1
|
Ewuzie RN, Genza JR, Abdullah AZ. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals. Int J Biol Macromol 2024; 265:131084. [PMID: 38521312 DOI: 10.1016/j.ijbiomac.2024.131084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.
Collapse
Affiliation(s)
| | - Jackson Robinson Genza
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
2
|
King-Smith E, Berritt S, Bernier L, Hou X, Klug-McLeod JL, Mustakis J, Sach NW, Tucker JW, Yang Q, Howard RM, Lee AA. Probing the chemical 'reactome' with high-throughput experimentation data. Nat Chem 2024; 16:633-643. [PMID: 38168924 PMCID: PMC10997498 DOI: 10.1038/s41557-023-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
High-throughput experimentation (HTE) has the potential to improve our understanding of organic chemistry by systematically interrogating reactivity across diverse chemical spaces. Notable bottlenecks include few publicly available large-scale datasets and the need for facile interpretation of these data's hidden chemical insights. Here we report the development of a high-throughput experimentation analyser, a robust and statistically rigorous framework, which is applicable to any HTE dataset regardless of size, scope or target reaction outcome, which yields interpretable correlations between starting material(s), reagents and outcomes. We improve the HTE data landscape with the disclosure of 39,000+ previously proprietary HTE reactions that cover a breadth of chemistry, including cross-coupling reactions and chiral salt resolutions. The high-throughput experimentation analyser was validated on cross-coupling and hydrogenation datasets, showcasing the elucidation of statistically significant hidden relationships between reaction components and outcomes, as well as highlighting areas of dataset bias and the specific reaction spaces that necessitate further investigation.
Collapse
Affiliation(s)
- Emma King-Smith
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Xinjun Hou
- Pfizer Research and Development, Cambridge, MA, USA
| | | | | | - Neal W Sach
- Pfizer Research and Development, La Jolla, CA, USA
| | | | - Qingyi Yang
- Pfizer Research and Development, Cambridge, MA, USA
| | | | - Alpha A Lee
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Carkner A, Tageldin I, Han J, Seifitokaldani A, Kopyscinski J. Impact of Temperature an Order of Magnitude Larger Than Electrical Potential in Lignin Electrolysis with Nickel. CHEMSUSCHEM 2024; 17:e202300795. [PMID: 37870894 DOI: 10.1002/cssc.202300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lignin, a major component of plant biomass, is a promising sustainable alternative carbon-based feedstock to petroleum as a source of valuable aromatic compounds such as vanillin. However, lignin upgrading reactions are poorly understood due to its complex and variable molecular structure. This work focuses on electrocatalytic lignin upgrading, which is efficient and sustainable at moderate temperatures and pressures and does not require stoichiometric reagents. We used a meta-analysis of published lignin conversion and product yield data to define the operating range, to select the catalyst, and then performed electrocatalytic experiments. We quantified the impact of temperature and electrical potential on the formation rate of valuable products (vanillic acid, acetovanillone, guaiacol, vanillin, and syringaldehyde). We found that increasing temperature increases their formation rate by an order of magnitude more than increasing electrical potential. For example, increasing temperature from 21 to 180 °C increases the vanillin formation rate by +16.5 mg⋅L-1 ⋅h-1 ±1.7 mg⋅L-1 ⋅h-1 , while increasing electrical potential from 0 to 2 V increases the vanillin formation rate by -0.6 mg⋅L-1 ⋅h-1 ±1.4 mg⋅L-1 ⋅h-1 .
Collapse
Affiliation(s)
- Andrew Carkner
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Ingy Tageldin
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Jiashuai Han
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| | - Jan Kopyscinski
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada
| |
Collapse
|
4
|
Afewerki S, Edlund U. Combined Catalysis: A Powerful Strategy for Engineering Multifunctional Sustainable Lignin-Based Materials. ACS NANO 2023; 17:7093-7108. [PMID: 37014848 PMCID: PMC10134738 DOI: 10.1021/acsnano.3c00436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The production and engineering of sustainable materials through green chemistry will have a major role in our mission of transitioning to a more sustainable society. Here, combined catalysis, which is the integration of two or more catalytic cycles or activation modes, provides innovative chemical reactions and material properties efficiently, whereas the single catalytic cycle or activation mode alone fails in promoting a successful reaction. Polyphenolic lignin with its distinctive structural functions acts as an important template to create materials with versatile properties, such as being tough, antimicrobial, self-healing, adhesive, and environmentally adaptable. Sustainable lignin-based materials are generated by merging the catalytic cycle of the quinone-catechol redox reaction with free radical polymerization or oxidative decarboxylation reaction, which explores a wide range of metallic nanoparticles and metal ions as the catalysts. In this review, we present the recent work on engineering lignin-based multifunctional materials devised through combined catalysis. Despite the fruitful employment of this concept to material design and the fact that engineering has provided multifaceted materials able to solve a broad spectrum of challenges, we envision further exploration and expansion of this important concept in material science beyond the catalytic processes mentioned above. This could be accomplished by taking inspiration from organic synthesis where this concept has been successfully developed and implemented.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre
and Polymer Technology, KTH Royal Institute
of Technology, SE 100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fibre
and Polymer Technology, KTH Royal Institute
of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
5
|
Shao L, Wang C, Liu Y, Wang M, Wang L, Xu F. Efficient depolymerization of lignin through microwave-assisted Ru/C catalyst cooperated with metal chloride in methanol/formic acid media. Front Bioeng Biotechnol 2022; 10:1082341. [PMID: 36588935 PMCID: PMC9800509 DOI: 10.3389/fbioe.2022.1082341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Lignin, an abundant aromatic biopolymer, has the potential to produce various biofuels and chemicals through biorefinery activities and is expected to benefit the future circular economy. Microwave-assisted efficient degradation of lignin in methanol/formic acid over Ru/C catalyst cooperated with metal chloride was investigated, concerning the effect of type and dosage of metal chloride, dosage of Ru/C, reaction temperature, and reaction time on depolymerized product yield and distribution. Results showed that 91.1 wt% yield of bio-oil including 13.4 wt% monomers was obtained under the optimum condition. Yields of guaiacol-type compounds and 2,3-dihydrobenzofuran were promoted in the presence of ZnCl2. Formic acid played two roles: (1) acid-catalyzed cleavage of linkages; (2) acted as an in situ hydrogen donor for hydrodeoxygenation in the presence of Ru/C. A possible mechanism for lignin degradation was proposed. This work will provide a beneficial approach for efficient depolymerization of lignin and controllable product distribution.
Collapse
Affiliation(s)
- Lupeng Shao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,Shandong Chenming Paper Holdings Co., Ltd., Weifang, China
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Chao Wang, ; Yu Liu, ; Feng Xu,
| | - Yu Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Chao Wang, ; Yu Liu, ; Feng Xu,
| | - Meng Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luyan Wang
- Shandong Chenming Paper Holdings Co., Ltd., Weifang, China
| | - Feng Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology (Ministry of Education), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China,*Correspondence: Chao Wang, ; Yu Liu, ; Feng Xu,
| |
Collapse
|
6
|
Amores-Monge V, Goyanes S, Ribba L, Lopretti M, Sandoval-Barrantes M, Camacho M, Corrales-Ureña Y, Vega-Baudrit JR. Pineapple Agro-Industrial Biomass to Produce Biomedical Applications in a Circular Economy Context in Costa Rica. Polymers (Basel) 2022; 14:4864. [PMID: 36432989 PMCID: PMC9697275 DOI: 10.3390/polym14224864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pineapple is a highly demanded fruit in international markets due to its unique appearance and flavor, high fiber content, vitamins, folic acid, and minerals. It makes pineapple production and processing a significant source of income for producing countries, such as Costa Rica. This review collects bibliographic information dating back to the beginnings of pineapple production in Costa Rica to the state of the market today. It details the impacts of its production chain and proposes a biorefinery as a solution to environmental problems. Besides the potentiality of new sustainable markets to contribute to the post-COVID-19 economy in Costa Rica is highlighted. The general characteristics of pineapple by-products -cellulose, hemicellulose, lignin, and other high-value products like bromelain y saponin- are described, as well as the primary processes for their ex-traction via biorefinery and main applications in the medical field. Finally, a brief description of the main works in the literature involving modeling and simulation studies of pineapple by-products properties is included.
Collapse
Affiliation(s)
| | - Silvia Goyanes
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1053, Argentina
- Instituto de Física de Buenos Aires (IFIBA)CONICET, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Laura Ribba
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1053, Argentina
- Dirección de Materiales Avanzados, Áreas del Conocimiento, INTI-CONICET, Buenos Aires 5445, Argentina
| | - Mary Lopretti
- Departamento de Técnicas Nucleares Aplicadas en Bioquímica y Biotecnología, CIN, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | | | - Melissa Camacho
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT, San José 1200, Costa Rica
| | | | - José Roberto Vega-Baudrit
- School of Chemistry, Universidad Nacional, Campus Omar Dengo, Heredia 3000, Costa Rica
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT, San José 1200, Costa Rica
| |
Collapse
|
7
|
Effective depolymerization of alkali lignin using an Attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ma X, Ma J, Li M, Gu Y, Wang T. MnO2 oxidative degradation of lignin and electrochemical recovery study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Midhun Kumar M, Gurrala L, Paek C, Vinu R. Selective production of guaiacol from lignin via catalytic transfer hydrogenolysis using Ru-Cu/Zirconia. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Hossain MA, Saelee T, Tulaphol S, Rahaman MS, Phung TK, Maihom T, Praserthdam P, Praserthdam S, Yelle DJ, Sathitsuksanoh N. Catalytic hydrogenolysis of lignin into phenolics by internal hydrogen over Ru catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Thanh Khoa Phung
- Vietnam National University Ho Chi Minh City University of Science: University of Science Science and Technology VIET NAM
| | | | | | | | - Daniel J. Yelle
- Department of Agriculture Forest Biopolymer Science and Engineering UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
11
|
Zhang J, Ge Y, Li Z. Synchronous catalytic depolymerization of alkaline lignin to monophenols with in situ-converted hierarchical zeolite for bio-polyurethane production. Int J Biol Macromol 2022; 215:477-488. [PMID: 35752335 DOI: 10.1016/j.ijbiomac.2022.06.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Catalytic depolymerization of lignin to high-value chemicals is crucial to the comprehensive achievement of sustainable and economic concerns. Herein, we propose a green, practical, and economic strategy for the synchronous catalytic depolymerization of lignin based on in situ conversion of geopolymer precursor to hierarchical zeolite, using water as a mild solvent and without external H2, additives, co-catalysts or co-solvents. The in situ-converted hierarchical analcime (ANA) zeolite outperformed previously reported representative catalysts, such as PTA/MCM-41 and CuAlMgOx in lignin depolymerization with a high monophenol yield (95.61 ± 7.89 mg/g). The synergetic effect of the micro-mesoporous structure and enhanced acidic sites of the ANA played a vital role in regulating the monomer composition and the yield of monophenols. The obtained monophenols are rich in -OH groups and can be utilized as a substitute for petroleum resources, such as ethylene glycol or glycerin for the synthesis of bio-polyurethane foams (bio-PUFs). This work expands the scope of using biomass in a sustainable manner to make high-value chemicals and biomaterials.
Collapse
Affiliation(s)
- Jiubing Zhang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Yuanyuan Ge
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| |
Collapse
|
12
|
Solvent Effect in Catalytic Lignin Hydrogenolysis. Catalysts 2022. [DOI: 10.3390/catal12060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The solvent effect in the catalytic depolymerization of the three-dimensional network of lignin is discussed based on recent reports in this field. Also, the results of an experimental study on the depolymerization of kraft lignin are presented. The cleavage of ether bonds within the lignin network was promoted using ruthenium and platinum on activated carbon (Ru/C and Pt/C), two common hydrogenolysis catalysts. Methanol was identified as a suitable solvent. Noteworthy, under the chosen reaction conditions, the catalysts showed significant resilience to the sulfur present in kraft lignin. The conversion of kraft lignin to lignin oil was strongly affected by the reaction conditions. Although the Ru/C catalyst provided the highest yield at supercritical conditions, a maximum yield was obtained for the Pt/C catalyst at near-critical conditions. The formation of guaiacol, 4-alkylguaiacols, isoeugenol, and 4-ethyl-2,6-dimethoxyphenol is attributed to the solubility of oligomeric lignin fragments in the solvent and the relative propensity of specific groups to adsorb on the catalyst surface.
Collapse
|
13
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
14
|
Gurrala L, Kumar MM, Yerrayya A, Kandasamy P, Castaño P, Raja T, Pilloni G, Paek C, Vinu R. Unraveling the reaction mechanism of selective C9 monomeric phenols formation from lignin using Pd-Al 2O 3-activated biochar catalyst. BIORESOURCE TECHNOLOGY 2022; 344:126204. [PMID: 34710595 DOI: 10.1016/j.biortech.2021.126204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The conversion of biomass-derived lignin to valuable monomeric phenols at high selectivity is of paramount importance for sustainable biorefineries. In this study, a novel Pd-Al2O3 supported on activated biochar catalyst is developed for lignin hydrogenolysis. The catalyst characterization revealed that the (111) planes of both of Pd0 and Al2O3 were exposed to the surface. The maximum lignin conversion of 70.4% along with high liquid yield (∼57 wt%) was obtained at 240 °C, 3 h and 3 MPa H2 pressure. The total monomeric phenols yield in the liquid was 51.6 wt%, out of which C9 monomeric guaiacols constituted ∼ 30.0 wt% with 38.0% selectivity to 4-propyl guaiacol. Using the reaction intermediate, coniferyl alcohol, chemoselective hydrogenation of Cα=Cβ is proved to occur over the Pd site, while dehydroxylation of Cγ-OH is shown to occur over the alumina site. An impressive carbon atom economy of 60% was achieved for the production of monomeric phenols.
Collapse
Affiliation(s)
- L Gurrala
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - M M Kumar
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - Attada Yerrayya
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Prabu Kandasamy
- Catalysis & Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - T Raja
- Catalysis & Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Giovanni Pilloni
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, United States
| | - C Paek
- Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, United States
| | - R Vinu
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
15
|
Shu R, Li R, Liu Y, Wang C, Liu PF, Chen Y. Enhanced adsorption properties of bimetallic RuCo catalyst for the hydrodeoxygenation of phenolic compounds and raw lignin-oil. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115920] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Mo-doped Al2O3-ZrO2-based composite as catalyst for one-step production of alkyl-substituted monophenols from lignin via direct deoxygenation. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zhang S, Fang G, Chen H, Lang Q. The Effect of Degradation of Soda Lignin Using Pd/SO 42-/ZrO 2 as a Catalyst: Improved Reactivity and Antioxidant Activity. Polymers (Basel) 2019; 11:polym11071218. [PMID: 31330896 PMCID: PMC6681089 DOI: 10.3390/polym11071218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
To the value-added application of the soda lignin by improving its reactivity and antioxidant activity, a self-made Pd/SO42−/ZrO2 catalyst was used to catalyze the degradation reaction of soda lignin. The catalyst was loaded with the palladium of 1.47 wt.% while retaining the super acidity of SO42−/ZrO2. The reaction condition was determined as follows: the dioxane-water solution was selected as the reaction solution, the addition amount of the catalyst was 5 wt.% of the soda lignin, the system was heated at 100 °C for 4 h under a hydrogen pressure of 3 MPa. The reactivity of the catalyzed-soda lignin compared to the soda lignin before the reaction was significantly improved: the values of phenolic hydroxyl groups and total hydroxyl groups were increased by 35.3% and 97.1%, respectively, and the value of methoxy groups was decreased by 13%. Approximately 63.3% of the β-O-4 bonds were cleaved, which resulted in a reduction of the weight average molecular weight from 8200 g·mol−1 to 4900 g·mol−1. At the same time, the EC50 values of the catalyzed-soda lignin on DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radicals scavenging were decreased by 20.6% and 32.6%, respectively, and the reducing power of catalyzed-soda lignin at the absorption value of 0.5 was increased by 10.5%. The Pd/SO42−/ZrO2 catalyst works by breaking the β-O-4 linkages and degrading the methoxy groups. The catalyzed-soda lignin exhibits the possibility of being used as the antioxidants, grafting precursors, adhesive additives, and raw materials for lignin/polymer composites.
Collapse
Affiliation(s)
- Shengming Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
- Agricultural Engineering Postdoctoral Research Station, Northeast Agricultural University, Harbin 150030, China.
| | - Guizhen Fang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Haitao Chen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Cao L, Yu IKM, Liu Y, Ruan X, Tsang DCW, Hunt AJ, Ok YS, Song H, Zhang S. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. BIORESOURCE TECHNOLOGY 2018; 269:465-475. [PMID: 30146182 DOI: 10.1016/j.biortech.2018.08.065] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Lignin is an abundant biomass resource in aromatic structure with a low price in market, which can serve as renewable precursors of value-added products. However, valorization rate of annually produced lignin is less than 2%, suggesting the need for technological advancement to capitalize lignin as a versatile feedstock. In recent years, efficient utilization of lignin has attracted wide attention. This paper summarizes the research advances in the utilization of lignin resources (mainly in the last three years), with a particular emphasis on two major approaches of lignin utilization: catalytic degradation into aromatics and thermochemical treatment for carbon material production. Hydrogenolysis, direct pyrolysis, hydrothermal liquefaction, and hydrothermal carbonization of lignin are discussed in detail. Based on this critical review, future research directions and development prospects are proposed for sustainable and cost-effective lignin valorization.
Collapse
Affiliation(s)
- Leichang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yaoyu Liu
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Xiuxiu Ruan
- School of Environmental and Chemical Engineering, Shanghai University, No.99 Shangda Road, Shanghai 200444, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
A Review of Microwave Assisted Liquefaction of Ligninin Hydrogen Donor Solvents: Effect of Solvents and Catalysts. ENERGIES 2018. [DOI: 10.3390/en11112877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignin, a renewable source of aromatic chemicals in nature, has attracted increasing attention due to its structure and application prospect. Catalytic solvolysis has developed as a promising method for the production of value-added products from lignin. The liquefaction process is closely associated with heating methods, catalysts and solvents. Microwave assisted lignin liquefaction in hydrogen donor solvent with the presence of catalysts has been confirmed to be effective to promote the production of liquid fuels or fine chemicals. A great number of researchers should be greatly appreciated on account of their contributions on the progress of microwave technology in lignin liquefaction. In this study, microwave assisted liquefaction of lignin in a hydrogen donor solvent is extensively overviewed, concerning the effect of different solvents and catalysts. This review concludes that microwave assisted liquefaction is a promising technology for the valorization of lignin, which could reduce the reaction time, decrease the reaction temperature, and finally fulfill the utilization of lignin in a relatively mild condition. In the future, heterogeneous catalysts with high catalytic activity and stability need to be prepared to achieve the need for large-scale production of high-quality fuels and value-added chemicals from lignin.
Collapse
|
20
|
Shao L, Zhang Q, You T, Zhang X, Xu F. Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media. BIORESOURCE TECHNOLOGY 2018; 264:238-243. [PMID: 29843111 DOI: 10.1016/j.biortech.2018.05.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Microwave-assisted degradation of alkaline lignin in methanol/formic acid media was investigated, concerning the effect of formic acid (FA) amount, reaction temperature, and reaction time on lignin depolymerization. The highest bio-oil yield of 72.0 wt% including 6.7 wt% monomers was achieved at 160 °C and a FA-to-lignin mass ratio of 4 after a reaction time of 30 min. Among the monomers, the yield of 2,3-dihydrobenzofuran was the highest (3.00 wt%), followed by p-coumaric acid (1.59 wt%). Formic acid acted mainly through acid-catalyzed cleavage of the linkages in lignin. Oligomers in bio-oil were mainly composed of dimers (molecular weight: 253-378) and trimers (molecular weight: 379-510) according to the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) analysis. A possible mechanism about microwave-assisted depolymerization of lignin in methanol/formic acid media was proposed. This study will provide an efficient approach for lignin depolymerization.
Collapse
Affiliation(s)
- Lupeng Shao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qilin Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Shandong Key Laboratory of Paper Science & Technology, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
21
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
22
|
Feng J, Zhong YH, Dai SH. Hydrogenolysis of α-methylbenzyl alcohol to ethylbenzene over Pd/C catalyst. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/292/1/012117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Cheng C, Shen D, Gu S, Luo KH. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00845k] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalytic hydrogenolysis of lignin is overviewed, concerning the cleavage of typical inter-unit linkages and the production of aromatic chemicals.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Dekui Shen
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Sai Gu
- Department of Chemical and Process Engineering
- Faculty of Engineering and Physical Sciences
- University of Surrey
- UK
| | - Kai Hong Luo
- Department of Mechanical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
24
|
Oregui Bengoechea M, Miletíc N, Vogt MH, Arias PL, Barth T. Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design. BIORESOURCE TECHNOLOGY 2017; 234:86-98. [PMID: 28319777 DOI: 10.1016/j.biortech.2017.02.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
The catalytic solvolysis of Norway spruce (Picea abies L.) lignin in a formic acid/water media was explored at different temperatures and reaction times (283-397°C and 21-700min, respectively). Non-catalyzed experiments were compared with the effect of three different type of bifunctional catalysts (Pd/Al2O3, Rh/Al2O3 and Ru/Al2O3) and a solid Lewis acid (γ-Al2O3). We demonstrated that surface response methodology (RSM) and principal component analysis (PCA) were an adequate tool to: (i) evaluate the effect of the catalysts, temperature and reaction time in the oil yield, oil quality (H/C and O/C ratios, and Mw) and composition of the oil, (ii) establish the differences and/or similarities between the three bifunctional catalyst and (iii) to determine the role of the noble metal and the alumina support in the reaction system. In addition, the most active catalysts, Ru/Al2O3, and the optimum reaction conditions were determined (i.e. 340°C and 6h).
Collapse
Affiliation(s)
| | - Nemanja Miletíc
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country (EHU/UPV), C/Alameda Urquijo s/n, 48013 Bilbao, Spain; Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia
| | - Mari H Vogt
- Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway
| | - Pedro L Arias
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country (EHU/UPV), C/Alameda Urquijo s/n, 48013 Bilbao, Spain
| | - Tanja Barth
- Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway
| |
Collapse
|
25
|
Shu R, Xu Y, Ma L, Zhang Q, Chen P, Wang T. Synergistic effects of highly active Ni and acid site on the hydrodeoxygenation of syringol. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Chen P, Zhang Q, Shu R, Xu Y, Ma L, Wang T. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. BIORESOURCE TECHNOLOGY 2017; 226:125-131. [PMID: 27997866 DOI: 10.1016/j.biortech.2016.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
In this work, the mesoporous SBA-15 and a series of modified catalysts based on it, such as Al-SBA-15 and Ni/Al-SBA-15, were synthesized and used for eliminating the char formation during the depolymerization of hydrolyzed lignin. The temperature, time and solvent effects on the lignin depolymerization were also investigated. Results showed that the repolymerization was effectively suppressed over SBA-15 due to its well-ordered pore structure and large pore size. The addition of Al and Ni elements in SBA-15 could improve the lignin depolymerization performance and saturate the instable intermediates. Ethanol was found to be more effective in suppressing repolymerization than other solvents. 81.4% liquefaction degree and 21.90wt% monomer yield was achieved, and no obvious char was observed after the depolymerization of hydrolyzed lignin in ethanol solvent at 300°C for 4h over Ni/Al-SBA-15(20) catalyst.
Collapse
Affiliation(s)
- Pengru Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Riyang Shu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Tiejun Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|