10.75g/L and 47% w/w, respectively. An energy gain of 4150.51MJ could be obtained with 1tonne of the crude glycerol employed for biodiesel production through the process proposed in this study. The biodiesel production cost estimated was 6.32US$/gal. Fatty acid profiles revealed that C16:0 and C18:1 were the major compounds of the biodiesel from the lipid produced by T. oleaginosus cultivated with crude and purified glycerol. The study found that purified glycerol was promising carbon source for biodiesel production.
Collapse
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Song Yan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | | | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - J R Valéro
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
39
|
Deeba F, Pruthi V, Negi YS. Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production. BIORESOURCE TECHNOLOGY 2017; 242:113-120. [PMID: 28411053 DOI: 10.1016/j.biortech.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 05/26/2023]
Abstract
The investigation was carried out to examine the potential of triacylglycerol (TAG) accumulation by novel oleaginous yeast isolate Cryptococcus psychrotolerans IITRFD on utilizing groundnut shell acid hydrolysate (GSH) as cost-effective medium. The maximum biomass productivity and lipid productivity of 0.095±0.008g/L/h and 0.044±0.005g/L/h, respectively with lipid content 46% was recorded on GSH. Fatty acid methyl ester (FAME) profile obtained by GC-MS analysis revealed oleic acid (37.8%), palmitic (29.4%) and linoleic (32.8%) as major fatty acids representing balance between oxidative stability (OS) and cold flow filter properties (CFFP) for improved biodiesel quality. The biodiesel property calculated were correlated well with the fuel standards limits of ASTM D6751, EN 14214 and IS 15607. The present findings raise the possibility of using agricultural waste groundnut shell as a substrate for production of biodiesel by novel oleaginous yeast isolate C. psychrotolerans IITRFD.
Collapse
Affiliation(s)
- Farha Deeba
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (IIT R), Saharanpur Campus, Saharanpur 247001, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT R), Roorkee, Uttarakhand 247667, India
| | - Yuvraj S Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (IIT R), Saharanpur Campus, Saharanpur 247001, India.
| |
Collapse
|
40
|
Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Appl Microbiol Biotechnol 2017; 101:7789-7809. [DOI: 10.1007/s00253-017-8516-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
|
41
|
Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R. Microbial oil - A plausible alternate resource for food and fuel application. BIORESOURCE TECHNOLOGY 2017; 233:423-432. [PMID: 28314666 DOI: 10.1016/j.biortech.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 05/26/2023]
Abstract
Microbes have recourse to low-priced substrates like agricultural wastes and industrial efflux. A pragmatic approach towards an emerging field- the exploitation of microbial oils for biodiesel production, pharmaceutical and cosmetic applications, food additives, biopolymer production will be of immense remunerative significance in the near future. Due to high free fatty acid, nutritive content and simpler solvent extraction processes of microbial oils with plant oil, microbial oils can back plant oils in food applications. The purpose of this review is to evaluate the opulence of lipid production in native and standard micro-organisms and also to emphasize the vast array of applications including food and fuel by obtaining maximum yield.
Collapse
Affiliation(s)
- B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - Sridevi Sridharan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - V Sowmya
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - D Yuvaraj
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - R Praveenkumar
- Department of Biotechnology, Arunai Engineering College, Tiruvannamalai 606603, India.
| |
Collapse
|
42
|
Bonturi N, Crucello A, Viana AJC, Miranda EA. Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Yaguchi A, Rives D, Blenner M. New kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiol 2017; 3:227-247. [PMID: 31294158 PMCID: PMC6605006 DOI: 10.3934/microbiol.2017.2.227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022] Open
Abstract
There is growing interest in using oleaginous yeast for the production of a variety of fatty acids and fatty acid-derived oleochemicals. This is motivated by natural propensity for high flux through lipid biosynthesis that has naturally evolved, making them a logical starting point for additional genetic engineering to improve titers and productivities. Much of the academic and industrial focus has centered on yeast that have significant genetic engineering tool capabilities, such as Yarrowia lipolytica, and those that have naturally high lipid accumulation, such as Rhodosporidium toruloides and Lipomyces starkeyi; however, there are oleaginous yeast with phenotypes better aligned with typically inhibitory process conditions, such as high salt concentrations and lignocellulosic derived inhibitors. This review addresses the foundational work in characterizing two emerging oleaginous yeast of interest: Debaryomyces hansenii and Trichosporon oleaginosus. We focus on the physiological and metabolic properties of these yeast that make each attractive for bioprocessing of lignocellulose to fuels and chemicals, discuss their respective genetic engineering tools and highlight the critical barriers facing the broader implementation of these oleaginous yeast.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC 29634, USA
| | - Dyllan Rives
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC 29634, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson SC 29634, USA
| |
Collapse
|