1
|
Li J, Feng Y, Wang D, Li Y, Cai M, Tian Y, Pan Y, Chen X, Zhang Q, Li A. Optimization of sulfate reduction and methanogenesis via phase separation in a two-phase internal circulation reactor for the treatment of high-sulfate organic wastewater. WATER RESEARCH 2024; 260:121918. [PMID: 38896887 DOI: 10.1016/j.watres.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
To enhance the performance of the internal circulation (IC) reactor when treating high-sulfate organic wastewater, a laboratory-scale two-phase IC reactor with distinct phase separation capabilities was designed, and the sulfate reduction and methanogenesis processes were optimized by segregating the reactor into two specialized reaction zones. The results demonstrated that the first and second reaction areas of the two-phase IC reactor could be maintained at 4.5-6.0 and 7.5-8.5, respectively, turning them into the specialized phase for sulfate reduction and methanogenesis. Through phase separation, the two-phase IC reactor achieved a COD degradation and sulfate reduction efficiency of more than 80% when the influent sulfate concentration exceeded 5,000 mg/L, which were 32.32% and 16.04% higher than that before phase separation. Functional analyses indicated a greater activity of both the dissimilatory and assimilatory sulfate reduction pathways in the acidogenic phase, largely due to a rise in the relative abundance of the genera Desulfovibrio, Bacteroides, and Lacticaseibacillus, the primary carriers of sulfate reduction functional genes. In contrast, all the acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis pathways were inhibited in the acidogenic phase but thrived in the methanogenic phase, coinciding with shifts in the genus Methanothrix, which harbors the mcrA, mcrB, and mcrG genes essential for the final transformation step of all three methanogenesis pathways.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Duanhao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minhui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yechao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xun Chen
- Yangtze River Innovation Center for Ecological Civilization, Nanjing 210019, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362008, PR China.
| |
Collapse
|
2
|
Dang TMT, Bui HM. Performance evaluation of ICX reactor in treatment of paper mill wastewater: a case study in South Vietnam. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1115-1131. [PMID: 39215727 DOI: 10.2166/wst.2024.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
This study evaluates the performance of the Internal Circulation eXperience (ICX) reactor in treating high-strength paper mill wastewater in the south of Vietnam. The ICX reactor effectively managed organic concentrations (sCOD) of up to 11,800 mg/L. Results indicate a volumetric loading rate (VLR) of 26.8 kg/m3 × day, achieving processing efficiency exceeding 81% while consistently maintaining volatile fatty acids (VFA) below 300 mg/L. The study employed Monod and Stover-Kincannon kinetic modeling, revealing dynamic parameters including Ks = 56.81 kg/m3, Y = 0.121 kgVSS/kgsCOD, Kd = 0.0242 1/day, μmax = 0.372 1/day, Umax = 151 kg/m3 × day, and KB = 175.92 kg/m3 × day, underscoring the ICX reactor's superior efficiency compared to alternative technologies. Notably, the reactor's heightened sensitivity to VFA levels necessitates influent concentrations below 1,400 mg/L for effective sludge treatment. Furthermore, the influence of calcium on treatment efficiency requires post-treatment alkalinity maintenance below 19 meq/L to stabilize MLVSS/MLSS concentration. Biogas production ranged from 0.6 to 0.7 Nm3 biogas/kg sCOD; however, calcium impact diminished this ratio, reducing overall treatment efficiency and biogas production. The study contributes valuable insights into anaerobic treatment processes for complex industrial wastewaters, emphasizing the significance of controlling VFA, calcium, and alkalinity for optimal system performance.
Collapse
Affiliation(s)
- Tuan Minh Truong Dang
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, 840 Chengcing Road, Niaosong District, Kaohsiung City 833301, Taiwan
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam E-mail:
| |
Collapse
|
3
|
Yang G, Cao JM, Cui HL, Zhan XM, Duan G, Zhu YG. Artificial Sweetener Enhances the Spread of Antibiotic Resistance Genes During Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10919-10928. [PMID: 37475130 DOI: 10.1021/acs.est.2c08673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Man Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin-Min Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway H91 TK33, Ireland
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
4
|
Mishra S, Singh V, Ormeci B, Hussain A, Cheng L, Venkiteshwaran K. Anaerobic-aerobic treatment of wastewater and leachate: A review of process integration, system design, performance and associated energy revenue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116898. [PMID: 36459783 DOI: 10.1016/j.jenvman.2022.116898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hybrid anaerobic-aerobic biological systems are an environmentally sustainable way of recovering bioenergy during the treatment of high-strength wastewaters and landfill leachate. This study provides a critical review of three major categories of anaerobic-aerobic processes such as conventional wetland, high-rate and integrated bioreactor systems applied for treatment of wastewaters and leachate. A comparative assessment of treatment mechanisms, critical operating parameters, bioreactor configurations, process control strategies, efficacies, and microbial dynamics of anaerobic-aerobic systems is provided. The review also explores the influence of wastewater composition on treatment performance, ammonium nitrogen removal efficacy, impact of mixing leachate, energy consumption, coupled bioenergy production and economic aspects of anaerobic-aerobic systems. Furthermore, the operational challenges, prospective modifications, and key future research directions are discussed. This review will provide in-depth understanding to develop sustainable engineering applications of anaerobic-aerobic processes for effective co-treatment of wastewaters and leachate.
Collapse
Affiliation(s)
- Saurabh Mishra
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China; College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, 210098, China.
| | - Virender Singh
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada
| | - Banu Ormeci
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada
| | - Abid Hussain
- Department of Civil and Environmental Engineering, Carleton University, Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China; College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, 210098, China.
| | - Kaushik Venkiteshwaran
- Department of Civil, Coastal and Environmental Engineering, University of South Alabama, Mobile, Alabama, AL 36688, USA
| |
Collapse
|
5
|
Fan Y, Tan X, Huang Y, Hao T, Chen H, Yi X, Li D, Pan Y, Li Y, Kong Z. Chemical oxygen demand and nitrogen removal from real membrane-manufacturing wastewater by a pilot-scale internal circulation reactor integrated with partial nitritation-anammox. BIORESOURCE TECHNOLOGY 2022; 364:128116. [PMID: 36244606 DOI: 10.1016/j.biortech.2022.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
A pilot-scale system integrating internal circulation and partial nitritation-anammox successfully treated real high-strength membrane-manufacturing wastewater in this study. With this pilot-scale system, a high chemical oxygen demand (COD) removal efficiency of 85 % and a nitrogen removal of 90 % are achieved at an organic loading rate of 6.0 kg COD/m3/d. The nitrogenous organic matters in the internal circulation zone are degraded into ammonia nitrogen. In the partial nitrification zone, nitrite accumulation is achieved, providing a suitable NH4+-N/NO2--N ratio for anammox reaction. Partial nitritation is achieved by maintaining an operational temperature at 30-35 °C, free ammonia concentration at 5-7 mg/L and dissolved oxygen at 0.4-0.7 mg/L with a reflux ratio of 150 %. The COD to nitrogen ratio in the internal circulation effluent is maintained below 3.0 to inhibit nitrite oxidizing bacteria. This study demonstrates that a pilot-scale system can efficiently remove organic matters and nitrogen from wastewater of membrane-manufacturing industry.
Collapse
Affiliation(s)
- Yuqin Fan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinwei Tan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Xue Yi
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Research Center for Environmental Bio-technology, Suzhou University of Science and Technology, Suzhou 215009, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
6
|
Hao Z, Zhang L, Zhang Q, Peng Y, Shi L, Li Y. Rapidly achieving partial denitrification from nitrate wastewater in a alkaline fermentation system with primary sludge as inoculated sludge and fermentable substrate. BIORESOURCE TECHNOLOGY 2022; 360:127528. [PMID: 35760246 DOI: 10.1016/j.biortech.2022.127528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In order to promote practical engineering application of anaerobic ammonium oxidation(anammox) process, reduction of primary sludge(PS) in wastewater treatment plants(WWTPs) and removal of nitrate contaminant, a single-stage simultaneous alkaline fermentation coupled with partial denitrification(SAFPD) system was established successfully in this study. Nitrite production was rapidly achieved from nitrate wastewater with PS as inoculated sludge and fermentable substrate under anaerobic and anoxic operating conditions. During the stable operation period, the primary sludge reduction(PSR) and productivity of organic matters were 27.9% and 483.8mgCOD/gVSS, with nitrate removal of 90.7%, NO3- to NO2- transformation ratio(NTR) of 80.0%. After 125 days of acclimation, the relative abundance of Thauera, Dechloromonas and Candidatus_Competibacter increased from 0.17%, 0.02% and 0.05% to 11.58%, 4.28% and 5.6% respectively. Above results showed that this SAFPD system not only realized the reduction of PS and nitrate removal, but also laid a solid foundation for anammox process with its high nitrite production.
Collapse
Affiliation(s)
- Zhichao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yanan Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
7
|
Performance Comparison of EGSB and IC Reactors for Treating High-Salt Fatty Acid Organic Production Wastewater. Processes (Basel) 2022. [DOI: 10.3390/pr10071295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study used the EGSB and IC reactors to treat the high-salt and high-concentration organic wastewater (high-salt fatty acid production wastewater) and compared their performances The experimental results showed that the optimal influent water quality thresholds for both bioreactors to treat this wastewater were a COD concentration of 18,000 mg/L and a sulfate ion concentration of about 8000 mg/L. The reactor operated well when C/S was greater than 2.8. In addition, the value of C/S should not be less than 1.5. This is due to that under this condition, the sulfate reduction process has a significant impact on the removal of COD, and MPB may be inhibited by sulfides. The organic load OLR should not be greater than 10 kgCOD/(m3·d). It was also found that the start-up time of the IC reactor with external circulation was slightly shorter, and the COD removal effect, gas production rate, and load tolerance were slightly better than those of the EGSB reactor, the best reflux ratio of the two reactors was 6:1. The appropriate rising flow rate was 0.4 m/h.
Collapse
|
8
|
Chen L, Fang W, Chang J, Liang J, Zhang P, Zhang G. Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Front Microbiol 2022; 13:860749. [PMID: 35432222 PMCID: PMC9005980 DOI: 10.3389/fmicb.2022.860749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is an effective and sustainable technology for resource utilization of organic wastes. Recently, adding conductive materials in anaerobic digestion to promote direct interspecies electron transfer (DIET) has become a hot topic, which enhances the syntrophic conversion of various organics to methane. This review comprehensively summarizes the recent findings of DIET mechanisms with different mediating ways. Meanwhile, the influence of DIET on anaerobic digestion performance and the underlying mechanisms of how DIET mediated by conductive materials influences the lag phase, methane production, and system stability are systematically explored. Furthermore, current challenges such as the unclear biological mechanisms, influences of non-DIET mechanisms, limitations of organic matters syntrophically oxidized by way of DIET, and problems in practical application of DIET mediated by conductive materials are discussed in detail. Finally, the future research directions for practical application of DIET are outlined.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
9
|
Cai MH, Luo G, Li J, Li WT, Li Y, Li AM. Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. CHEMOSPHERE 2021; 280:130937. [PMID: 34162109 DOI: 10.1016/j.chemosphere.2021.130937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Nitrate and sulfate often coexist in organic wastewater. In this study, an internal circulation anaerobic reactor was conducted to investigate the impact of nitrate on sulfate reduction. The results showed that sulfate reduction rate dropped from 78.4% to 41.4% at NO3- /SO42- ratios ranging from 0 to 1.03, largely attributed to the inactivity of acetate-utilizing sulfate-reducing bacteria (SRB) and preferential usage of nitrate of propionate-utilizing SRB. Meanwhile, high nitrate removal efficiency was maintained and COD removal efficiency increased with nitrate addition. Enhancement of propionate and butyrate degradation based on Modified Gompertz model and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analysis. Moreover, nitrate triggered the shift of microbial community and function. Twelve genera affiliated to Firmicutes, Bacteroidetes and Proteobacteria were identified as keystone genera via network analysis, which kept functional stability of the bacterial community responding to nitrate stress. Increased nitrate inhibited Desulfovibrio, but promoted the growth of Desulforhabdus. Both the predicted functional genes associated with assimilatory sulfate reduction pathway (cysC and cysNC) and dissimilatory sulfate reduction pathway (aprA, aprB, dsrA and dsrB) exhibited negative relationship with nitrate addition.
Collapse
Affiliation(s)
- Min-Hui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies. ENERGIES 2021. [DOI: 10.3390/en14164895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anaerobic Digestion (AD) is a well-established process that is becoming increasingly popular, especially as a technology for organic waste treatment; the process produces biogas, which can be upgraded to biomethane, which can be used in the transport sector or injected into the natural gas grid. Considering the sensitivity of Anaerobic Digestion to several process parameters, mathematical modeling and numerical simulations can be useful to improve both design and control of the process. Therefore, several different modeling approaches were presented in the literature, aiming at providing suitable tools for the design and simulation of these systems. The purpose of this study is to analyze the recent advancements in the biomethane production from different points of view. Special attention is paid to the integration of this technology with additional renewable energy sources, such as solar, geothermal and wind, aimed at achieving a fully renewable biomethane production. In this case, auxiliary heat may be provided by solar thermal or geothermal energy, while wind or photovoltaic plants can provide auxiliary electricity. Recent advancements in plants design, biomethane production and mathematical modeling are shown in the paper, and the main challenges that these fields must face with are discussed. Considering the increasing interest of industries, public policy makers and researchers in this field, the efficiency and profitability such hybrid renewable solutions for biomethane production are expected to significantly improve in the next future, provided that suitable subsidies and funding policies are implemented to support their development.
Collapse
|
11
|
Chen J, Liu Y, Liu K, Hu L, Yang J, Wang X, Song ZL, Yang Y, Tang M, Wang R. Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 331:125027. [PMID: 33798858 DOI: 10.1016/j.biortech.2021.125027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This study analyzed bacterial community structure for large-scale brewery wastewater treatment at different heights in internal circulation (IC) reactor. Proteobacteria, Bacteroidetes and Chloroflexi were dominant bacteria, which accounted for 64.17%, 64.04%, 59.87% and 55.79% in phylum level, respectively. The unidentified bacteria were accounted for a large proportion in genus level, available data showed that Longilinea, Desulfomicrobium, Caldithrix, Geobacter and Syntrophorhabdus were relatively abundant. Organic fermentation, hydrolysis, and acidification were mainly completed at the bottom, and production of hydrogen and methane were completed in the upper and middle part of reactor. Alpha diversity and cluster distance analysis showed the bacterial community could be divided into bottom, middle and upper part of IC reactor. The IC reactor possessed the CODCr removal efficiency of 80% - 84.09%, and BOD5 of 77.50% - 86% for brewery wastewater. This study would provide bacterial analysis references of IC reactor for industrial wastewater treatment in future.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Kai Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Lijun Hu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Jiaqi Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xuemei Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuewei Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
12
|
Wang YN, Xu R, Wang H, Shi H, Kai Y, Sun Y, Li W, Bian R, Zhan M. Insights into the stabilization of landfill by assessing the diversity and dynamic succession of bacterial community and its associated bio-metabolic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145466. [PMID: 33736345 DOI: 10.1016/j.scitotenv.2021.145466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The distribution of bacterial community in an actual landfill was analyzed and the bioprocess involved in refuse degradation was clarified. The results showed that the degradation degree of refuse showed great differences with the landfill age, in which the contents of organic matter (OM) and total Kjeldahl nitrogen (TKN) in refuse as well as the chemical oxygen demand (COD) in leachate presented decreasing trends with increasing landfill age. The diversity of bacterial community increased first and then decreased with increasing landfill age. The main bacterial phyla involved in refuse degradation were Proteobacteria, Firmicutes and Bacteroidetes, among which, Proteobacteria had an absolute advantage with a relative abundance ranging of 66-78%. With increasing landfill age, the abundance of Firmicutes decreased gradually, while that of Bacteroidetes increased. Pseudomonas, Thiopseudomonas, Psychrobacter and Desemzia were the main genera. The distribution of bacterial community in samples with landfill ages of 0-1 and 1-3 years were greatly influenced by TKN and pH, respectively. Amino acid and carbohydrate metabolism were the main biological pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the biodegradation of xenobiotics as well as terpenoids and polyketides also accounted relatively high frequencies in the landfill. These results provide a better understanding of landfill microbiology and bioprocesses for landfill stabilization.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Rong Xu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China.
| | - Han Shi
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Yan Kai
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China.
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao, China
| | - Meili Zhan
- Qingdao MSW Management & Treatment Co. Ltd., Qingdao, China
| |
Collapse
|
13
|
Torres K, Álvarez-Hornos FJ, Gabaldón C, Marzal P. Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094986. [PMID: 34067161 PMCID: PMC8125441 DOI: 10.3390/ijerph18094986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
Quality of the granular sludge developed during the start-up of anaerobic up-flow sludge bed reactors is of crucial importance to ensure the process feasibility of treating industrial wastewater such as those containing solvents. In this study, the microbial granule formation from suspended-growth biomass was investigated in two chitosan-assisted reactors. These reactors operated mimicking industrial sites working with night closures treating a mixture of ethanol, ethyl acetate, and 1-ethoxy-2-propanol. Each reactor operated under different hydrodynamic regimes typical from UASB (R1: <0.15 m h−1) and EGSB (R2: 3 m h−1). High soluble COD removal efficiencies (>90%) accompanied by rapid formation of robust anaerobic granules were achieved at both up-flow velocity levels. After three weeks from the start-up, mean size diameters of 475 µm and 354 µm were achieved for R1 and R2, respectively. The performance of the process was found to be stable for the whole operational period of 106 days treating intermittent OLR up to 13 kg COD m−3 d−1. A memory dose of chitosan at day 42 was beneficial to guarantee good quality of the granules by offsetting the negative impact of intermittent water supply on the granular size. Methanocorpusculum was identified as the dominant archaea at both up-flow velocities. Acetobacterium, Geobacter and Desulfovibrio bacteria were also abundant, demonstrating its role on the degradation of light-oxygenated solvents.
Collapse
|
14
|
Quashie FK, Feng K, Fang A, Agorinya S, Antwi P, Kabutey FT, Xing D. Efficiency and key functional genera responsible for simultaneous methanation and bioelectricity generation within a continuous stirred microbial electrolysis cell (CSMEC) treating food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143746. [PMID: 33229085 DOI: 10.1016/j.scitotenv.2020.143746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
This study reveals the efficient treatment of high strength food waste under varying hydraulic retention times (48 h, 36 h and 24 h) in a continuous stirred tank reactor (CSTR) integrated with microbial electrolysis cell (MEC) to become a continuous stirred microbial electrolysis cell (CSMEC). COD removal efficiency in the CSMEC surpassed 92% with OLR ranging from 0.4 to 21.31 kg COD/m3·d compared to that of the CSTR. The maximum current density (based on the cathode surface area) was 1125.35 ± 81 mA/m2 in the CSMEC. Biogas yield and methane production rates increased by 16.5% and 19.3% in the CSMEC respectively compared to the CSTR. CSMEC was 1.52 times better in performance compared to the CSTR. Firmicutes, Synergistetes, Bacteroidetes, Thermotogae, Chloroflexi and Proteobacteria were the dominant phyla associated with both CSMEC and CSTR. Archaeal microbial community analysis showed Methanosaeta, Methanobacterium, Methanosarcina and Methanocorpusculum as the dominant populations associated with the CSMEC.
Collapse
Affiliation(s)
- Frank Koblah Quashie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Nuclear Application Centre (NAC), National Nuclear Research Institute (NNRI), Ghana Atomic Energy Commission (GAEC), P.O. Box LG 80, Legon, Ghana
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sarah Agorinya
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Philip Antwi
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Lin X, Su C, Deng X, Wu S, Tang L, Li X, Liu J, Huang X. Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111318. [PMID: 32979806 DOI: 10.1016/j.ecoenv.2020.111318] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The retention of polyether sulfone (PES) and bisphenol A (BPA) in wastewater has received extensive attention. The effects of PES and BPA on the removal of organic matter by anaerobic granular sludge were investigated. We also analyzed the changes in the electron transport system and the effects on the composition of extracellular polymeric substances (EPS), as well as alternations of the microbial community in the anaerobic granular sludge. In the experimental groups which received BPA, the removal of the chemical oxygen demand (COD) were significantly suppressed, which an average removal efficiency of less than 65%, 30% lower than that of the control group. In the loosely-bound EPS (LB-EPS) excitation-emission matrix (EEM) spectra, the absorption peak of tryptophan disappeared when the BPA pollutants was added, which it was present in the control group without added pollutants. The addition of PES and BPA also affected protease, acetate kinase, and coenzyme F420 activities in the anaerobic granular sludge. Especially, the coenzyme F420 reduced from 0.0045 to 0.0017 μmol/L in the presence of PES and BPA. The relative abundance of Spirochaetes decreased in the presence of PES and BPA, while the relative abundance of Bacteroidetes increased from 12.98% to 22.87%. At the genus level, in the presence of PES and BPA, the relative abundance of Acinetobacter increased from 2.20% to 9.64% and Hydrogenophaga decreased sharply from 15.58% to 0.12%.
Collapse
Affiliation(s)
- Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin, 541004, PR China.
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Jie Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
16
|
Liu J, Wang C, Wu K, Tang Z, Peng S, Huang J, Li F, Zhao X, Yin F, Yang B, Liu J, Yang H, Zhang W. Comparison of long-term energy efficiency and microbial community dynamics of different reactors in response to increased loadings of water hyacinth juice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140812. [PMID: 32711308 DOI: 10.1016/j.scitotenv.2020.140812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Water hyacinth is considered to be among the worst invasive weed species globally, causing detrimental environmental and social problems worldwide. It rapidly grows, and therefore has significant potential as a resource. Due to its high moisture content (approximately 95%), the by-product obtained by dehydrating water hyacinth yields a considerable amount of water hyacinth juice (WHJ). In this study, we performed a comparative assessment of long-term energy efficiency, maximum treatment capacity limits, and microbial community dynamics of modified internal circulation (MIC) and up-flow anaerobic sludge blanket (UASB) reactors in response to increasing loadings of WHJ. The MIC reactor exhibited a higher energy recovery rate and stronger performance compared with the UASB reactor. The optimal organic loading rates of the MIC and UASB reactors were 17.93 and 8.85 kg chemical oxygen demand (COD)/m3/d, with methane conversion rates of 0.21 and 0.15 m3 CH4/kg COD, respectively. Furthermore, the engineering costs and project floor space required by the MIC reactor are less than those in the case of the UASB reactor. The high-throughput sequencing analysis indicated that the dominant phyla (e.g. Firmicutes and Bacteroidetes) were more abundant using the MIC reactor than with the UASB reactor, which may indicate WHJ degradation efficiency. Both reactors had similar predominant methanogens, suggesting that acetoclastic methanogenesis was the predominant metabolic pathway of methane formation. The results of this study provide new insights into the sustainable management of water hyacinth as a resource by establishing a regional ecosystem with biogas engineering applications.
Collapse
Affiliation(s)
- Jianfeng Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China; DongMing Agriculture and Animal Husbandry Development (Group) Co., LTD, Tonghua 134118, PR China
| | - Changmei Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Kai Wu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Zhengkang Tang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Suyi Peng
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Jiang Huang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Fuyuan Li
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Xingling Zhao
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Fang Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Bin Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Jing Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Hong Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Wudi Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China; DongMing Agriculture and Animal Husbandry Development (Group) Co., LTD, Tonghua 134118, PR China.
| |
Collapse
|
17
|
Su C, Deng Q, Lu Y, Pan J, Chen W, Chen S, Deng X, Lin X, Huang Z. Effect of circulation and micro-aeration on sludge characteristics and microbial community in an ABR for treating traditional Chinese medicine wastewater. ENVIRONMENTAL TECHNOLOGY 2020; 41:3284-3296. [PMID: 30961470 DOI: 10.1080/09593330.2019.1604818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
The effects of circulation reflux and micro-aeration on the performance of a modified anaerobic baffled reactor (ABR) for treatment of traditional Chinese medicine (TCM) wastewater were evaluated. The characteristics of anaerobic sludge and microbial community structure in the modified ABR were also investigated. The results indicated that with conditions of reflux ratio of 1, reflux ratio of 2, reflux ratio of 2 with micro-aeration, and reflux ratio of 3, the modified ABR achieved an average COD removal efficiency of 90%, 87.7%, 87.8%, and 88.4%, respectively. In addition, the NH3-N average removal efficiency was 45.1%, 50%, 55.9%, and 55.4%, respectively. The analysis of excitation-emission matrix (EEM) fluorescence spectra of soluble microbial products (SMP) and extracellular polymeric substances (EPS) showed that there were tyrosine-like, aromatic protein-like, and coenzyme F420 substances in the sludge. The EPS were analysed by the Fourier transform infrared spectroscopy (FTIR), which showed that aromatic compounds were partially degraded, while the protein and polysaccharide compounds increased in each compartment of the modified ABR. Interestingly, the microbial community of anaerobic sludge analysis results showed that Chloroflexi was the dominant in the first, third and fourth compartments. Meanwhile, Levilinea and Methanothrix were the dominant species in the first and third compartments at the genus level.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
- University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province, Guangxi Normal University, Guilin, People's Republic of China
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Jiaqi Pan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Wuyang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Shenglong Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Xue Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Xiangfeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| | - Zhi Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, People's Republic of China
| |
Collapse
|
18
|
Liu J, Wang C, Wu K, Huang L, Tang Z, Zhang C, Wang C, Zhao X, Yin F, Yang B, Liu J, Yang H, Zhang W. Novel start-up process for the efficient degradation of high COD wastewater with up-flow anaerobic sludge blanket technology and a modified internal circulation reactor. BIORESOURCE TECHNOLOGY 2020; 308:123300. [PMID: 32278996 DOI: 10.1016/j.biortech.2020.123300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
To avoid wastage of water resources and operating cost increases caused by the traditional start-up process of large amounts of dilution influent chemical oxygen demand (COD), a novel start-up process (NSP) was developed and verified with water hyacinth juice (WHJ) on an up-flow anaerobic sludge blanket (UASB) and modified internal circulation (MIC) reactor. Results show that UASB and MIC reactors were started successfully and that the MIC reactor exhibited a superior performance. The NSP time of the MIC reactor (46 days) was less than that of the UASB reactor (52 days), although the start-up organic loading rate (OLR) of the MIC reactor was higher than that of the UASB reactor. Interestingly, high-throughput sequencing analysis indicated that the reactor configuration significantly impacted the microbial diversity, however, the UASB and MIC reactors had similar predominant methanogens: Methanosaeta and Methanosarcina. Therefore, acetoclastic methanogenesis is the primary pathway of methane formation during WHJ treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Chengxian Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Kai Wu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Li Huang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Zhengkang Tang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Chengbo Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Changmei Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Xingling Zhao
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Fang Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Bin Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Jing Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Hong Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Wudi Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China.
| |
Collapse
|
19
|
Lin JCT, Liu YS, Wang WK. A full-scale study of high-rate anaerobic bioreactors for whiskey distillery wastewater treatment with size fractionation and metagenomic analysis of granular sludge. BIORESOURCE TECHNOLOGY 2020; 306:123032. [PMID: 32163863 DOI: 10.1016/j.biortech.2020.123032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Two full-scale high-rate bioreactors, i.e. external circulation sludge bed (ECSB) and expanded granular sludge bed (EGSB), were monitored for three years. Their performances for treating wastewater in a whiskey distillery were compared in terms of COD, pH, alkalinity and VFA. Even though feed flowrate highly fluctuated, COD removals of ECSB and EGSB were both excellent (95.7 ± 1.3% and 94.8 ± 3.0%, respectively). The influent and effluent characteristics of ECSB reactor were profiled and urea and urethane were also detected. High-strength properties of raw spent wash were exhibited in TOC, soluble COD and BOD5,20°C of 13500, 37750, and 1950 mg·L-1, respectively and characterized by GC-MS. Anaerobic granular sludge sampled from different heights of ECSB reactor were fractionated for demonstrating vertical size distributions. Moreover, major species found by next-generation sequencing technique were archaea, i.e. Methanosaeta and Methanolinea, while major bacteria were Bacteroidetes with minor Nitrospiraceae. This metagenomic analysis provided an insight of anaerobic microbial consortium.
Collapse
Affiliation(s)
- Justin Chun-Te Lin
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan.
| | - Yi-Sung Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| |
Collapse
|
20
|
Zhao L, Su C, Chen S, Ye Z, Wei X, Yao T, Li G, Wang P. Expanded granular sludge blanket reactor treatment of food waste at ambient temperature: Analysis of nitrogen compositions and microbial community structure. BIORESOURCE TECHNOLOGY 2019; 294:122134. [PMID: 31542499 DOI: 10.1016/j.biortech.2019.122134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The influent and effluent nitrogen compositions of an expanded granular sludge blanket (EGSB) reactor employed for treating food waste (FW) operated under ambient temperature was evaluated. Additionally, dynamic changes in the bacterial community structures and its metabolic functions were investigated. Results show that the EGSB reactor had a good effect on FW disposal and well resistance to variations in the organic loading rate. Furthermore, the COD concentration in the influent increased to about 10,000 mg/L and the COD removal rate stabilized at about 95%. The dissolved ammonia nitrogen (d-ammonia) content was the largest, accounting for approximately 70-80% of the dissolved nitrogen in the effluent. The amount of particulate organic nitrogen (PON) decreased by about 25%-33%. Amino acid, carbohydrate and lipid metabolism decreased at high organic loading rate (OLR). Meanwhile, the abundance of Methanothrix increased from 30.82% to 70.25%, whereas Methanobacterium decreased from 66.14% to 14.49%.
Collapse
Affiliation(s)
- Lijian Zhao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Shuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Ziyu Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinyuan Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Ting Yao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Guo Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Pengfei Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
21
|
Lu F, Jiang Q, Qian F, Zhou Q, Jiang C, Shen P. Semi-continuous feeding combined with traditional domestication improved anaerobic performance during treatment of cassava stillage. BIORESOURCE TECHNOLOGY 2019; 291:121807. [PMID: 31344633 DOI: 10.1016/j.biortech.2019.121807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The effects of feeding pattern were studied during anaerobic digestion of cassava stillage. Continuous feeding and semi-continuous feeding, were adopted in two internal circulation (IC) reactors (A and B, respectively). The reactors showed different performance in the anaerobic digestion process. The maximum difference, was observed for the soluble chemical oxygen demand (SCOD) removal rate and the biogas production, which were 23.2% and 95.7 L/2 d higher in reactor B than reactor A, respectively. The overall VFAs level of reactor A was higher than that of reactor B. Microbial community analyses indicated that the abundances of dominant bacteria and methanogens became higher in the reactor B than in reactor A as the digestion process progressed. Hence, semi-continuous feeding showed superior performance than continuous feeding for SCOD removal rate, biogas production, and the relative abundances of methanogens in the case of high OLR.
Collapse
Affiliation(s)
- Fuzhi Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China; College of Chemical and Biological Engineering, Hechi University, Hechi 546300, Guangxi, China
| | - Qiong Jiang
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Feng Qian
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China; Guangxi MeiTaiXin Material Co., Ltd., Hechi 546311, Guangxi, China
| | - Quanneng Zhou
- Guangxi Hengyi Bio-energy Technology Co., Ltd 530007, Guangxi, China
| | - Chengjian Jiang
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China.
| |
Collapse
|
22
|
Zeng Z, Zheng P, Zhang M, Ghulam A. Performance and working mechanism of a novel anaerobic self-flotation reactor for treating wastewater with high suspended solids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26193-26202. [PMID: 31280446 DOI: 10.1007/s11356-019-05885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
The new design of internal flotation components and the use of biogas were employed to develop a novel anaerobic self-flotation (ASF) reactor. Compared with the upflow anaerobic sludge blanket (UASB) reactor, the removal efficiencies of total chemical oxygen demand (COD) and suspended solids (SS) of the ASF reactor were higher than 90% under high SS concentration and high volumetric organic loading rate (OLR). The biogas flotation, sludge bed retention, and effluent washout accounted for 60%, 30%, and 10% of SS mass, respectively, proving that the biogas flotation was the main mechanism of SS removal in the ASF reactor. Extracellular polymer substance, mainly consisting of polysaccharide (PS) and protein (PN), was found to promote the SS removal by biogas flotation via the scum formation at the ratio of 294.12 g-VS/g-PS and 103.09 g-VS/g-PN. The EPS yield was determined as 2.3 ± 0.6 g-PS/g-COD and 11.5 ± 2.6 g-PN/g-COD at the OLR of 60 kg/(m3 day). The biogas production was revealed to enhance the SS removal by providing flotation driving force and by decreasing the scum density. A model was established to describe the quantitative relationship between flotation scum and OLR. This work would shed light on the high SS wastewater treatment challenge of high-rate anaerobic processes by using biogas flotation.
Collapse
Affiliation(s)
- Zhuo Zeng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Cleantech Loop, Singapore, 637141, Singapore
| | - Abbas Ghulam
- Department of Chemical Engineering, University of Gujrat, Gujrat, 50700, Pakistan
| |
Collapse
|
23
|
Sun C, Liu F, Song Z, Li L, Pan Y, Sheng T, Ren G. Continuous hydrogen and methane production from the treatment of herbal medicines wastewater in the two-phase 'UASB H-IC M' system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1134-1144. [PMID: 31799957 DOI: 10.2166/wst.2019.352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A two-phase anaerobic system comprised of upflow anaerobic sludge bed (UASB) reactor for hydrogen production and internal circulation reactor (IC) for methane production was proposed and investigated at laboratory scale and mesophilic temperature (35 °C). Hydrogen was efficiently produced from the UASB with the highest production rate of 3.00 ± 0.04 L · L-1 reactor · d-1 at optimum hydraulic retention time (HRT) of 6 h and in the IC, methane was also produced from residual organic matter and soluble metabolite products (SMP) with a production rate of 2.54 ± 0.04 L · L-1 reactor · d-1 at optimum HRT of 15 h. Finally, system HRT of 21 h was determined to be the optimum HRT at which energy conversion efficiency increased from 9.6 ± 0.1% (hydrogen only production) to 72.4 ± 2.5% (hydrogen and methane coproduction) and system chemical oxygen demand (COD) removal reached up to the high level of 90.1 ± 2.1%.
Collapse
Affiliation(s)
- Caiyu Sun
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Fang Liu
- College of Municipal and Environmental Engineering, Heilongjiang Institute of Construction Technology, Harbin 150040, China
| | - Zhiwei Song
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Lixin Li
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Yu Pan
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Tao Sheng
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| | - Guangmeng Ren
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China E-mail:
| |
Collapse
|
24
|
Su C, Zheng P, Lin X, Chen W, Li X, Chen Q, Wu S, Chen M. Influence of amoxicillin after pre-treatment on the extracellular polymeric substances and microbial community of anaerobic granular sludge. BIORESOURCE TECHNOLOGY 2019; 276:81-90. [PMID: 30611090 DOI: 10.1016/j.biortech.2018.12.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
A combined process coupling a Fe3O4 nanoparticles (Fe3O4 NPs) heterogeneous Fenton-like reaction and an anaerobic biological technology was investigated in order to effectively treat amoxicillin-containing wastewater. With the increase in the pretreatment degree, the average COD removal rate correspondingly increased from 84.8% to 92.4% using the anaerobic biological treatment, and the biodegradability and COD removal efficiency was improved by the pretreatment processes. During the process of amoxicillin degradation, hydroxyl free radicals tended to attack the lactamide, amide and pentacyclic rings of amoxicillin. In the excitation-emission matrix (EEM) spectra of soluble microbial products (SMPs), the absorption peak of humic acid gradually decreased with application of the pretreatment. The pretreatment products were more beneficial to the characteristics of anaerobic granular sludge. For the microbial community structure, the proportion of Methanothrix and Clostridia increased with addition the heterogeneous Fenton-like pretreatment, which favored conversion of organic contaminants to volatile fatty acids and biogas.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Peng Zheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xumeng Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Wuyang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinjun Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Qiuyu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shumin Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
25
|
Li Q, Li Y. Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system from molasses wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:270-277. [PMID: 30865598 DOI: 10.2166/wst.2019.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A continuous hydrogen and methane production system in a two-stage process has been investigated to increase energy recovery rate from molasses wastewater in this study. This system consisted of a continuous stirred-tank reactor for hydrogen production and an internal circulation (IC) reactor for methane production, and was studied under the influent organic loading rate (OLR) of 18, 24, 30 and 36kg COD/(m3·d) (COD: chemical oxygen demand). The maximum volumetric hydrogen production rate of 2.41 L/(L·d) was obtained at the OLR of 30kg COD/(m3·d) with a hydrogen content of 42%, and the maximum volumetric methane production rate of 2.4 L/(L·d) with a methane content of 74.45% was obtained at the OLR of 36kg COD/(m3·d) using the effluents of hydrogen fermentation as substrate. The maximum of 71.06% of the molasses wastewater energy was converted to biogas (hydrogen and methane) at the OLR of 30kg COD/(m3·d).
Collapse
Affiliation(s)
- Qiaoyan Li
- School of Forestry, Northeast Forestry University, Harbin, 150040, China E-mail:
| | - Yongfeng Li
- School of Forestry, Northeast Forestry University, Harbin, 150040, China E-mail:
| |
Collapse
|
26
|
Martin Vincent N, Wei Y, Zhang J, Yu D, Tong J. Characterization and Dynamic Shift of Microbial Communities during Start-Up, Overloading and Steady-State in an Anaerobic Membrane Bioreactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071399. [PMID: 29970829 PMCID: PMC6068774 DOI: 10.3390/ijerph15071399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023]
Abstract
A lab-scale anaerobic membrane bioreactor (AnMBR) with a side stream tubular membrane was developed to treat synthetic domestic sewage to evaluate its performance and the dynamic shift of bacterial and archaeal communities during the start-up, steady-state, overloading and recovery periods of operation at mesophilic temperatures. During the start-up period, the bacterial and archaeal communities changed drastically, and Proteobacteria and Bacteroidetes predominated. During the steady-state period, the AnMBR exhibited excellent COD removal above 91%, and COD of the effluent was below 50 mg/L. High-throughput sequencing analysis results revealed that bacterial and archaeal communities shifted significantly from the start-up to the steady-state period, and that the Proteobacteria phylum predominated on days 140, 162 and 190, and the archaea community hydrogenotrophic methanogen genus Methanolinea (1.5–6.64%) predominated over the aceticlastic methanogen genus Methanothrix (1.35–3.07%). During the overloading period, significant changes occurred in microbial community on day 210, e.g., the phyla Bacteroidetes (30%), Proteobacteria (23%) and Firmicutes (18%) predominated and the archaeal community was completely suppressed, and Methanobrevibacter (0.7%) was the only methanogen genus that emerged in the overloading period. After a shock loading period, the microbial communities exhibited significant changes within the ranks of methanogens and shifted to dominance of the aceticlastic methanogen pathway. In addition, the TVFAs to alkalinity ratio in this study was suitable as an indicator of monitoring performance in the AnMBR operation.
Collapse
Affiliation(s)
- Nsanzumukiza Martin Vincent
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Antwi P, Li J, Meng J, Deng K, Koblah Quashie F, Li J, Opoku Boadi P. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater. BIORESOURCE TECHNOLOGY 2018; 257:102-112. [PMID: 29486407 DOI: 10.1016/j.biortech.2018.02.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
In this a, three-layered feedforward-backpropagation artificial neural network (BPANN) model was developed and employed to evaluate COD removal an upflow anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. At the end of UASB operation, microbial community characterization revealed satisfactory composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, NH4+, VFA, OLR and biogas yield were selected by principal component analysis and used as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) were assigned as activation functions at the hidden-layer and output-layer, respectively, optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) after eleven training algorithms had been tested. Based on performance indicators such the mean squared errors, fractional variance, index of agreement and coefficient of determination (R2), the BPANN model demonstrated significant performance with R2 reaching 87%. The study revealed that, control and optimization of an anaerobic digestion process with BPANN model was feasible.
Collapse
Affiliation(s)
- Philip Antwi
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Department for Management of Science and Technology Development, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Frank Koblah Quashie
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Portia Opoku Boadi
- School of Management, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China
| |
Collapse
|
28
|
Liu Y, Huang L, Dong G, Liu G, Wu X, Wang C, Liu X, Wang L. Enhanced granulation and methane recovery at low load by downflow sludge circulation in anaerobic treatment of domestic wastewater. BIORESOURCE TECHNOLOGY 2018; 249:851-857. [PMID: 29136941 DOI: 10.1016/j.biortech.2017.10.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
The effects of downflow sludge circulation on granulation and methane recovery at low load were investigated for domestic wastewater treatment in a modified anaerobic reactor. Compared with conventional upflow anaerobic reactors, enhanced granulation with shortened start-up time was achieved and stable granules were successfully cultivated only after 58 days operations. The introduction of downflow sludge circulation resulted in reverse wastewater-sludge flow and uniform sludge distribution in the reaction zone, which contributed to enhanced wastewater-sludge mass transfer and satisfactory performance with a high soluble chemical oxygen demand (SCOD) removal efficiency of 94.8% at hydraulic retention time (HRT) 6 h. Besides, enhanced liquid-to-gas mass transfer caused a lower dissolved CH4 saturation index of 1.11 and a higher CH4 recovery efficiency of 79.48% at HRT 6 h. High throughput sequencing revealed a distinct shift of microbial community during start-up period from Proteobacteria to Bacteroidetes and Chloroflexi in the existence of downflow sludge circulation.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lihui Huang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Guihua Dong
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Gaofeng Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xueyuan Wu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Chuang Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xiaowei Liu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lisha Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
29
|
Antwi P, Li J, Boadi PO, Meng J, Koblah Quashie F, Wang X, Ren N, Buelna G. Efficiency of an upflow anaerobic sludge blanket reactor treating potato starch processing wastewater and related process kinetics, functional microbial community and sludge morphology. BIORESOURCE TECHNOLOGY 2017; 239:105-116. [PMID: 28501683 DOI: 10.1016/j.biortech.2017.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Herein, an upflow anaerobic sludge blanket reactor was employed to treat potato starch processing wastewater and the efficacy, kinetics, microbial diversity and morphology of sludge granules were investigated. When organic loading rate (OLR) ranging from 2.70 to 13.27kgCOD/m3.d was implemented with various hydraulic retention times (72h, 48h and 36h), COD removal could reach 92.0-97.7%. Highest COD removal (97.7%) was noticed when OLR was 3.65kgCOD/m3.d, but had declined to 92.0% when OLR was elevated to 13.27kgCOD/m3.d. Methane and biogas production increased from 0.48 to 2.97L/L.d and 0.90 to 4.28L/L.d, respectively. Kinetics and predictions by modified-Gompertz model agreed better with experimental data as opposed to first-order kinetic model. Functional population with highest abundance was Chloroflexi (28.91%) followed by Euryarchaeota (22.13%), Firmicutes (16.7%), Proteobacteria (16.25%) and Bacteroidetes (7.73%). Compared with top sludge, tightly-bound extracellular polymeric substances was high within bottom and middle sludge. Morphology was predominantly Methanosaeta-like cells, Methanosarcina-like cells, rods and cocci colonies.
Collapse
Affiliation(s)
- Philip Antwi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Portia Opoku Boadi
- School of Management, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Frank Koblah Quashie
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Gerardo Buelna
- Centre de Recherché Industrielle du Québec (CRIQ), 333 Franquet, Sainte-Foy, Québec G1P 4C7 Canada.
| |
Collapse
|