1
|
Emmanuel A, Wei Y, Ramzan MN, Yang W, Zheng Z. Dynamics of Bacterial Communities and Their Relationship with Nutrients in a Full-Scale Shrimp Recirculating Aquaculture System in Brackish Water. Animals (Basel) 2025; 15:1400. [PMID: 40427277 PMCID: PMC12108446 DOI: 10.3390/ani15101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Microbial communities in RASs play a critical role in maintaining water quality and supporting shrimp growth, development, and health. However, their dynamics, particularly in commercial systems, remain poorly understood. This study aimed to improve the understanding of bacterial community dynamics during shrimp culture in RASs. High-throughput amplicon sequencing of the 16S rRNA, PERMANOVA, PCoA, and other statistical analyses were used to investigate the bacterial dynamics. The entire succession process was categorized into three distinct phases, the initial, middle, and final phases, during the shrimp rearing in RASs to elucidate the spatial-temporal dynamics of the bacterial communities. Alpha diversity indicates the evenness of the bacterial community increased in the initial phase, while richness peaked in the middle phase. Notable taxonomic and functional groups within the bacterial community contributed to significant variations in the relative abundance of community composition across these phases. The dominant bacterial phyla in both water and biofilm included Proteobacteria, Actinobacteriota, Bacteroidota, and Patescibacteria. The dominant orders in both environments were Corynebacteriales, Burkholderiales, Rhodobacterales, Flavobacteriales, Saccharimonadales, and Micrococcales. Key bacterial taxa such as Pseudomonas, Mycobacterium, and Hydrogenophaga were critical for microbial community assembly, nutrient cycling, biodegradation, and water quality monitoring. Nitrite, ammonium, and nitrate were positively correlated with Mycobacterium, Rheinheimera, Taeseokela, and Thermomonas, while negatively correlated with the Cloacibacterium community composition. These findings expand our understanding of the underlying mechanisms of bacterial community succession in RASs with intensive rearing of shrimp and suggest that stabilizing environmental variables could be a useful management tool for promoting and maintaining healthy aquaculture environments.
Collapse
Affiliation(s)
| | | | | | | | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; (A.E.)
| |
Collapse
|
2
|
Pourrostami Niavol K, Andaluri G, Achary MP, Suri RPS. How does carbon to nitrogen ratio and carrier type affect moving bed biofilm reactor (MBBR): Performance evaluation and the fate of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124619. [PMID: 39987875 DOI: 10.1016/j.jenvman.2025.124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
With the spread of antibiotic resistance genes (ARGs) in the environment, monitoring and controlling ARGs have become an emerging issue of concern in biological processes. Moving bed biofilm reactors (MBBR) have been gaining attention for application in wastewater treatment. Since the performance of MBBR depends on operational parameters and biocarriers, selection of suitable biocarriers and start-up conditions are vital for efficiency of MBBRs. This study investigates the effects of different carbon-to-nitrogen (C/N) ratios and carrier types on the fate of selected ARGs and microbial communities in four MBBR systems using two conventional (K3 and sponge biocarrier (SB)) and two modified carriers (Fe-Ca@SB and Ze-AC@SB). Results showed that the modified biocarriers achieved higher NH4-N removal and better simultaneous nitrification and denitrification (SND) performance (90%) at C/N of 20. However, as the C/N ratio decreased to 10 and 7, the performance of all bioreactors was approximately similar. Moreover, COD removal of 90% was achieved in all reactors regardless of C/N ratio and carrier type. Further studies on the fate of selected ARGs (tetA, blaTEM, ampR) showed that the C/N ratio could affect the abundance of target ARGs, especially for K3 biocarrier, with tetA being the most abundant gene. Also, as the C/N ratio decreased, intl1 was enriched using K3 and SB. However, for Ze-AC@SB, the increase in the abundance of ARGs and intl1 was the lowest making it a reliable carrier not only in MBBR performance but in the control of ARGs. Metagenomic studies showed that the C/N ratio and carrier type could alter the diversity and structure of the bacterial communities in different MBBR systems, with Proteobacteria being the most abundant phylum in all four systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Gangadhar Andaluri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Mohan P Achary
- Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Rominder P S Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
3
|
Liu J, Lv D, Liu X, Wang Y, Zhao Y, Li G, Si W, Zhang G. Promoting effect of Cu as electron transfer medium on NH 3-SCO reaction in asymmetric Ag-O v-Ti-Sm-Cu ring active site. J Colloid Interface Sci 2025; 678:602-615. [PMID: 39216388 DOI: 10.1016/j.jcis.2024.08.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Selective catalytic oxidation of ammonia (NH3-SCO) has become an effective method to reduce ammonia (NH3) emissions, and is a key part to solve the problem of NH3 pollution. Nevertheless, the optimization of this technology's performance relies heavily on innovation and the development of catalyst design. In this study, a SmCuAgTiOx catalyst with an asymmetric Ag-Ov-Ti-Sm-Cu ring active site was prepared and applied to the NH3-SCO reaction. The low conversion of Cu-based catalysts in NH3 at low temperature and the inherent low N₂ selectivity of Ag-based catalysts were solved. The successful creation of the asymmetric ring active site improved the catalyst's reduction performance. Additionally, Cu, acting as an electron transfer medium, plays a crucial role in enhancing electron transfer within the asymmetric ring active site, thus increasing the redox cycle of the catalyst during the reaction. In addition, some lattice oxygen is lost in the catalyst, resulting in the formation of a large number of oxygen vacancies. This process stimulates the adsorption and activation of surface-adsorbed oxygen, facilitating the conversion of NH3 to an amide (NH2) intermediate during the reaction and reducing non-selective oxidation. The N2 selectivity was improved without significantly affecting the performance of Ag-based catalyst. In-situ diffuse reflectance fourier transform infrared spectroscopy (In-situ DRIFTS) analysis reveals that the SmCuAgTiOx catalyst primarily follows an "internal" selective catalytic reduction (iSCR) mechanism in the NH3-SCO reaction, complemented by the imide mechanism. The asymmetric Ag-Ov-Ti-Sm-Cu ring active site developed in this study provides a new perspective for efficiently solving NH3 pollution in the future.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dengke Lv
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xiaoqing Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Ying Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Yuqiong Zhao
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Guoqiang Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Guojie Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.
| |
Collapse
|
4
|
Yang M, Cai Y, Yu J, Ning S, Wang C, Wen M, Gao X, Zhao X. Purification of harvested rainwater using gravity-driven ceramic membrane: A visualization study combining Micro-CT and COMSOL simulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123333. [PMID: 39622136 DOI: 10.1016/j.jenvman.2024.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 01/15/2025]
Abstract
Rainwater harvesting is a viable solution for providing clean water in regions where conventional water sources are scarce or contaminated. However, the harvested rainwater often contains microorganisms, suspended particles, and other impurities that must be removed before consumption. Gravity-driven ceramic membranes (GDCMs) are an efficient choice for purifying harvested rainwater due to their energy-saving properties. Nevertheless, there is a lack of understanding regarding the impact of biofilms on the pore and seepage properties of GDCMs. In this study, we conducted a visualization investigation that integrated indoor seepage experiments with microcomputed tomography (micro-CT) and COMSOL simulations to delve into the fouling behavior and underlying mechanisms. The findings revealed that the growth of biofilm altered the surface pore structure of GDCM without impacting the internal pores. The surface pores of GDCM formed three specialized structures. Moreover, the probability density of small surface pore sizes increases substantially. It induced only subtle alterations to the coordination numbers, but resulted in a rapid reduction in the seepage flux. Simulation results indicate that the attachment of biofilms leads to the formation of high-pressure regions, primarily concentrated in the surface layer of less than 5% area. Here, the pores are abruptly constricted, and the pressure dissipates rapidly. As a result, the original seepage paths are obstructed, compelling the water to find and flow through longer alternative routes. To maintain a stable flux in the presence of biofilm, GDCM pore throat channels with different pore structures were evaluated, revealing that uniform channels were more effective than extremely complex channels.
Collapse
Affiliation(s)
- Mingfei Yang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaohui Cai
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Juan Yu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaoxiong Ning
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenguang Wang
- Shaanxi Provincial Farmland Quality and Agricultural Environmental Protection Workstation, Department of Agriculture and Rural Affairs of Shaanxi Province, Xi'an, Shaanxi, 710003, China
| | - Mingyi Wen
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Gao
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xining Zhao
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Jin Y, Tian Y, Xiong W, Wang Y, Xiao G, Wang S, Su H. Effects of carrier surface hydrophilic modification on sludge granulation: From sludge characteristics, extracellular polymeric substances, and microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124476. [PMID: 38950844 DOI: 10.1016/j.envpol.2024.124476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Aerobic granular sludge (AGS) is a powerful biotechnological tool capable of treating multiple pollutants simultaneously. However, the granulation process and pollutant removal efficiency still need to be further improved. In this study, Fe2O3- and MnO2-surface-modified straw foam-based AGS (Fe2O3@SF-AGS and MnO2@SF-AGS), with an average particle size of 3 mm, were developed and evaluated. The results showed that surface modification reduced the hydrophobic groups of carriers, facilitating the attachment and proliferation of microorganisms. Notably, MnO2@SF-AGS showed excellent granulation performance, reaching a stable state about one week earlier than the unmodified SF-AGS. The polymeric substance content of MnO2@SF-AGS was found to be 1.28 times higher than that of the control group. Furthermore, the removal rates for NH4+-N, TN, and TP were enhanced by 27.28%, 12.8%, and 32.14%, respectively. The bacterial communities exhibited significant variations in response to different surface modifications of AGS, with genera such as Saprospiraceae, Terrimonas, and Ferruginibacter playing a crucial role in the formation of AGS and the removal of pollutants specifically in MnO2@SF-AGS. The charge transfer of metal ions of MnO2@SF promotes the granulation process and pollutant removal. These results highlight that MnO2@SF-AGS is an effective strategy for improving nitrogen and phosphorus removal efficiency from wastewater.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Tian
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yaoqiang Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
6
|
Sun L, Yue X, Zhang G, Wang A. A pilot-scale anoxic-anaerobic-anoxic-oxic combined with moving bed biofilm reactor system for advanced treatment of rural wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173074. [PMID: 38734101 DOI: 10.1016/j.scitotenv.2024.173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Rural domestic poses a significant challenge to treatment technologies due to significant fluctuations in both water quality, particularly in terms of carbon concentration, and quantity. Conventional biological technology, such as anaerobic-anoxic-oxic (A2O) systems, is inefficient. In this work, a continuous pilot-scale anoxic-anaerobic-anoxic-oxic (A3O) reactor with a moving bed biofilm reactor (MBBR) system was constructed and optimized to improve the treatment efficiency of rural domestic wastewater. The sludge return ratio, volume ratio of the oxic-to-anoxic zone (Voxi/Vano), step-feeding and hydraulic retention time (HRT) at low temperature were considered the main parameters for optimization. Microbial analysis was performed on both the mixed liquor and carrier of the A3O-MBBR system under initial and post-optimized conditions. The results indicated that the A3O-MBBR improved the treatment efficiency of rural domestic wastewater, especially for total phosphorus (TP), which increased by 20 % compared with that of the A2O-MBR. In addition, the removal efficiencies of nitrogen and phosphorus were further optimized, and the average concentrations of total nitrogen (TN) and TP in the effluent reached 2.46 and 0.364 mg/L, respectively, at a sludge reflux ratio of 100 or 150 %, Voxi/Vano =200 %, step-feeding of 0.5Q/0.5Q (anaerobic/anoxic) and HRT of 15 h at low temperature in the A3O-MBBR, which met standard A of GB18918-2002, China (TN < 15 mg/L, TP < 0.5 mg/L). The average rate of attaining the standard increased by 58.63 % (post optimization). The microbial analysis showed an increase in species diversity and richness after the parameters were optimized. Moreover, compared to the microbial community structure before optimization, the post-optimization exhibited a more stable microbial structure with a significant enrichment of functional bacteria. Defluviimonas, Novosphingobium and Bifidobacterium, considered as the dominant nitrification or denitrifying bacteria, were enriched in the suspended sludge of the MBBR reactor, which the relative abundance increased by 3.11 %, 3.84 %, and 3.24 %, respectively. Further analysis of the microbial community in the carrier revealed that the abundance of Nitrospira and the denitrifying bacteria carried by the carrier were much greater than those in the suspended sludge. Consequently, the microorganism cooperation between suspended sludge and biofilm might be responsible for the improved performance of the optimized A3O-MBBR.
Collapse
Affiliation(s)
- Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xinbo Yue
- School of Intelligent Manufacturing Technology, Nanyang Vocational College, Xixia 474550, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Chalipa Z, Hosseinzadeh M, Nikoo MR. Performance evaluation of a new sponge-based moving bed biofilm reactor for the removal of pharmaceutical pollutants from real wastewater. Sci Rep 2024; 14:14240. [PMID: 38902342 PMCID: PMC11190270 DOI: 10.1038/s41598-024-64442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Pharmaceutical pollutants, a group of emerging contaminants, have attracted outstanding attention in recent years, and their removal from aquatic environments has been addressed. In the current study, a new sponge-based moving bed biofilm reactor (MBBR) was developed to remove chemical oxygen demand (COD) and the pharmaceutical compound Ibuprofen (IBU). A 30-L pilot scale MBBR was constructed, which was continuously fed from the effluent of the first clarifier of the Southern Tehran wastewater treatment plant. The controlled operational parameters were pH in the natural range, Dissolved Oxygen of 1.5-2 mg/L, average suspended mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids (MLVSS) of 1.68 ± 0.1 g/L and 1.48 ± 0.1 g/L, respectively. The effect of hydraulic retention time (HRT) (5 h, 10 h, 15 h), filling ratio (10%, 20%, 30%), and initial IBU concentration (2 mg/L, 5 mg/L, 10 mg/L) on removal efficiencies was assessed. The findings of this study revealed a COD removal efficiency ranging from 48.9 to 96.7%, with the best removal efficiency observed at an HRT of 10 h, a filling ratio of 20%, and an initial IBU concentration of 2 mg/L. Simultaneously, the IBU removal rate ranged from 25 to 92.7%, with the highest removal efficiency observed under the same HRT and filling ratio, albeit with an initial IBU concentration of 5 mg/L. An extension of HRT from 5 to 10 h significantly improved both COD and IBU removal. However, further extension from 10 to 15 h slightly enhanced the removal efficiency of COD and IBU, and even in some cases, removal efficiency decreased. Based on the obtained results, 20% of the filling ratio was chosen as the optimum state. Increasing the initial concentration of IBU from 2 to 5 mg/L generally improved COD and IBU removal, whereas an increase from 5 to 10 mg/L caused a decline in COD and IBU removal. This study also optimized the reactor's efficiency for COD and IBU removal by using response surface methodology (RSM) with independent variables of HRT, filling ratio, and initial IBU concentration. In this regard, the quadratic model was found to be significant. Utilizing the central composite design (CCD), the optimal operating parameters at an HRT of 10 h, a filling ratio of 21%, and an initial IBU concentration of 3 mg/L were pinpointed, achieving the highest COD and IBU removal efficiencies. The present study demonstrated that sponge-based MBBR stands out as a promising technology for COD and IBU removal.
Collapse
Affiliation(s)
- Zohreh Chalipa
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114, Iran
| | - Majid Hosseinzadeh
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
| | - Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
8
|
Liu S, Li Y, Lu L, Huang G, Chen F. Efficient nitrogen removal from municipal wastewater using an integrated fixed-film activated sludge process in a novel air-lifting loop reactor: A pilot-scale demonstration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121108. [PMID: 38754189 DOI: 10.1016/j.jenvman.2024.121108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
A novel air-lifting loop reactor combines anoxic, oxic, and settling zones to achieve organic and nutrient removal, as well as solid-liquid separation. To address sludge settling ability and operation stability issues caused by low dissolved oxygen in aerobic zones, this study proposes using modified polypropylene carriers to establish a fixed-film activated sludge (IFAS) system. A pilot-scale demonstration of the IFAS-based air-lifting loop reactor is conducted, and the results show successful operation for approximately 300 days. The pilot-scale reactor achieves a maximum aerobic granulation ratio of 16% in the bulk liquid. The IFAS system contributes to efficient removal of organic matter (96%) and nitrogen (94%) by facilitating simultaneous nitrification and denitrification, as well as fast solid-liquid separation with a low sludge volume index of 34 mL/g. Microbial analysis reveals enrichment of functional bacteria involved in nitrification, denitrification, and flocculation throughout the operation process.
Collapse
Affiliation(s)
- Shujie Liu
- Qingyan Environmental Technology Co. Ltd., Shenzhen, 51800, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Li
- Qingyan Environmental Technology Co. Ltd., Shenzhen, 51800, China.
| | - Lanlan Lu
- Qingyan Environmental Technology Co. Ltd., Shenzhen, 51800, China
| | - Guangrong Huang
- Qingyan Environmental Technology Co. Ltd., Shenzhen, 51800, China
| | - Fuming Chen
- Qingyan Environmental Technology Co. Ltd., Shenzhen, 51800, China
| |
Collapse
|
9
|
Liu Z, Chen Y, Xu Z, Lei J, Lian H, Zhang J, Wang Z. Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification. Polymers (Basel) 2024; 16:1506. [PMID: 38891453 PMCID: PMC11175129 DOI: 10.3390/polym16111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Partial nitrification-Anammox (PN-A) is a cost-effective, environmentally friendly, and efficient method for removing ammonia (NH4+-N) pollutants from water. However, the limited accumulation of nitrite (NO2--N) represents a bottleneck in the development of PN-A processes. To address this issue, this study developed a composite carrier loaded with nano zero-valent iron (nZVI) and zeolite to enhance NO2--N accumulation during short-cut nitrification. The modified composite carrier revealed electropositive, hydrophilicity, and surface roughness. These surface characteristics correlate positively with the carrier's total biomass adsorption capacity; the initial adsorption of microorganisms by the composite carrier was increased by 8.7 times. Zeolite endows the carrier with an NH4+-N adsorption capacity of 4.50 mg/g carrier. The entropy-driven ammonia adsorption process creates an ammonia-rich microenvironment on the surface of the carrier, providing effective inhibition of nitrite-oxidizing bacteria (NOB). In tests conducted with a moving bed biofilm reactor and a sequencing batch reactor, the composite carrier achieved a 95% NH4+-N removal efficiency, a NO2--N accumulation efficiency of 78%, and a doubling in total nitrogen removal efficiency. This composite carrier enhances NO2--N accumulation by preventing biomass washout, inhibiting NOB, and enriching PN-A functional bacteria, suggesting its potential for large-scale, stable PN-A applications.
Collapse
Affiliation(s)
- Zexiang Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Yong Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Zhihong Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Jinxu Lei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Hua Lian
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| | - Jian Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Z.L.); (Y.C.); (Z.X.); (J.L.); (H.L.)
| |
Collapse
|
10
|
Pratap V, Kumar R, Kumar S, Yadav BR. Optimization of moving bed biofilm reactors for the treatment of municipal wastewater. ENVIRONMENTAL RESEARCH 2024; 241:117560. [PMID: 37949290 DOI: 10.1016/j.envres.2023.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The properties of biocarriers significantly influence the performance of a moving bed-biofilm reactor (MBBR). This study aimed to assess the impact of media type, filling ratio, and hydraulic retention time (HRT) on biofilm formation and MBBR performance in both batch and continuous setups using real municipal wastewater. Two different media, high-density polyethylene (HDPE) and polypropylene (PPE), with varying surface area and properties were used. Biofilm growth and MBBR performance were monitored and optimized using response surface methodology. The effect of different media was investigated for three filling ratios of 20%, 40% and 60% and HRT of 4, 6 and 8 h. Results depicted a better biofilm growth on HDPE media in comparison to PPE carriers due to difference in media structure and surface properties. At all the conditions tested, HDPE media showed comparatively better performance for the removal of organic matter and nutrients than PPE media. The maximum organic matter removal efficiency was found as 77% and 75% at an HRT of 6 h and filling ratio of 40% for HDPE and PPE media, respectively. The ammonia removal was also found better for HDPE media due to its geometry and structure favoring the anoxic conditions with maximum removal of 89% achieved at 6-h HRT and 40% filling ratio. Overall, the system with HDPE media indicated more stability in terms of reactor performance than PPE carriers with variations in the operating conditions.
Collapse
Affiliation(s)
- Vinay Pratap
- CSIR-National Environmental Engineering and Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rakesh Kumar
- CSIR-National Environmental Engineering and Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering and Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering and Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
11
|
Sandeep R, Muscolino JF, Macêdo WV, Piculell M, Christensson M, Poulsen JS, Nielsen JL, Vergeynst L. Effect of biofilm thickness on the activity and community composition of phosphorus accumulating bacteria in a moving bed biofilm reactor. WATER RESEARCH 2023; 245:120599. [PMID: 37717325 DOI: 10.1016/j.watres.2023.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Can biofilms enhance the rates of phosphorus removal in wastewater treatment? In order to narrow the scientific gap on the effect of biofilm thickness on the activity and microbial community of phosphorus-accumulating bacteria, this study investigated biofilms of 30 to 1000 µm thickness in a moving bed biofilm reactor. Measurements on 5 different biofilm carriers showed that biomass-specific phosphorus release and uptake rates increased as a function of biofilm thickness for biofilms thinner than about 110 µm but were lower for thicker biofilms of about 550-1000 µm. The reduced phosphorus uptake and release rates in the thickest biofilms can result from substrate mass transfer limitations whereas the low activity in the thinnest biofilms can be related to a too high turnover rate in the biofilm due to heterotrophic growth. Additionally, the microbial ecology of the different biofilms confirms the observed phosphorus uptake and release rates. The results from the full-length 16S rRNA gene sequencing of the bacterial community showed that the thicker biofilms were characterized by higher relative abundance (40-58%) of potential phosphorus accumulating genera Zoogloea, Acinetobacter, Dechloromonas and Ca. Accumulibacter. In contrast, the thinner biofilms were dominated by the genus Ferribacterium (34-60%), which might be competing with phosphorus-accumulating bacteria as indicated by the relatively high acetate uptake rates in the thinner biofilms. It is concluded that there is an optimal biofilm thickness of 100-500 µm, at which the phosphorus accumulating bacteria have the highest activity.
Collapse
Affiliation(s)
- Rellegadla Sandeep
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| | - Juan Franco Muscolino
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Williane Vieira Macêdo
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | | | - Jan Struckmann Poulsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Leendert Vergeynst
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Feng K, Lou Y, Li Y, Lu B, Fang A, Xie G, Chen C, Xing D. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130754. [PMID: 36638675 DOI: 10.1016/j.jhazmat.2023.130754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The extracellular electron transfer capability of some anaerobic ammonium oxidation (anammox) bacteria was confirmed in recent years. However, the effect of conductive carriers on the synchronous formation of anammox biofilm and granules is rarely reported. Anammox biofilm and granules with compact and stable structures accelerate the initiation and enhance the stability of the anammox process. In this study, we found that the conductive carbon fiber brush (CB) carrier promoted synchronous biofilm formation and granulation of anammox bacteria in the internal circulation immobilized blanket (ICIB) reactor. Compared with polyurethane sponge and zeolite carrier, the ICIB reactor packed with CB carrier can be operated under the highest total nitrogen loading rate of 6.53 kg-N/(m3·d) and maintain the effluents NH4+-N and NO2--N at less than 1 mM. The volatile suspended solids concentration in the ICIB reactor packed with conductive carrier increased from 5.17 ± 0.40 g/L of inoculum sludge to 24.24 ± 1.20 g/L of biofilm, and the average particle size of granules increased from 222.09 µm to 879.80 µm in 150 days. Fluorescence in situ hybridization analysis showed that anammox bacteria prevailed in the biofilm and granules. The analysis of extracellular polymeric substances indicated that protein and humic acid-like substances played an important role in the formation of anammox biofilm and granules. Microbiome analysis showed that the relative abundance of Candidatus Jettenia was increased from 0.18% to 38.15% in the biofilm from CB carrier during start-up stage. This study provides a strategy for rapid anammox biofilm and granules enrichment and carrier selection of anammox process.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World J Microbiol Biotechnol 2023; 39:112. [PMID: 36907929 DOI: 10.1007/s11274-023-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
The microbial community in biofilm is safeguarded from the action of toxic chemicals, antimicrobial compounds, and harsh/stressful environmental circumstances. Therefore, biofilm-based technology has nowadays become a successful alternative for treating industrial wastewater as compared to suspended growth-based technologies. In biofilm reactors, microbial cells are attached to static or free-moving materials to form a biofilm which facilitates the process of liquid and solid separation in biofilm-mediated operations. This paper aims to review the state-of-the-art of recent research on bacterial biofilm in industrial wastewater treatment including biofilm fundamentals, possible applications and problems, and factors to regulate biofilm formation. We discussed in detail the treatment efficiencies of fluidized bed biofilm reactor (FBBR), trickling filter reactor (TFR), rotating biological contactor (RBC), membrane biofilm reactor (MBfR), and moving bed biofilm reactor (MBBR) for different types of industrial wastewater treatment. Besides, biofilms have many applications in food and agriculture, biofuel and bioenergy production, power generation, and plastic degradation. Furthermore, key factors for regulating biofilm formation were also emphasized. In conclusion, industrial applications make evident that biofilm-based treatment technology is impactful for pollutant removal. Future research to address and improve the limitations of biofilm-based technology in wastewater treatment is also discussed.
Collapse
|
14
|
Saidulu D, Srivastava A, Gupta AK. Elucidating the performance of integrated anoxic/oxic moving bed biofilm reactor: Assessment of organics and nutrients removal and optimization using feed forward back propagation neural network. BIORESOURCE TECHNOLOGY 2023; 371:128641. [PMID: 36681347 DOI: 10.1016/j.biortech.2023.128641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
A lab-scale integrated anoxic and oxic (A/O) moving bed biofilm reactor (MBBR) was investigated for the removal of organics and nutrients by varying chemical oxygen demand (COD) to NH4-N ratio (C/N ratio: 3.5, 6.75, and 10), hydraulic retention time (HRT: 6 h, 15 h, and 24 h), and recirculation ratio (R: 1, 2, and 3). The use of activated carbon coated carriers prepared from waste polyethylene material and polyurethane sponges attached to a cylindrical frame in the integrated A/O MBBR increased the attached growth biomass significantly. >95 % of COD removal was observed under the C/N ratio of 10 at an HRT of 24 h. While the low C/N ratio favored the removal of NH4-N (∼98 %) and PO43--P (∼90 %) with an optimal R of 1.75. Using the experimental dataset, to predict and forecast the performance of integrated A/O MBBR, a feed-forward-backpropagation-neural-network model was developed.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
15
|
Xu S, Yan Y, Shuang C, Zhou Q, Ji R, Li A. Biological magnetic ion exchange resin on advanced treatment of synthetic wastewater. BIORESOURCE TECHNOLOGY 2023; 372:128613. [PMID: 36640820 DOI: 10.1016/j.biortech.2023.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In this work, three biological ion exchange systems and one biological activated carbon (BAC) system were established by employing magnetic ion exchange resin (MIEX), non-magnetic resin (NIEX), polystyrenic resin (DIEX) and granular activated carbon as the biocarrier for advanced treatment of wastewater. Dissolved organic carbon (DOC) removal of four systems all stabilized at about 84% due to biodegradation. The start-up period of bio-MIEX (nearly 40 d) was greatly shorter than that of others (nearly 190 d). Ibuprofen removal was ascribed to adsorption in the initial stage, which subsequently changed to the effect of biodegradation. After the start-up period, ibuprofen removal was nearly 100% (bio-MIEX), 60% (bio-NIEX), 61% (bio-DIEX) and 89% (BAC). According to the surface observation, ATP and protein measurement and metagenomic analysis, the superior performance of bio-MIEX could be attributed to its highest biological activity resulted from the presence of Fe3O4 rather than polymer matrix and surface roughness.
Collapse
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunbao Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Liang Z, Han H, Yi J, Dai X. Modified integrated fixed-film activated sludge process: Advanced nitrogen removal for low-C/N domestic wastewater. CHEMOSPHERE 2022; 307:135827. [PMID: 35944692 DOI: 10.1016/j.chemosphere.2022.135827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Actual low-C/N domestic wastewater was treated using the high-concentration powder carrier bio-fluidized bed (HPB) process comparing diatomite and Fe-C as the carriers. The total nitrogen removal efficiencies were increased from 50.08% to 65.40% and 78.58%, respectively. The diatomite HPB process increased the relative abundance of autotrophic N-cycle bacteria to more than twofold and the sludge size. Therefore, the contributions for nitrogen removal by anammox and simultaneous nitrification-denitrification were increased. The Fe-C HPB process improved the nitrogen removal efficiency mainly by increasing the biodegradability and activities of electron transfer system and key enzymes. The key device (hydrocyclone separator) of the HPB process significantly improved the recovery efficiency of the carriers. It also improved the capacity of microbial aggregations for adsorbing pollutants. Furthermore, it reduced the relative abundance of filamentous bacteria. This study demonstrated the feasibility and mechanism of the HPB process for improving the nitrogen removal efficiency for low-C/N wastewater.
Collapse
Affiliation(s)
- Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Montecchio D, Mattei MR, Esposito G, Andreottola G, Ferrentino R. Mathematical modelling of an intermittent anoxic/aerobic MBBR: Estimation of nitrification rates and energy savings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116026. [PMID: 35998531 DOI: 10.1016/j.jenvman.2022.116026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/22/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
This study aimed at modelling the performance of a novel MBBR configuration, named A/O-MBBR, comprised of a pre-anoxic reactor, with an HRT of 4.5 h, coupled with an intermittent anoxic/aerobic MBBR (HRT = 6.8 h). The lab-scale system was fed with municipal wastewater with an average influent Total Ammonia Nitrogen (TAN) and total COD (TCOD) concentrations of 46 mg of TAN-N L-1 and 310 mg TCOD L-1. During the whole experimental period, TAN removal efficiency was always higher than 96%; denitrification was also very effective, achieving nitrate and nitrite concentrations in the effluent both lower than 5 mg NOx-N L-1 on average. Moreover, TCOD average removal efficiency was equal to 85%. Modelling was performed to investigate the nitrification efficacy enhancement; to this aim, a biofilm model was developed, adopting the equations for mixed-culture biofilms and the Activated Model Sludge n°1 (ASM1) for the biological processes rates. The model allowed to determine the maximum uptake rate for autotrophic growth (μA was 2.5 d-1) and the semisaturation constant (KOA was 0.2 mg O2 L-1), suggesting that the nitrification process was 3-fold faster than average and very effective at low oxygen concentrations. The model estimated that about 85% of TAN was removed by the biofilm and only the remaining part by suspended biomass in the bulk liquid. Finally, it was assessed that the A/O-MBBR configuration allowed for a 45-60% savings of the energy requirement compared to a Benchmark WWTP layout.
Collapse
Affiliation(s)
- D Montecchio
- Istituto di Ricerca Sulle Acque-CNR, Area Della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| | - M R Mattei
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Via Cintia, Monte S. Angelo, 80126 Napoli, Italy.
| | - G Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| | - G Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy.
| | - R Ferrentino
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy.
| |
Collapse
|
18
|
Liang Z, Yi J, Gu Q, Dai X. Metagenomics reveals a full-scale modified integrated fixed-film activated sludge process: Enhanced nitrogen removal and reduced sludge production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156666. [PMID: 35705129 DOI: 10.1016/j.scitotenv.2022.156666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
This study provides a side-by-side comparative investigation between the full-scale conventional activated sludge (CAS) and the high-concentration powder carrier bio-fluidized bed (HPB) processes. The results showed that the HPB total nitrogen removal efficiency increased by 10.86 % more than CAS. The anammox pathway increased by 6.92 %, while the simultaneous nitrification-denitrification pathway increased by 4.27 %. Also, the effluent's total nitrogen of the HPB process was stabilized below 10 mg/L, which can withstand the impact of industrial wastewater better. More energy and substance (protein) were consumed to attach to the carriers and resist external selective pressure to produce extracellular polymeric substance rather than sludge production in the HPB process. For a 10,000 m3/d HPB wastewater treatment plant, lowering the total nitrogen and sludge production saved $110,369.64 in annual operating costs.
Collapse
Affiliation(s)
- Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Qun Gu
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
He S, Song N, Yao Z, Jiang H. An assessment of the purification performance and resilience of sponge-based aerobic biofilm reactors for treating polluted urban surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45919-45932. [PMID: 35150429 DOI: 10.1007/s11356-022-19083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Pollutants are continuously released into surface waters, which decrease the dissolved oxygen (DO) concentration and leads to the formation of black-odorous water, especially in slow-flowing urban lakes and enclosed small ponds. In situ treatment by artificial aeration or water cycling, coupled with biofilm, can address this problem without occupying large amounts of land. In this study, we designed a novel sponge-based aerobic biofilm reactor (SABR) and evaluated its performance in purifying urban surface water under different conditions. In the urban lake water treatment, the continuous inflow results revealed that the NH4+-N and NO2--N concentrations in the effluent were stable and remained lower than 0.10 mg/L and 0.05 mg/L, respectively. Abrupt increases in the NH4+-N and NO2--N concentrations in the influent and sudden increases in the NH4+-N and NO2--N concentrations in the effluent were observed, and only 4 to 8 days were required for the concentrations to decline below 0.10 mg/L and 0.05 mg/L, respectively. Increases in the polyurethane sponge filling ratios in the SABRs can reduce the DO concentration but do not affect NH4+-N removal. When no biodegradable organic matter was present in the enclosed surface water, the degradation time of NH4+-N from 14.22 to 0.10 mg/L was only 9 days when SABRs were combined with water cycling, which was shorter than the time needed by water cycling alone (16 days), and most of the NH4+-N was converted to NO3--N. When massive amounts of biodegradable organic matter were present in the enclosed surface water, 22 days were required to remove the NH4+-N when SABRs were combined with water cycling. Our results indicated that organic matter could be used as a carbon source to eliminate the produced NO3--N in SABRs. Therefore, the newly developed bioreactor provides an effective approach for treating N-polluted urban surface waters.
Collapse
Affiliation(s)
- Shangwei He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
20
|
Fofana R, Peng B, Huynh H, Sajjad M, Jones K, Al-Omari A, Bott C, Delgado Vela J, Murthy S, Wett B, Debarbadillo C, De Clippeleir H. Media selection for anammox-based polishing filters: Balancing anammox enrichment and retention with filtration function. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10724. [PMID: 35614874 DOI: 10.1002/wer.10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Retrofitting conventional denitrification filters into partial denitrification-anammox (PdNA)- or anammox (AnAOB)-based filters will reduce the needs for external carbon addition. The success of AnAOB-based filters depends on anammox growth and retention within such filters. Studies have overlooked the importance of media selection and its impact on AnAOB capacity, head loss progression dynamics, and shear conditions applied onto the AnAOB biofilm. The objective of this study was to evaluate viable media types (10 types) that can enhance AnAOB rates for efficient nitrogen removal in filters. Given the higher backwash requirement and lower AnAOB capacity of the conventionally used sand, expanded clay (3-5 mm) was recommended for AnAOB-based filters in this study. Owing to its surface characteristics, expanded clay had higher AnAOB activity (304- vs. 104-g NH4 + -N/m2 /day) and higher AnAOB retention (43% more) than sand. Increasing the iron content of expanded clay to 37% resulted in an increase in zeta potential, which led to 56% more anammox capacity compared to expanded clay with 7% iron content. This work provides insight into the importance of media types in the growth and retention of AnAOB in filters, and this knowledge could be used as basis in the development of PdNA filters. PRACTITIONER POINTS: Expanded clay showed the lowest head loss buildup and most likely will result in longer runtime for full-scale PdNA applications The highest AnAOB rates were achieved in expanded clay types and sand compared with smaller media typically used in biofiltration Expanded clay resulted in better AnAOB retention under shear, whereas sand could not withstand shear and required more frequent backwashing Expanded clay iron coating enhanced AnAOB enrichment and retention, most likely due to increased surface roughness and/or positive charge.
Collapse
Affiliation(s)
- Rahil Fofana
- DC Water & Sewer Authority, Washington, District of Columbia, USA
- Howard University, Washington, District of Columbia, USA
| | - Bo Peng
- DC Water & Sewer Authority, Washington, District of Columbia, USA
| | - Huu Huynh
- DC Water & Sewer Authority, Washington, District of Columbia, USA
| | - Mehran Sajjad
- DC Water & Sewer Authority, Washington, District of Columbia, USA
| | - Kimberly Jones
- Howard University, Washington, District of Columbia, USA
| | - Ahmed Al-Omari
- DC Water & Sewer Authority, Washington, District of Columbia, USA
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | | | | | | | | | | |
Collapse
|
21
|
Shitu A, Liu G, Muhammad AI, Zhang Y, Tadda MA, Qi W, Liu D, Ye Z, Zhu S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Wu H, Zhang Q, Chen X, Zhu Y, Yuan C, Zhang C. The influence mechanism of DO on the microbial community and carbon source metabolism in two solid carbon source systems. ENVIRONMENTAL RESEARCH 2022; 206:112410. [PMID: 34801546 DOI: 10.1016/j.envres.2021.112410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The regulation mechanism of parameters on microorganisms and carbon source metabolism of solid carbon source simultaneous nitrification and denitrification (SND) process is not clear. In this paper, the effects of dissolved oxygen (DO) and biodegradable polymer (BDPs) types ((Polycaprolactone, PCL) and (Polybutylene succinate, PBS)) on treatment performance and microbial characteristics were investigated. The results show that the total nitrogen (TN) removal efficiency of SND process using PBS and PCL as fillers reached 93.02% and 97.28% under optimal parameter of DO 5 mg/L, respectively. The dominant genus with nitrogen removal performance in the PCL carbon source system are Hydrogenophaga and Acidovorax, and the main genus in the PBS system are Acidovorax and unclassified_Comamonadaceae. The co-metabolic network in PCL is more complex and easier to be regulated by DO. The BDPs types mainly affect the co-metabolic network with nodes of Thiothrix and Chryseomicrobium, ultimately leading to changes in the community structure. By comparison, BDPs types have a more significant impact on community structure than DO under low DO conditions (1 and 2 mg/L), but not under high DO condition(5 mg/L). Further, the distribution of functional enzymes may conflict between nitrification and carbon source degradation under high DO condition. Controlling the DO within the range of 2 mg-5 mg can further improve carbon source utilization efficiency.
Collapse
Affiliation(s)
- Heng Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yunan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunbo Yuan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chu Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
23
|
Saidulu D, Srivastava A, Gupta AK. Enhancement of wastewater treatment performance using 3D printed structures: A major focus on material composition, performance, challenges, and sustainable assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114461. [PMID: 35032942 DOI: 10.1016/j.jenvman.2022.114461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
In order to enhance the performance and sustainability of wastewater treatment technologies, researchers are showing keen interest in the development of novel materials which can overcome the drawbacks associated with conventional materials. In this context, 3D printing gained significant attention due to its capability of fabricating complex geometrics using different material compositions. The present review focuses on recent advancements of 3D printing applications in various physicochemical and biological wastewater treatment techniques. In physicochemical treatment methods, substantial research has been aimed at fabricating feed spacers and other membrane parts, photocatalytic feed spacers, catalysts, scaffolds, monoliths, and capsules. Several advantages, such as membrane fouling mitigation, enhanced degradation efficiency, and recovery and reusability potential, have been associated with the aforementioned 3D printed materials. While in biofilm-based biological treatment methods, the use of 3D printed bio-carriers has led to enhanced mass transfer efficiency and microbial activities. Moreover, the application of these bio-carriers has shown better removal efficiency of chemical oxygen demand (∼90%), total nitrogen (∼73%), ammonia nitrogen (95%), and total phosphorous (∼100%). Although the removal efficiencies were comparable with conventional carriers, 3D printed carriers led to ∼40% reduction in hydraulic retention time, which could significantly save capital and operational expenditures. This review also emphasizes the challenges and sustainability aspects of 3D printing technology and outlines future recommendations which could be vital for further research in this field.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
24
|
Massoompour AR, Raie M, Borghei SM, Dewil R, Appels L. Role of carrier characteristics affecting microbial density and population in enhanced nitrogen and phosphorus removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113976. [PMID: 34749080 DOI: 10.1016/j.jenvman.2021.113976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This research aims to improve simultaneous nitrification-denitrification and phosphorus removal (SNDPR) using novel carriers and to demonstrate the effect of carrier characteristics on nutrient removal in a biofilm reactor. For this purpose, biofilms enriched with both polyphosphate-accumulating organisms (PAOs) and nitrifiers were cultivated in two parallel sequencing batch reactors containing conventional moving bed bioreactor carriers (MBBR) and a novel type of carriers (carbon-based moving carriers (CBMC)). The new carriers were produced based on recycled waste materials via a chemical-thermal process and their specific surface area were 10.4 times higher than typical MBBR carriers of similar dimensions. The results showed that the use of CBMC carriers increased bacterial adhesion by about 18.5% and also affected the microbial population inside the biofilms, leading to an increase in PAOs abundancy and thus an increase in biological phosphorus removal up to 12.5%. Additionally, it was corroborated that the volume of the anoxic zones with dynamic behavior is strictly influenced by the carrier structure and biofilm thickness due to a limitation in oxygen penetration. Accordingly, the formation of broader anoxic zones and shrinkage of these zones to a lesser extent resulted in the continuation of anoxic reactions for longer periods using the novel carriers. Thereby, an increase in nitrogen removal by about 15% was obtained mainly by denitrifying PAOs. The results also exhibited that a higher simultaneous nitrification-denitrification (SND) efficiency can be achieved by selecting an appropriate aeration program influencing the dynamic changes of anoxic zones. Overall, a biofilm system using the new carriers, with phosphorus and nitrogen removal efficiencies of 97.5% and 92.3%, was presented as an efficient, compact, and simple operation SNDPR process.
Collapse
Affiliation(s)
- Ali Reza Massoompour
- Civil Engineering Department, Sharif University of Technology, Azadi Ave., P.O. Box. 11365-11155, Tehran, Iran.
| | - Mohammad Raie
- Civil Engineering Department, Sharif University of Technology, Azadi Ave., P.O. Box. 11365-11155, Tehran, Iran.
| | - S Mehdi Borghei
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Azadi Ave., P.O. Box. 11365-11155, Tehran, Iran
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
25
|
Peng Z, Lei Y, Liu Y, Wan X, Yang B, Pan X. Fast start-up and reactivation of anammox process using polyurethane sponge. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Tadda MA, Altaf R, Gouda M, Rout PR, Shitu A, Ye Z, Zhu S, Liu D. Impact of Saddle-Chips biocarrier on treating mariculture wastewater by moving bed biofilm reactor (MBBR): Mechanism and kinetic study. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106710. [DOI: 10.1016/j.jece.2021.106710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
27
|
Xu X, Liu GH, Li Q, Wang H, Sun X, Shao Y, Zhang J, Liu S, Luo F, Wei Q, Sun W, Li Y, Qi L. Optimization nutrient removal at different volume ratio of anoxic-to-aerobic zone in integrated fixed-film activated sludge (IFAS) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148824. [PMID: 34246150 DOI: 10.1016/j.scitotenv.2021.148824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the influence of different volume ratios of the anoxic-to-aerobic zone (Vano/Vaer) on the enhancement of nitrogen and phosphorus removal in an integrated fixed-film activated sludge (IFAS) system. As the Vano/Vaer increased from 1:2 to 2:1, the removal of organic carbon, nitrogen and phosphorus nutrients of the IFAS system was improved. At Vano/Vaer = 1:1, the removal effect of nitrogen and phosphorus nutrients was optimal, and the average removal rates of COD, NH4+-N, TN, and TP of the system reached 90 ± 3.2%, 98.2 ± 1.4%, 88.9 ± 2.2%, and 89.1 ± 2.7%, respectively. As the volume of the anoxic zone continued to increase, the denitrifying phosphate-accumulating capacity of the system was enhanced, and the highest ratio of specific anoxic and aerobic phosphorus uptake rate could reach 65.3%. Analysis of the molecular evaluation showed that, the proportion of nitrifying bacteria in the biofilm gradually increased as Vano increased. Moreover, denitrifying phosphate-accumulating organisms (DNPAOs), ammonia-oxidizing archaea (AOA), and anaerobic ammonium oxidizing (Anammox) bacteria were all enriched all showed enrichment in the biofilm of fiber carriers, which further strengthened the system's synergistic removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Xianglong Xu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qinyu Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Xu Sun
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuting Shao
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jingbing Zhang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Shuai Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Fangzhou Luo
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qi Wei
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhuo Sun
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yinghao Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
28
|
Dan NH, Le Luu T. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147680. [PMID: 34004532 DOI: 10.1016/j.scitotenv.2021.147680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains many pollutants that have a negative effect on the environment when improperly discharged. Thus the treatment of landfill leachate is a crucial issue, especially in the bigger cities in developing countries. In this study, landfill leachate is treated using a continuous flow sequencing biofilm batch reactor (CF-SBBR) with different biocarriers (non-carrier (NC), kaldness K1 (K1), mutag biochip 30™ (MB), and sponge polyurethane (SP)). The results show that the best COD, TOC, and NH4+-N removal efficiencies were 79.6 ± 0.8%, 78.1 ± 1.9% and 77.5 ± 3.9% in the MB biocarriers tank with an aeration/mixing ratio of 1.3, a cycle time of 9 h and an organic loading rate (OLR) of 1.74 kgCOD/m3.d. The TN removal efficiencies was decreased when there was an increase in the biocarrier's surface area (NC > K1 > MB > SP). At the highest it was 46.1 ± 6.4%, where the aeration/mixing ratio was 1.3, the cycle time was 9 h, and the OLR was 1.52 kgCOD/m3.d. The higher the surface area of the biocarriers, the greater the anti-shock organic loading capacity of the biocarriers due to the formation of biofilm layers. The microbial communities in the CF-SBBR tanks were abundant with common phylum bacteria as in a conventional activated sludge system. Anammox candidatus bacteria was found to total 0.5%. This study concluded that CF-SBBR is an efficient method to treat landfill leachate.
Collapse
Affiliation(s)
- Nguyen Hong Dan
- Institute for Environment and Resources, Vietnam National University of Ho Chi Minh City, Viet Nam
| | - Tran Le Luu
- Master Program in Water Technology, Reuse, and Management, Vietnamese German University, 2-Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 820000, Viet Nam.
| |
Collapse
|
29
|
Liu T, Jia G, Xu J, He X, Quan X. Simultaneous nitrification and denitrification in continuous flow MBBR with novel surface-modified carriers. ENVIRONMENTAL TECHNOLOGY 2021; 42:3607-3617. [PMID: 32097578 DOI: 10.1080/09593330.2020.1735526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
ABSTRACTMoving-Bed Biofilm Reactor (MBBR) process is an ideal preference for simultaneous nitrification and denitrification (SND) attributing to the longer sludge age and aerobic/anoxic microenvironment along biofilm. However, conventional carriers generally exhibit negative charge and surface hydrophobicity, which are unbeneficial for biofilm formation. In this study, novel surface-modified carriers with favourable hydrophilicity (surface contact angle dropped to 60.2 ± 2.3°) and positive surface charge (+11.7 ± 1.1 mV, pH 7.0) were prepared via polymer blending and implemented for SND in continuous flow MBBR system. Results indicated SND started up quickly with more biomass in MBBR filled with surface-modified carriers. At the operation condition of low dissolved oxygen level (0.75 ± 0.25 mg/L), pH of 7.5 ± 0.5, 23 ± 2°C and C/N ratio of 7, COD, NH4+-N and TN removal efficiencies were 90.5%, 88.6% and 76.6% respectively in MBBR filled with surface-modified carriers, which ensured the effluent met the first grade A of the Discharge Standard of China. On the contrary, COD, NH4+-N and TN removal efficiencies were 89.7%, 82.3% and 60.4% respectively in the control reactors filled with conventional polyethylene carriers. The worse performance of the control reactor was mainly attributed to the less biomass and lower functional bacteria abundance developed on conventional carriers. Moreover, novel carriers provided a favourable niche for more types of functional bacteria, of which autotrophic nitrification, anoxic denitrification, heterotrophic nitrification and aerobic denitrification co-existed and participated in nitrogen removal.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Guangyue Jia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jiawei Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaolu He
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
30
|
Gupta RK, Poddar BJ, Nakhate SP, Chavan AR, Singh AK, Purohit HJ, Khardenavis AA. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: A non-conventional nitrogen removal pathway in wastewater treatment. Lett Appl Microbiol 2021; 74:159-184. [PMID: 34402087 DOI: 10.1111/lam.13553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022]
Abstract
Bacterial species capable of performing both nitrification and denitrification in a single vessel under similar conditions have gained significance in the wastewater treatment scenario considering their unique character of performing the above reactions under heterotrophic and aerobic conditions respectively. Such a novel strategy often referred to as simultaneous nitrification and denitrification (SND) has a tremendous potential in dealing with various wastewaters having low C:N content, considering that the process needs very little or no external carbon source and oxygen supply thus adding to its cost-effective and environmentally friendly nature. Though like other microorganisms, heterotrophic nitrifiers and aerobic denitrifiers convert inorganic or organic nitrogen-containing substances into harmless dinitrogen gas in the wastewater, their ecophysiological role in the global nitrogen cycle is still not yet fully understood. Attempts to highlight the role played by the heterotrophic nitrifiers and aerobic denitrifiers in dealing with nitrogen pollution under various environmental operating conditions will help in developing a mechanistic understanding of the SND process to address the issues faced by the traditional methods of aerobic autotrophic nitrification-anaerobic heterotrophic denitrification.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
31
|
Xu L, Su J, Huang T, Li G, Ali A, Shi J. Simultaneous removal of nitrate and diethyl phthalate using a novel sponge-based biocarrier combined modified walnut shell biochar with Fe 3O 4 in the immobilized bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125578. [PMID: 34030419 DOI: 10.1016/j.jhazmat.2021.125578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
A novel biological carrier combining sponge and modified walnut shell biochar with Fe3O4 (MWSB@Fe3O4) was fabricated to achieve simultaneous removal of nitrate and diethyl phthalate (DEP). The optimal reaction conditions of the immobilized bioreactor were: carbon to nitrogen (C/N) ratio of 1.5, Fe2+ concentration of 20 mg L-1, and hydraulic retention time (HRT) of 8 h. Under the optimal conditions and DEP concentration of 800 μg L-1, the highest removal efficiency of DEP and nitrate in the immobilized bioreactor with the novel biological carrier were 67.87% and 83.97% (68.43 μg L-1 h-1 and 1.71 mg L-1 h-1), respectively. Scanning electron microscopy (SEM) showed that the novel biological carrier in this study carried more bio-sediments which is closely related to the denitrification efficiency. The gas chromatography (GC) data showed that the nitrogen production of the immobilized bioreactor (99.85%) was higher than that of another experimental group (97.84%). Fluorescence excitation-emission matrix (EEM) and Fourier transform infrared spectrometer (FTIR) indicated the immobilized bioreactor emerged more extracellular polymeric substances (EPS) which was related to favourable biological stability under the DEP environment. Moreover, according to high-throughput sequencing data, the Zoogloea sp. L2 responsible for iron-reduction and denitrification was the main strain in this immobilized bioreactor.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tingling Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guoqing Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
32
|
Duyar A, Ciftcioglu V, Cirik K, Civelekoglu G, Uruş S. Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145919. [PMID: 33640548 DOI: 10.1016/j.scitotenv.2021.145919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate (LFL) is one of the most serious environmental problems due to the high concentrations of toxic and hazardous matters. Although several physical, chemical, methods have been tested, biological processes and single or multiple-stage combinations of them have been receiving more attention due to their cost-effective and environmentally-friendly manner. The present work recommended coupling of conventional single-stage A/O with moving bed biofilm reactor and membrane bioreactor (AnoxMBBR/AeMBR) for LFL treatment. The system performance was evaluated for 233 d under varying nitrate concentrations (100-1000 mgNO3--N/L), sludge retention time (SRT) (30-90 d), and HRT (24-48 h) in AnoxMBBR, and constant SRT (infinite) and HRT (48 h) in the AeMBR. The best system performances were observed at 1000 mgNO3--N/L concentration, SRT of 90 d and HRT of 48 h, and the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and nitrate‑nitrogen (NO3-N) were 74.2%, 99.7%, and 89.1%, respectively. Besides, the AeMBR was achieved above 99% NH4+-N removal and not adversely affected by varying operation conditions of AnoxMBBR. A slight increase in selected phthalic acid ester (PAE) concentrations (diethyl phthalate (DEP), di (2-Ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP)) was detected in the AnoxMBR, and complete PAEs removal was attained in the AeMBR. Mg, Al, Si, Na, Fe was detected by SEM-EDX analyses in both biofilm of AnoxMBBR and the cake layers of AeMBR. Nitrobacter and Nitratireductor which showed a relatively high abundance played an important role in the removal of NH4+-N and COD in LFL. The results confirmed that the proposed sequence is efficient for COD removal, nitrogen removal, and PAEs being an acceptable treatment for landfill leachates.
Collapse
Affiliation(s)
- Ahmet Duyar
- Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta, Turkey; University-Industry-Public Collaboration, Research-Development-Application Centre, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Vildan Ciftcioglu
- Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras Turkey
| | - Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey; Research and Application Center for Environmental Concerns, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Gokhan Civelekoglu
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey.
| | - Serhan Uruş
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| |
Collapse
|
33
|
Burov VE, Li J, Meng J. Nitrogen removal from domestic wastewater in a novel hybrid anoxic-oxic biofilm reactor at different reflux ratios. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:865-874. [PMID: 33155359 DOI: 10.1002/wer.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A lab-scale hybrid anoxic-oxic biofilm reactor (HAOBR) with one anoxic compartment and two oxic compartments in sequence was constructed to treat domestic wastewater in this study. Performance of the HAOBR was evaluated at 25°C and hydraulic retention time 12 hr with reflux ratio increased from 100% to 300% by stages. The results showed that COD, NH 4 + - N , and TN removal presented an increasing trend with the increase of reflux ratio by stages. At the optimal reflux ratio of 300%, removal of COD, NH 4 + - N , and TN averaged 83.9%, 99.0%, and 80.8%, respectively. Analysis about pollutant concentration in each compartment of the HAOBR revealed that the excellent pollutant removal was mainly achieved by the cooperation of nitrification in 3rd oxic compartment and denitrification in 1st anoxic compartment. Denitrification in the anoxic zone of 2nd oxic compartment would also contribute to the nitrogen removal. The higher nitrogen removal of the HAOBR at the reflux ratio of 300% is attributed to the presence of the anammox in the 1st anoxic compartment, which is mainly due to the lower COD concentration in the compartment at the higher reflux ratio. PRACTITIONER POINTS: A hybrid anoxic-oxic baffled reactor was built to treat domestic wastewater. Effect of reflux ratio and mechanism of nitrogen removal were investigated. Reflux ratio 300% was favorable for COD, NH 4 + and TN removal. The removal of COD, NH 4 + and TN averaged 84.4%, 99.0% and 80.8%, respectively. Cooperation of nitrification, denitrification and anammox dominated the high nitrogen removal at the higher reflux ratio of 300%.
Collapse
Affiliation(s)
- Vladimir E Burov
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
34
|
Patel RJ, Patel UD, Nerurkar AS. Moving bed biofilm reactor developed with special microbial seed for denitrification of high nitrate containing wastewater. World J Microbiol Biotechnol 2021; 37:68. [PMID: 33748870 DOI: 10.1007/s11274-021-03035-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/07/2022]
Abstract
Biological denitrification is the most promising alternative approach for the removal of nitrate from wastewater. MBBR inoculated with activated sludge is a widely studied approach, but very few studies have focused on the bioaugmentation of biofilm forming bacteria in MBBR. Our study revealed that the use of special microbial seed of biofilm forming denitrifying bacteria Diaphorobacter sp. R4, Pannonibacter sp. V5, Thauera sp. V9, Pseudomonas sp.V11, and Thauera sp.V14 to form biofilm on carriers enhanced nitrate removal performance of developed MBBR. Various process parameters C/N ratio 0.3, HRT 3 h at Nitrate loading 2400 mg L-1, Filling ratio 20%, operated with Pall ring carrier were optimized to achieve highest nitrate removal. After 300 days of continuous operation results of whole genome metagenomic studies showed that Thauera spp. were the most dominant and key contributor to the denitrification of nitrate containing wastewater and the reactor was totally conditioned for denitrification. Overall, findings suggest that bench-scale MBBR developed with biofilm forming denitrifying microbial seed accelerated the denitrification process; therefore in conclusion it is suggested as one of the best suitable and effective approach for removal of nitrate from wastewater.
Collapse
Affiliation(s)
- Roshni J Patel
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Upendra D Patel
- Department of Civil Engineering, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - Anuradha S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
35
|
Wang J, Ying X, Huang Y, Chen Y, Shen D, Zhang X, Feng HJ. Numerical study of hydrodynamic characteristics in a moving bed biofilm reactor. ENVIRONMENTAL RESEARCH 2021; 194:110614. [PMID: 33345900 DOI: 10.1016/j.envres.2020.110614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The moving bed biofilm reactor (MBBR) has certain advantages, such as high wastewater treatment efficiency, low maintenance and operating costs, and simple operation. It has emerged as a valuable option for small decentralized facilities. The filling ratio, aeration mode and aeration intensity are the main factors that affect the performance of MBBRs in wastewater treatment. However, the information that concerns the used criteria that pertain to the process design for the MBBR is not adequate. In this study, a three dimensional computational fluid dynamics (CFD) model was constructed and the maximum error was only 1.98%, which was much smaller than the traditional 2D-CFD model. The filling ratio, aeration mode and aeration intensity of MBBR were optimized by CFD model from the point of view of fluid mechanics. The results show that the fluidization performance of the filling is the best under the one-side aeration mode with 30% filling ratio. The cost-performance ratio of the reactor with 30% filling ratio was 1.53, 25% and 35% filling ratio were only 1.17 and 1.14 respectively. Increasing the aeration intensity could improve the fluidization performance. However, the effect of high aeration intensity on the fluidization performance of the carrier was limited and the energy consumption increased greatly. The results revealed that when the aeration intensity increased from 0.07 min-1 to 0.13 min-1, the proportion of the carrier area increased by 16.56%. The proportion of the carrier area with an aeration rate of 0.20 min-1 was only 4.23%, which is higher than 0.13 min-1. The main factors that control the fluidization of the carrier were the range of the flow zone and the flow velocity of the liquid. Increasing the range of the flow zone could facilitate the flow of the carriers. The critical value of the flow velocity of the liquid in the flow zone was 0.04 m/s. These results could guide the optimization design of the filling ratio and the aeration conditions and provide a theoretical basis for the application of MBBR.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China
| | - XianBin Ying
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China
| | - YongHao Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China
| | - YuQi Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China
| | - DongSheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China
| | - Xiang Zhang
- School of Energy and Power Engineering, Xihua University, Chengdu, 610039, Sichuan, China.
| | - Hua Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
36
|
Ren J, Cheng W, Jiao M, Wan T, Wang M, Li D. Characteristics of oxygen mass transfer and its impact on pollutant removal performance and microbial community structure in an aerobic fluidized bed biofilm reactor for treatment of municipal wastewater. BIORESOURCE TECHNOLOGY 2021; 323:124552. [PMID: 33360720 DOI: 10.1016/j.biortech.2020.124552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
A laboratory-scale aerobic fluidized bed biofilm reactor (AFBBR) was established to evaluate the oxygen mass transfer (OMT) process and its impact on municipal wastewater treatment performance. Aeration rates had different effects on the OMT of the wastewater and biofilm. In the wastewater, oxygenation performance, oxygen uptake rate (OUR), and volumetric OMT coefficient (kLa) improved under high aeration rates. However, within the biofilm, the OMT process under the aeration rate of 0.096 L/(min·L) were higher than under other conditions [0.064 L/(min·L) and 0.128 L/(min·L)]. The denitrifying bacteria (DNB) abundance under the aeration rate of 0.096 L/(min·L) were improved so that total nitrogen (TN, 66.98 ± 4.23%) and ammonia nitrogen (NH4+-N, 74.70 ± 2.30%) removal were higher than those under other aeration conditions. These results showed that suitable aeration could improve wastewater treatment efficiency through changing the OMT process and microbial community structure.
Collapse
Affiliation(s)
- Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China.
| | - Meng Jiao
- Power China Northwest Engineering Corporation Limited, Xi'an, Shaanxi 710065, PR China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| |
Collapse
|
37
|
Liu Y, Wang N, Wei Y, Dang K, Li M, Li Y, Li Q, Mu R. Pilot study on the upgrading configuration of UASB-MBBR with two carriers: Treatment effect, sludge reduction and functional microbial identification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Lai C, Guo Y, Cai Q, Yang P. Enhanced nitrogen removal by simultaneous nitrification-denitrification and further denitrification (SND-DN) in a moving bed and constructed wetland (MBCW) integrated bioreactor. CHEMOSPHERE 2020; 261:127744. [PMID: 32739690 DOI: 10.1016/j.chemosphere.2020.127744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
With the main objective of improving the removal of nitrogen from domestic wastewater and more sustainably, a moving bed and constructed wetland (MBCW) integrated bioreactor was fabricated and evaluated with continuous and intermittent aeration operations. The hybrid system achieves average removal efficiencies up to 90.4 ± 0.8% of chemical oxygen demand (COD), 91.8 ± 1.2% of ammonia nitrogen (NH4+-N), and 77.0 ± 2.6% of total nitrogen (TN), respectively, through a simultaneous nitrification-denitrification and further denitrification (SND-DN) process. This occurs through an intermittent aeration operation followed by continuous aeration with a dissolved oxygen (DO) of 4.0 mg L-1 due to the complementary and coordinated action of mixed biocarriers. It has resulted in the improvement of the efficiency of SND from 5.9 to 35.3% and in the removal via wetland for DN, between 2.42 and 2.45 g m-2·d-1, respectively. The analysis of extracellular polymeric substances (EPS) and high-throughput sequencing demonstrated the enhanced SND mechanism and the evolution of microbial species within the biofilm structure. The total relative abundance of nitrifying bacteria, more aggregated outside the biofilm, decreased by 7.66% compared to denitrifying bacteria, mostly accumulated inside, which increased by 5.49%, respectively.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
39
|
Shitu A, Zhu S, Qi W, Tadda MA, Liu D, Ye Z. Performance of novel sponge biocarrier in MBBR treating recirculating aquaculture systems wastewater: Microbial community and kinetic study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111264. [PMID: 32854050 DOI: 10.1016/j.jenvman.2020.111264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel sponge biocarriers (SB) in moving bed bioreactor (MBBR) treating recirculating aquaculture systems wastewater was evaluated for the first time. Two lab-scale MBBRs were operated simultaneously for 116 days under various hydraulic retention times (HRTs). The reactors R1 and R2 were filled with K5 plastic carriers and SB, respectively. From the results, at an optimum HRT of 6 h, ammonia removal efficiency and nitrification rate were 86.67 ± 2.4% and 1.43 mg/L.h for the R1 and, 91.65 ± 1.3% and 1.52 mg/L.h for the R2, respectively. The microbial community analysis showed that the predominant genera in the nitrifying community were Nitrosomonas (AOB) and Nitrospira (NOB) in co-existence with heterotrophic genera Hyphomicrobium, Mesorhizobium, Zhizhongheella, and Klebsiella spp. Modified Stover-Kincannon model examined the ammonia removal kinetics, and the values of kinetic parameters obtained were Umax: 0.909 and 1.111 g/L.d and KB: 0.929 and, 1.108 g/L.d for the R1 and R2, respectively. The correlation coefficients (R2) of the MBBRs were higher than 0.98, indicating that the model adequately described the experimental data. Overall, MBBR, filled with the proposed novel SB operated at 6 h HRT, can achieve the highest nitrification performance and increase the diversity of the functional microbial communities.
Collapse
Affiliation(s)
- Abubakar Shitu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Wanhe Qi
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Musa Abubakar Tadda
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| |
Collapse
|
40
|
Song Z, Zhang X, Sun F, Ngo HH, Guo W, Wen H, Li C, Zhang Z. Specific microbial diversity and functional gene (AOB amoA) analysis of a sponge-based aerobic nitrifying moving bed biofilm reactor exposed to typical pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140660. [PMID: 32721752 DOI: 10.1016/j.scitotenv.2020.140660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Four bench-scale sponge-based aerobic nitrifying moving bed biofilm reactors (MBBRs) were used to treat municipal wastewater containing typical pharmaceuticals (1 mg/L, 2 mg/L and 5 mg/L). This preliminary research aims to investigate the effects of sulfadiazine (SDZ), ibuprofen (IBU) and carbamazepine (CBZ) on nitrification performance and explore specific microbial diversity and functional gene (Ammonia-oxidizing bacteria (AOB), amoA) of MBBRs. After 90 days of operation, the MBBR without pharmaceuticals could remove up to 97.4 ± 1.5% of NH4+-N while the removals of NH4+-N by the MBBRs with SDZ, IBU and CBZ were all suppressed to varying degrees. Based on the Shannon and Chao 1 index, the specific microbial diversity and richness in biofilm samples increased at a range of 1 mg/L to 2 mg/L pharmaceuticals (SDZ, IBU or CBZ) and started decreasing after the pharmaceutical concentration was higher than 2 mg/L. The determination of functional gene (AOB amoA) showed that Proteobacteria was the most dominant bacteria within all biofilms with the relative abundance ranging from 24.81% to 55.32%. Furthermore, Nitrosomonas was the most numerous genus in AOB, followed by Campylobacter and Thauera, whose relative abundance shifted under the pressure of different pharmaceuticals.
Collapse
Affiliation(s)
- Zi Song
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Haitao Wen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Chaocan Li
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zumin Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
41
|
Proano-Pena G, Carrano AL, Blersch DM. Analysis of very-high surface area 3D-printed media in a moving bed biofilm reactor for wastewater treatment. PLoS One 2020; 15:e0238386. [PMID: 32853235 PMCID: PMC7451639 DOI: 10.1371/journal.pone.0238386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Moving Bed Biofilm Reactors (MBBRs) can efficiently treat wastewater by incorporating suspended biocarriers that provide attachment surfaces for active microorganisms. The performance of MBBRs for wastewater treatment is, among other factors, contingent upon the characteristics of the surface area of the biocarriers. Thus, novel biocarrier topology designs can potentially increase MBBR performance in a significant manner. The goal of this work is to assess the performance of 3-D-printed biofilter media biocarriers with varying surface area designs for use in nitrifying MBBRs for wastewater treatment. Mathematical models, rendering, and 3D printing were used to design and fabricate gyroid-shaped biocarriers with a high degree of complexity at three different levels of specific surface area (SSA), generally providing greater specific surface areas than currently available commercial designs. The biocarriers were inoculated with a nitrifying bacteria community, and tested in a series of batch reactors for ammonia conversion to nitrate, in three different experimental configurations: constant fill ratio, constant total surface area, and constant biocarrier media count. Results showed that large and medium SSA gyroid biocarriers delivered the best ammonia conversion performance of all designs, and significantly better than that of a standard commercial design. The percentage of ammonia nitrogen conversion at 8 hours for the best performing biocarrier design was: 99.33% (large SSA gyroid, constant fill ratio), 94.74% (medium SSA gyroid, constant total surface area), and 92.73% (large SSA gyroid, constant biocarrier media count). Additionally, it is shown that the ammonia conversion performance was correlated to the specific surface area of the biocarrier, with the greatest rates of ammonia conversion (99.33%) and nitrate production (2.7 mg/L) for manufactured gyroid biocarriers with a specific surface area greater than 1980.5 m2/m3. The results suggest that the performance of commercial MBBRs for wastewater treatment can be greatly improved by manipulation of media design through topology optimization.
Collapse
Affiliation(s)
| | - Andres L. Carrano
- Department of Mechanical Engineering, School of Engineering, Fairfield University, Fairfield, Connecticut, United States of America
| | - David M. Blersch
- Biosystems Engineering Department, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
42
|
Waqas S, Bilad MR, Man Z, Wibisono Y, Jaafar J, Indra Mahlia TM, Khan AL, Aslam M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110718. [PMID: 32510449 DOI: 10.1016/j.jenvman.2020.110718] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) process is considered as one of the leading-edge processes that provides a sustainable solution for wastewater treatment. IFAS was introduced as an advancement of the moving bed biofilm reactor by integrating the attached and the suspended growth systems. IFAS offers advantages over the conventional activated sludge process such as reduced footprint, enhanced nutrient removal, complete nitrification, longer solids retention time and better removal of anthropogenic composites. IFAS has been recognized as an attractive option as stated from the results of many pilot and full scales studies. Generally, IFAS achieves >90% removals for combined chemical oxygen demand and ammonia, improves sludge settling properties and enhances operational stability. Recently developed IFAS reactors incorporate frameworks for either methane production, energy generation through algae, or microbial fuel cells. This review details the recent development in IFAS with the focus on the pilot and full-scale applications. The microbial community analyses of IFAS biofilm and floc are underlined along with the special emphasis on organics and nitrogen removals, as well as the future research perspectives.
Collapse
Affiliation(s)
- Sharjeel Waqas
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Zakaria Man
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Yusuf Wibisono
- Bioprocess Engineering, Universitas Brawijaya, Malang, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
43
|
Loofah Sponges as Bio-Carriers in a Pilot-Scale Integrated Fixed-Film Activated Sludge System for Municipal Wastewater Treatment. SUSTAINABILITY 2020. [DOI: 10.3390/su12114758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fixed-film biofilm reactors are considered one of the most effective wastewater treatment processes, however, the cost of their plastic bio-carriers makes them less attractive for application in developing countries. This study evaluated loofah sponges, an eco-friendly renewable agricultural product, as bio-carriers in a pilot-scale integrated fixed-film activated sludge (IFAS) system for the treatment of municipal wastewater. Tests showed that pristine loofah sponges disintegrated within two weeks resulting in a decrease in the treatment efficiencies. Accordingly, loofah sponges were modified by coating them with CaCO3 and polymer. IFAS pilot tests using the modified loofah sponges achieved 83% organic removal and 71% total nitrogen removal and met Vietnam’s wastewater effluent discharge standards. The system achieved considerably high levels of nitrification and it was not limited by the loading rate or dissolved oxygen levels. Cell concentrations in the carriers were twenty to forty times higher than those within the aeration tank. Through 16S-rRNA sequencing, the major micro-organism types identified were Kluyvera cryocrescens, Exiguobacterium indicum, Bacillus tropicus, Aeromonas hydrophila, Enterobacter cloacae, and Pseudomonas turukhanskensis. This study demonstrated that although modified loofah sponges are effective renewable bio-carriers for municipal wastewater treatment, longer-term testing is recommended.
Collapse
|
44
|
Gu W, Wang L, Liu Y, Liang P, Zhang X, Li Y, Huang X. Anammox bacteria enrichment and denitrification in moving bed biofilm reactors packed with different buoyant carriers: Performances and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137277. [PMID: 32112948 DOI: 10.1016/j.scitotenv.2020.137277] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is recognized as the most cost-effective process for nitrogen removal from wastewater. In this study, effects of polyethylene plastics, nonwoven fabric, granular activated carbon (GAC) and polyurethane sponge as buoyant carriers were evaluated in lab-scale moving bed biofilm reactors (MBBRs). The overall performance of MBBRs with four types of carriers from priority to inferiority was noticed as, GAC, nonwoven fabrics, polyurethane sponge and polyethylene plastics under the same packing ratio of 20 v% and an average carrier size of 4 × 4 × 4 mm. The hydrophobic surface of GAC could selectively adsorb hydrophobic protein and favor anammox bacteria attachment, which contributed to achieving a total nitrogen removal rate of 0.40 kg-N/(m3·d) in 60 days. In conclusion, our results provide compelling evidence for achieving effective anammox process in an MBBR with GAC carriers and would benefit towards accomplishing a stable partial nitritation-anammox process in the future.
Collapse
Affiliation(s)
- Wancong Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lisheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Massoompour AR, Borghei SM, Raie M. Enhancement of biological nitrogen removal performance using novel carriers based on the recycling of waste materials. WATER RESEARCH 2020; 170:115340. [PMID: 31790886 DOI: 10.1016/j.watres.2019.115340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
This study aims to enhance biological nitrogen removal performance by the innovative carbon-based carriers. The new carriers were produced based on recycling waste materials. In these carriers, the advantages of the hybrid system and physicochemical properties of activated carbon were integrated to promote microbial attachment. To verify the performance of the new carriers compared to the conventional moving carriers, the experiments were conducted in two parallel laboratory-scale sequencing batch reactors under various operating conditions. The analysis revealed that the specific surface area of the new carrier with a total pore volume of 0.0015cm3/gr was 10.9 times the specific surface area of a conventional carrier. Further, the comparative results indicated that the new highly porous carriers made a major contribution to increasing the attached active biomass up to 20.2%. From the data analysis (DO, ORP, and pH), it was also confirmed that the new carriers had a positive effect on the creation of a greater anoxic zone within the biofilm. Consequently, the simultaneous nitrification-denitrification and total nitrogen removal efficiencies enhanced significantly up to 14.3% and 16.8%, respectively. From the environmental and economic viewpoints, the benefits of the novel carrier showed that it is a practical alternative for the conventional carrier providing a cost-effective wastewater treatment technology.
Collapse
Affiliation(s)
- A R Massoompour
- Civil Engineering Department, Sharif University of Technology, Iran
| | - S M Borghei
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Iran
| | - Mohammad Raie
- Civil Engineering Department, Sharif University of Technology, Iran.
| |
Collapse
|
46
|
Ghaderi M, Asadi P, Kouhirostamkolaei M. Applying response surface methodology on the results of serial sequencing batch moving bed reactor. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-019-1894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Improving nitrogen removal in an IFAS nitritation–anammox reactor treating lagoon supernatant by manipulating biocarrier filling ratio and hydraulic retention time. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Iannacone F, Di Capua F, Granata F, Gargano R, Pirozzi F, Esposito G. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109518. [PMID: 31518800 DOI: 10.1016/j.jenvman.2019.109518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
In this study, long-term simultaneous nitrification denitrification (SND) and phosphorous removal were investigated in a continuous-flow microaerobic MBBR (mMBBR) operated at a dissolved oxygen (DO) concentration of 1.0 (±0.2) mg L-1. The mMBBR performance was evaluated at different feed carbon-to-nitrogen (C/N) ratios (2.7, 4.2 and 5.6) and HRTs (2 days and 1 day). Stable long-term mMBBR operation and chemical oxygen demand (COD), total inorganic nitrogen (TIN) and phosphorous (P-PO43-) removal efficiencies up to 100%, 68% and 72%, respectively, were observed at a feed C/N ratio of 4.2. Lower TIN removal efficiency and unstable performance were observed at feed C/N ratios of 2.7 and 5.6, respectively. HRT decrease from 2 days to 1 day resulted in transient NH4+ accumulation and higher NO2-/NO3- ratio in the effluent. Batch activity tests showed that biofilm cultivation at a feed C/N ratio of 4.2 resulted in the highest denitrifying activity (189 mg N gVSS-1 d-1), whereas the highest nitrifying activity (316 mg N gVSS-1 d-1) was observed after cultivation at a feed C/N ratio of 2.7. Thermodynamic modeling with Visual MINTEQ and stoichiometric evaluations revealed that P removal was mainly biological and can be attributed to the P-accumulating capacity of denitrifying bacteria.
Collapse
Affiliation(s)
- Francesca Iannacone
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043, Cassino, Italy
| | - Francesco Di Capua
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy.
| | - Francesco Granata
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043, Cassino, Italy
| | - Rudy Gargano
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043, Cassino, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
49
|
An Enhanced System with Macrophytes and Polyurethane Sponge as an Eco-Technology for Restoring Eutrophic Water: A Pilot Test. WATER 2019. [DOI: 10.3390/w11091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water eutrophication is one of the most serious environmental problems in urban lakes and ponds due to the excessive nutrients. To deal with this problem, the development of methods for supporting ecological rehabilitation has been undertaken. Meanwhile, the trophic interactions during rehabilitation also have been analyzed. In this study, a new technique was employed to solve the water eutrophication problems in an urban pond. To evaluate the water eutrophication at a pilot scale, an enhanced artificial floating-type biological treatment system (FBTS) composed of a floating bed, macrophyte, artificial biofilm carrier (polyurethane sponge) and aerator could be used as equipment for urban pond remediation. In addition, FBTS was employed to decrease the total nitrogen (TN), ammonia-nitrogen (NH3-N), total phosphorus (TP) and chemical oxygen demand (COD) in water. Meanwhile, the changes of water qualities were monitored in the remediation process, and differences in phytoplankton functional group diversity were also registered. Cyanobacteria would decrease after the removal of P, and the diatom assemblage composition changed. The dominant species Cyanophyta were transformed to co-existed with Bacillariophyta, Pyrrophyta and Chlorophyta due to the improvement of water quality. Consequently, this new FBTS could be a promising eco-technology for the removal of nitrogen and phosphorus from eutrophic water, and even could promote the phytoplankton succession.
Collapse
|
50
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|