1
|
Du G, Dong Z, Wang Z, Pan M, Zhang Y, Xiang W, Li S. Production of avermectins by Streptomyces avermitilis through solid-state fermentation using agro-industrial waste. BIORESOURCE TECHNOLOGY 2025; 431:132625. [PMID: 40328353 DOI: 10.1016/j.biortech.2025.132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
The natural products (NPs) avermectins from Streptomyces show exceptional insecticidal activity and become the most widely produced and used biopesticides in the world. Avermectins are produced by submerged fermentation (SmF), generating significant amount of effluent, exhaust gas and solid waste. We therefore endeavored to establish a green and sustainable alternative through solid-state fermentation (SSF) using agro-industrial waste. We determined the optimal culture medium composition and fermentation style through SSF. The maximum concentration of avermectin B1a (3.83 mg/gds) was obtained with a substrate mixture containing wheat bran, corn cob, earthworm cast, sugarcane bagasse, cane molasses, ammonium sulfate and CoCl2 in shallow trays cultivated for 14 days at 28 °C by repeated-batch SSF, and the initial moisture content and inoculum size was set as 78.5 % and 25 %, respectively. Economic analysis demonstrated that avermectin production cost generated from the fermentation process by SSF was 8.38 % lower than that by SmF. Moreover, avermectin SSF products could be directly used as microbial pesticides for biological control of underground pests and nematodes. This is the first report on avermectin production via SSF, demonstrating great potential in industrial and agricultural applications. Our work also provides guidance to produce other NPs through SSF in other Streptomyces species.
Collapse
Affiliation(s)
- Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhuoxu Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China.
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Zhu D, Liu Y, Yang H, Zhang J, Zheng G, Zhang H, Wang L, Zhang J, Chen X. Combinatorial strain improvement and bioprocess development for efficient production of ε-poly-L-lysine in Streptomyces albulus. BIORESOURCE TECHNOLOGY 2024; 407:131123. [PMID: 39029766 DOI: 10.1016/j.biortech.2024.131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ε-Poly-L-lysine (ε-PL) is an amino acid homopolymer with diverse potential applications in the food, pharmaceutical and cosmetic industries. To improve its biomanufacturing efficiency, strain engineering and bioprocess optimization were combined in this study. Firstly, a cocktail strain breeding strategy was employed to generate a ε-PL high-production mutant, Streptomyces albulus GS114, with enhanced L-lysine uptake capability. Subsequently, the L-lysine feeding conditions during fed-batch fermentation were systematically optimized to improve the L-lysine supply, resulting in ε-PL production reaching 73.1 ± 1.4 g/L in 5 L bioreactor. Finally, an engineered strain, S. albulus L2, with enhanced uptake capability and polymerization ability of L-lysine was constructed, achieving ε-PL production of 81.4 ± 5.2 g/L by fed-batch fermentation. This represents the highest reported production of ε-PL to date. This study provided an efficient production strategy for ε-PL and valuable insights into the high-value utilization of L-lysine.
Collapse
Affiliation(s)
- Daojun Zhu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Liu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hao Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiawei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Gencheng Zheng
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongjian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Yang J, Punia Bangar S, Rizwan Khan M, Hammouda GA, Alam P, Zhang W. Biopolymer-based packaging films/edible coatings functionalized with ε-polylysine: New options for food preservation. Food Res Int 2024; 187:114390. [PMID: 38763652 DOI: 10.1016/j.foodres.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gehan A Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
4
|
Zhang C, Zhang Z, Cheng Y, Ni N, Tong S, Da W, Liu C, Diao Q, Chen Z, Xin B, Zeng H, Zeng X, Xu D. Transcriptional Analysis Revealing the Improvement of ε-Poly-L-lysine Production from Intracellular ROS Elevation after Botrytis cinerea Induction. J Fungi (Basel) 2024; 10:324. [PMID: 38786679 PMCID: PMC11122054 DOI: 10.3390/jof10050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Gray mold, caused by Botrytis cinerea, poses significant threats to various crops, while it can be remarkably inhibited by ε-poly-L-lysine (ε-PL). A previous study found that B. cinerea extracts could stimulate the ε-PL biosynthesis of Streptomyces albulus, while it is unclear whether the impact of the B. cinerea signal on ε-PL biosynthesis is direct or indirect. This study evaluated the role of elevated reactive oxygen species (ROS) in efficient ε-PL biosynthesis after B. cinerea induction, and its underlying mechanism was disclosed with a transcriptome analysis. The microbial call from B. cinerea could arouse ROS elevation in cells, which fall in a proper level that positively influenced the ε-PL biosynthesis. A systematic transcriptional analysis revealed that this proper dose of intracellular ROS could induce a global transcriptional promotion on key pathways in ε-PL biosynthesis, including the embden-meyerhof-parnas pathway, the pentose phosphate pathway, the tricarboxylic acid cycle, the diaminopimelic acid pathway, ε-PL accumulation, cell respiration, and energy synthesis, in which sigma factor HrdD and the transcriptional regulators of TcrA, TetR, FurA, and MerR might be involved. In addition, the intracellular ROS elevation also resulted in a global modification of secondary metabolite biosynthesis, highlighting the secondary signaling role of intracellular ROS in ε-PL production. This work disclosed the transcriptional mechanism of efficient ε-PL production that resulted from an intracellular ROS elevation after B. cinerea elicitors' induction, which was of great significance in industrial ε-PL production as well as the biocontrol of gray mold disease.
Collapse
Affiliation(s)
- Chen Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Zhanyang Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Ya Cheng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Ni Ni
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Siyu Tong
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Wangbao Da
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Chunyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Qiran Diao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Ziyan Chen
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Bingyue Xin
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Huawei Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China; (C.Z.); (Z.Z.); (Y.C.); (N.N.); (S.T.); (W.D.); (C.L.); (Q.D.); (Z.C.); (B.X.); (H.Z.)
- School of Life Sciences, Huaibei Normal University, Huaibei 235099, China
| |
Collapse
|
5
|
Zanane C, Mitro S, Mazigh D, Lekchiri S, Hakim T, El Louali M, Latrache H, Zahir H. Characterization of Streptomyces Cell Surface by the Microbial Adhesion to Solvents Method. Int J Microbiol 2023; 2023:8841509. [PMID: 37214152 PMCID: PMC10195169 DOI: 10.1155/2023/8841509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The cell surface physicochemical properties of Streptomyces should influencing the dispersal and adsorption of spores and hyphae in soil and should conditioning there interactions with organic or metal substances in the bioremediation of contaminated environment. These properties are concerning surface hydrophobicity, electron donor/acceptor, and charge surface. To date, only hydrophobicity of Streptomyces was studied by contact angle measurements and microbial adhesion to hydrocarbons (MATH). In this work, we studied the electron donor/acceptor character of the Streptomyces cell surface in two ionic strength 10-3 M and 10-1 M of KNO3. Thus, to facilitate the characterisation of the surfaces of microbial cells, we used a simple, rapid, and quantitative technique, the microbial adhesion method to solvents (MATS), which is based on the comparison of the affinity of microbial cells for a monopolar solvent with a polar solvent. The monopolar solvent can be acid (electron acceptor) or basic (electron donor), but both solvents should have a surface tension similar to that of the Kifshitz van der Waals components. At the significant ionic strength of the biological medium, the electron donor character is well expressed for all 14 Streptomyces strains with very significant differences among them ranging from 0% to 72.92%. When the cells were placed in a solution with a higher ionic strength, we were able to classify the donor character results into three categories. The first category is that the weak donor character of strains A53 and A58 became more expressed at 10-1 M KNO3 concentration. The second category is that three strains A30, A60, and A63 expressed a weaker character in a higher ionic strength. For the other strains, no expression of the donor trait was obtained at higher ionic strength. In a suspension with a concentration of 10-3 KNO3, only two strains expressed an electron acceptor character. This character is very important for strains A49, A57, A58, A60, A63, and A65 at 10-1M KNO3. This work has shown that these properties vary greatly depending on the Streptomyces strain. It is important to consider the change in physicochemical properties of surface cells with ionic strength when using Streptomyces in different bioprocesses.
Collapse
Affiliation(s)
- C. Zanane
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - S. Mitro
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - D. Mazigh
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - S. Lekchiri
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - T. Hakim
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - M. El Louali
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - H. Latrache
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - H. Zahir
- Industrial and Surface Engineering, Research Team of Bioprocesses and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
6
|
Catalytic Production of Functional Monomers from Lysine and Their Application in High-Valued Polymers. Catalysts 2022. [DOI: 10.3390/catal13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lysine is a key raw material in the chemical industry owing to its sustainability, mature fermentation process and unique chemical structure, besides being an important nutritional supplement. Multiple commodities can be produced from lysine, which thus inspired various catalytic strategies for the production of these lysine-based chemicals and their downstream applications in functional polymer production. In this review, we present a fundamental and comprehensive study on the catalytic production process of several important lysine-based chemicals and their application in highly valued polymers. Specifically, we first focus on the synthesis process and some of the current industrial production methods of lysine-based chemicals, including ε-caprolactam, α-amino-ε-caprolactam and its derivatives, cadaverine, lysinol and pipecolic acid. Second, the applications and prospects of these lysine-based monomers in functional polymers are discussed such as derived poly (lysine), nylon-56, nylon-6 and its derivatives, which are all of growing interest in pharmaceuticals, human health, textile processes, fire control and electronic manufacturing. We finally conclude with the prospects of the development of both the design and synthesis of new lysine derivatives and the expansion of the as-synthesized lysine-based monomers in potential fields.
Collapse
|
7
|
Influence of Low-Intensity Ultrasound on ε-Polylysine Production: Intracellular ATP and Key Biosynthesis Enzymes during Streptomyces albulus Fermentation. Foods 2022; 11:foods11213525. [DOI: 10.3390/foods11213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The effect of low-intensity sonication treatment on cell growth, ε-polylysine (ε-PL) yield and its biological mechanism were investigated, using a 3-L-jar fermenter coupled with an in situ ultrasonic slot with a Streptomyces albulus strain SAR 14-116. Under ultrasonic conditions (28 kHz, 0.37 W cm−2, 60 min), a high biomass of SAR 14-116 and concentration of ε-PL were realized (i.e., they increased by 14.92% and 28.45%, respectively) when compared with a control. Besides this, ultrasonication increased the mycelia viability and intracellular ATP as well as activities of key enzymes involved in the ε-PL biosynthesis pathway, resulting in an improvement in the production of ε-PL. Data on qRT-PCR revealed that ultrasonication also affected the gene expression of key enzymes in the ε-PL biosynthesis pathway, including ε-PL synthetase (PLS). These outcomes provided the basis for understanding the effects of ultrasound-assisted fermentation on the stimulation of metabolite production and fermentation procedure in a fermenter.
Collapse
|
8
|
Biotechnological production and application of epsilon-poly-L-lysine (ε-PL): biosynthesis and its metabolic regulation. World J Microbiol Biotechnol 2022; 38:123. [PMID: 35637397 DOI: 10.1007/s11274-022-03304-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Epsilon-poly-L-lysine (ε-PL) is an unusual biopolymer composed of L-lysine produced by several microorganisms, especially by the genus Streptomyces. Due to its excellent antimicrobial activity, good water solubility, high safety, and biodegradable nature, ε-PL with a GRAS status has been widely used in food and pharmaceutical industries. In the past years, studies have focused on the biotechnological production of ɛ-PL, the biosynthetic mechanism of microbial ɛ-PL, and its application. To provide new perspectives from recent advances, the review introduced the methods for the isolation of ɛ-PL producing strains and the biosynthetic mechanism of microbial ɛ-PL. We summarized the strategies for the improvement of ɛ-PL producing strains, including physical and chemical mutagenesis, ribosome engineering and gene engineering, and compared the different metabolic regulation strategies for improving ɛ-PL production, including medium optimization, nutrient supply, pH control, and dissolved oxygen control. Then, the downstream purification methods of ɛ-PL and its recent applications in food and medicine industries were introduced. Finally, we also proposed the potential challenges and the perspectives for the production of ε-PL.
Collapse
|
9
|
Lv Z, Lu Y, Li B, Shi L, Zhang K, Ge B. Effects of ε-Poly-L-Lysine Combined with Wuyiencin as a Bio-Fungicide against Botryris cinerea. Microorganisms 2022; 10:microorganisms10050971. [PMID: 35630418 PMCID: PMC9146948 DOI: 10.3390/microorganisms10050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
This study mainly evaluated the broad-spectrum fungicidal activity of ε-poly L lysine (ε-PL) against 12 pathogenic fungi. We further demonstrated synergistic antifungal activity of ε-PL combined with wuyiencin against Botryris cinerea. The combined bio-fungicide achieved an inhibition rate of 100% for mycelial growth using ε-PL at 500 μg/mL + wuyiencin at 50 μg/mL and for spore germination using ε-PL at 200 μg/mL + wuyiencin at 80 μg/mL in vitro. This synergistic spore and mycelia-damaging effect of the combination was confirmed using scanning electron microscopy. In vivo assays with combined bio-fungicide (1500 μg/mL ε-PL + 60 μg/mL wuyiencin) on detached leaves showed depressed growth and development of the spores of B. cinerea. The synergistic effect was further tested in combinations of ε-PL with wuyiencin by measuring the fractional inhibition concentration index (FICI) value below 0.5. Moreover, ε-PL and wuyiencin inoculation before B. cinerea infection significantly increased the superoxide dismutase, peroxidase, catalase, and phenylalanine ammonia-lyase activities, which suggested their involvement in tomato defense responses to disease to minimize damage to B. cinerea. These findings revealed that a combined bio-fungicide comprising ε-PL and wuyiencin had a good prospect for controlling plant fungal disease.
Collapse
Affiliation(s)
- Zhaoyang Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China; (Z.L.); (Y.L.); (B.L.); (L.S.); (K.Z.)
| | - Yanxuan Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China; (Z.L.); (Y.L.); (B.L.); (L.S.); (K.Z.)
- College of Forestry, Hebei Agricultural University, Lingyusi Street, No. 289, Baoding 071001, China
| | - Boya Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China; (Z.L.); (Y.L.); (B.L.); (L.S.); (K.Z.)
- College of Forestry, Hebei Agricultural University, Lingyusi Street, No. 289, Baoding 071001, China
| | - Liming Shi
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China; (Z.L.); (Y.L.); (B.L.); (L.S.); (K.Z.)
| | - Kecheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China; (Z.L.); (Y.L.); (B.L.); (L.S.); (K.Z.)
| | - Beibei Ge
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, No. 2, Haidian District, Beijing 100193, China; (Z.L.); (Y.L.); (B.L.); (L.S.); (K.Z.)
- Correspondence: ; Tel.: +86-10-62812640; Fax: +86-10-62815942
| |
Collapse
|
10
|
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21:60. [PMID: 35397580 PMCID: PMC8994273 DOI: 10.1186/s12934-022-01785-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine (ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating transcription factors in Streptomyces. Results In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and morphological differentiation and effectively promoted ε-PL production and sporulation in Streptomycesalbulus NK660 by heterologously expressing adpA from S.neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA homolog named AdpASa in S.albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their phylogenetic relationships and regulatory roles in S.albulus, and AdpASn was demonstrated to have the strongest ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S.albulus heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skeletons and ATP for ε-PL biosynthesis in S.albulus. Conclusions Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosynthesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and other valuable secondary metabolites in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01785-6.
Collapse
|
11
|
Wongsirichot P, Gonzalez-Miquel M, Winterburn J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front Bioeng Biotechnol 2021; 9:748976. [PMID: 34650962 PMCID: PMC8506220 DOI: 10.3389/fbioe.2021.748976] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chongyang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianhua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wang D, Xu P, Sun J, Yuan J, Zhao J. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18. Enzyme Microb Technol 2021; 153:109907. [PMID: 34670188 DOI: 10.1016/j.enzmictec.2021.109907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
The aim of the study was to reveal the effects of ethanol stress on the production of epsilon-poly-l-lysine (ε-PL) in Streptomyces albulus X-18. The results showed that biomass and the utilization of glucose were respectively increased by ethanol stress. The ε-PL yield was increased by 41.42 % in the shake flask and 37.02 % in 10 L fermenter with 1% (v/v) ethanol. The morphology of colonies and mycelia showed significant differences. The intracellular reactive oxygen species level was increased by about 100 %. The ratio of unsaturated fatty acids to saturated fatty acids in the cell membrane was increased by ethanol stress. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic profile showed that 265 identified proteins were differentially expressed. The differentially expressed proteins (DEPs) were mainly involved in biological processes. The up-regulated DEPs were mainly involved in the redox reaction and stress response. The metabolic flux of l-Asp was shifted to l-Lys biosynthesis, and the DAP pathway was strengthened. Protein-protein interaction analysis showed that 30 DEPs interacted with l-Lys biosynthesis. The changes of ten proteins by Parallel Reaction Monitoring (PRM) were consistent with those by iTRAQ. The study provided valuable clues to better understand the mechanism of ε-PL biosynthesis improvement by ethanol stress.
Collapse
Affiliation(s)
- Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; Henan Engineering Research Center of Food Microbiology, Luoyang, China.
| | - Peng Xu
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Junfeng Zhao
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
14
|
Influence of Consistency and Composition of Growth Medium on Surface Physicochemical Properties of Streptomyces. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Streptomyces are known for their ability to produce various secondary metabolites used in biotechnology, human medicine and agriculture. Understanding of surface properties is very interesting in the control of interfacial phenomena. The objective of this study was to investigate the effect of consistency and composition of growth medium on the physicochemical properties of the surface of Streptomyces strains. To achieve this objective, Six Streptomyces strains belonging to bioprocess and bio-interfaces laboratory are cultivated in two media Bennett (rich) and GBA (minimum). Both media are tested in solid (agar) and liquid (broth) mode. The wettability θw, electron donor character ˠ (-), electron acceptor character ˠ (+) and Surface free energy ΔGiwi are determined using contact angle measurements. On the two solid media Bennett and GBA, Streptomyces strains develop a hydrophobic surface (96.9° <θw<167.9°) with a weak electron donor character (0.3 mJm-2 < (ˠ (-)) <12.14 mJm-2) and a strong electron acceptor character (0.26 mJm-2 < ˠ (+) < 17.8 mJm-2) and a negative surface free energy ((- 11.8 mJm-2) < ΔGiwi < (-110 mJm-2)). Whereas on both Bennett and GBA liquid media, the surfaces of Streptomyces strains are generally hydrophilic (1.3° < θw < 9.33°) with a strong electron donor character (13.76 mJm-2 < ( ˠ (-)) < 70.06 mJm-2) and a positive surface free energy. By changing the composition of the culture medium, only a slight change in the degree of hydrophobicity and surface free energy of Streptomyces is observed. Regarding the effect of medium composition on the surface properties of Streptomyces, the degree of wettability and the values of surface free energy are no longer the same when the composition of the medium changes. These results could be applied in further studies interested in interfacial phenomena and microbial adhesion in biotechnological fields.
Collapse
|
15
|
Li C, Kong Q, Mou H, Jiang Y, Du Y, Zhang F. Biotransformation of alkylamides and alkaloids by lactic acid bacteria strains isolated from Zanthoxylum bungeanum meal. BIORESOURCE TECHNOLOGY 2021; 330:124944. [PMID: 33735732 DOI: 10.1016/j.biortech.2021.124944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Zanthoxylum bungeanum meal (ZBM) is the by-product of Z. bungeanum seeds after pressing. It is restricted as a feed additive because it contains stimulating and potentially harmful substances, which are alkylamides and alkaloids. This study described the use of Lactobacillus paracasei and L. acidipiscis isolated from ZBM in solid-state fermentation of ZBM to reduce the concentration of undesirable alkylamides and alkaloids. By optimizing the substrate and fermentation conditions, the minimum contents of alkylamide and alkaloid were 2.96 and 3.20 mg/g, and the degradation rates reached 51.86% and 39.59%, respectively. Moreover, the biotransformation pathways of hydroxyl-α-sanshool and chelerythrine were established by identifying the metabolites. Bacterial diversity was shift significantly, and the relative abundance of Lactobacillus increased from 0.10% to 99.0% after fermentation. In conclusion, this study introduced a reliable strategy for processing ZBM as a feed additive.
Collapse
Affiliation(s)
- Chenman Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yongli Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
16
|
Šelo G, Planinić M, Tišma M, Tomas S, Koceva Komlenić D, Bucić-Kojić A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021; 10:foods10050927. [PMID: 33922545 PMCID: PMC8146281 DOI: 10.3390/foods10050927] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Agro-food industrial residues (AFIRs) are generated in large quantities all over the world. The vast majority of these wastes are lignocellulosic wastes that are a source of value-added products. Technologies such as solid-state fermentation (SSF) for bioconversion of lignocellulosic waste, based on the production of a wide range of bioproducts, offer both economic and environmental benefits. The versatility of application and interest in applying the principles of the circular bioeconomy make SSF one of the valorization strategies for AFIRs that can have a significant impact on the environment of the wider community. Important criteria for SSF are the selection of the appropriate and compatible substrate and microorganism, as well as the selection of the optimal process parameters for the growth of the microorganism and the production of the desired metabolites. This review provides an overview of the management of AFIRs by SSF: the current application, classification, and chemical composition of AFIRs; the catalytic function and potential application of enzymes produced by various microorganisms during SSF cultivation on AFIRs; the production of phenolic compounds by SSF; and a brief insight into the role of SSF treatment of AFIRs for feed improvement and biofuel production.
Collapse
|
17
|
Hu D, Li S, Li Y, Peng J, Wei X, Ma J, Zhang C, Jia N, Wang E, Wang Z. Streptomyces sp. strain TOR3209: a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Sci Rep 2020; 10:20132. [PMID: 33208762 PMCID: PMC7675979 DOI: 10.1038/s41598-020-76887-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
Aiming at revealing the possible mechanism of its growth promoting effect on tomato, the correlations among Streptomyces sp. TOR3209 inoculation, rhizobacteriome, and tomato growth/production traits were investigated in this study. By analyses of Illumina sequencing and plate coating, differences in rhizosphere microbial communities were found in different growth stages and distinct inoculation treatments. The plant biomass/fruit yields and relative abundances of families Flavobacteriaceae, Sphingobacteriaceae, Polyangiaceae and Enterobacteriaceae in treatments T (tomato inoculated with TOR3209) and TF (tomato inoculated with TOR3209 + organic fertilizer) were higher than that in the controls (CK and CK+ organic fertilizer), respectively. The analysis of Metastats and LEfSe revealed that the genera Flavobacterium and Sorangium in seedling stage, Klebsiella in flowering stage, Collimonas in early fruit setting stage, and genera Micrococcaceae, Pontibacte and Adhaeribacter in late fruit setting stage were the most representative rhizobacteria that positively responded to TOR3209 inoculation. By cultivation method, five bacterial strains positively correlated to TOR3209 inoculation were isolated from rhizosphere and root endosphere, which were identified as tomato growth promoters affiliated to Enterobacter sp., Arthrobacter sp., Bacillus subtilis, Rhizobium sp. and Bacillus velezensis. In pot experiment, TOR3209 and B. velezensis WSW007 showed joint promotion to tomato production, while the abundance of inoculated TOR3209 was dramatically decreased in rhizosphere along the growth of tomato. Conclusively, TOR3209 might promote the tomato production via changing of microbial community in rhizosphere. These findings provide a better understanding of the interactions among PGPR in plant promotion.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Shuhong Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ying Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jieli Peng
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoyan Wei
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jia Ma
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cuimian Zhang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Nan Jia
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Zhanwu Wang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
18
|
Gao H, Lu C, Wang H, Wang L, Yang Y, Jiang T, Li S, Xu D, Wu L. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int J Biol Macromol 2020; 150:955-964. [DOI: 10.1016/j.ijbiomac.2019.10.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
|
19
|
Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. ACTA ACUST UNITED AC 2019; 46:1781-1792. [DOI: 10.1007/s10295-019-02240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Abstract
ε-Poly-l-lysine (ε-PL) is a natural food preservative, which exhibits antimicrobial activity against a wide spectra of microorganisms. The production of ε-PL was significantly enhanced by pH shock in our previous study, but the underlying mechanism is poorly understood. According to transcriptional and physiological analyses in this study, the mprA/B and pepD signal transduction system was first proved to be presented and activated in Streptomyces albulus M-Z18 by pH shock, which positively regulated the transcription of ε-PL synthetase (Pls) gene and enhanced the Pls activity during fermentation. Furthermore, pH shock changed the ratio of unsaturation to saturation fatty acid in the membrane through up-regulating the transcription of fatty acid desaturase genes (SAZ_RS14940, SAZ_RS14945). In addition, pH shock also enhanced the transcription of cytochrome c oxidase (SAZ_RS15070, SAZ_RS15075), ferredoxin reductase (SAZ_RS34975) and iron sulfur protein (SAZ_RS31410) genes, and finally resulted in the improvement of cell respiratory activity. As a result, pH shock was considered to influence a wide range of proteins including regulators, fatty acid desaturase, respiratory chain component, and ATP-binding cassette transporter during fermentation. These combined influences might contribute to enhanced ε-PL productivity with pH shock.
Collapse
|
20
|
Jiang K, Tang B, Wang Q, Xu Z, Sun L, Ma J, Li S, Xu H, Lei P. The bio-processing of soybean dregs by solid state fermentation using a poly γ-glutamic acid producing strain and its effect as feed additive. BIORESOURCE TECHNOLOGY 2019; 291:121841. [PMID: 31349173 DOI: 10.1016/j.biortech.2019.121841] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Soybean dregs are restricted as feed additives because they contain anti-nutrient factors. Herein, soybean dreg was bio-transformed by solid-state fermentation (SSF) using a poly γ-glutamic acid (γ-PGA) producing stain Bacillus amyloliquefaciens NX-2S. The maximum γ-PGA production of 65.79 g/kg was reached in a 5 L fermentation system while the conditions are 70% initial moisture of soybean dregs with addition of molasses meal, 12% inoculum size, 30 °C fermentation temperature, initial pH of 8, and 60 h fermentation time. Meanwhile, continuous batch fermentation was proved feasible. After SSF, the anti-nutritional factors such as trypsin inhibitor, phytic acid and tannin were reduced by 98.7%, 97.8%, and 63.2%, respectively. Compared with unfermented soybean dregs, adding fermented soybean dregs to feed increased the average weight gain of rats by 15.6% and reduced the ratio of feed to meat by 11.3%. Therefore, this study provided a feasible strategy for processing soybean dregs as feed additive.
Collapse
Affiliation(s)
- Kang Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Junjie Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
21
|
Pan L, Chen X, Wang K, Mao Z. A temporal transcriptomic dynamics study reveals the reason of enhanced ε-poly-L-lysine production in Streptomyces albulus M-Z18 by pH shock. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Martínez-Avila O, Sánchez A, Font X, Barrena R. Fed-Batch and Sequential-Batch Approaches To Enhance the Bioproduction of 2-Phenylethanol and 2-Phenethyl Acetate in Solid-State Fermentation Residue-Based Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3389-3399. [PMID: 30816043 DOI: 10.1021/acs.jafc.9b00524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study describes the use of alternative operational strategies in the solid-state fermentation of the agro-industrial leftover sugar cane bagasse (SCB) supplemented with l-phenylalanine, for bioproducing natural 2-phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) using K. marxianus. Here, fed-batch and sequential-batch have been assessed at two scales (1.6 and 22 L) as tools to increase the production, as well as to enhance the sustainability of this residue-based process. While in the reference batch strategy a maximum of 17 mg of 2-PE+2-PEA per gram of added SCB was reached at both scales, the implementation of fed-batch mode induced a production increase of 11.6% and 12.5%, respectively. Also, the production was increased by 16.9% and 2.4% as compared to the batch when a sequential-batch mode was used. Furthermore, the use of these strategies was accompanied by lower consumption of key resources like the inoculum, air, and time, promoting savings between 22% and 76% at both scales.
Collapse
Affiliation(s)
- Oscar Martínez-Avila
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| |
Collapse
|
23
|
Xu D, Wang R, Xu Z, Xu Z, Li S, Wang M, Feng X, Xu H. Discovery of a Short-Chain ε-Poly-l-lysine and Its Highly Efficient Production via Synthetase Swap Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1453-1462. [PMID: 30638374 DOI: 10.1021/acs.jafc.8b06019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ε-Poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide, which is generally recognized as safe for use as a food preservative. To date, the production capacity of strains that produce low-molecular weight ε-PL remains very low and thus unsuitable for industrial production. Here, we report a new low-molecular weight ε-PL-producing Kitasatospora aureofaciens strain. The ε-PL synthase gene of this strain was cloned into a high ε-PL-producing Streptomyces albulus strain. The resulting recombinant strain efficiently produced ε-PL with a molecular weight of 1.3-2.3 kDa and yielded of 23.6 g/L following fed-batch fermentation in a 5 L bioreactor. In addition, circular dichroism spectra showed that this ε-PL takes on a conformation similar to an antiparallel pleated-sheet. Moreover, it demonstrated better antimicrobial activity against yeast compared to the 3.2-4.5 kDa ε-PL. This study provides a highly efficient strategy for production of the low-molecular weight ε-PL, which helps to expand its potential applications.
Collapse
Affiliation(s)
- Delei Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Mingxuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
24
|
Zeng X, Miao W, Zeng H, Zhao K, Zhou Y, Zhang J, Zhao Q, Tursun D, Xu D, Li F. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues. BIORESOURCE TECHNOLOGY 2019; 273:377-385. [PMID: 30453252 DOI: 10.1016/j.biortech.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
At present, submerged fermentation (SmF) is the unique approach for natamycin production. This study aims to propose a strategy for natamycin production through solid-state fermentation (SSF). The maximum natamycin concentration (9.62 mg·gds-1) was obtained with a substrate mixture containing wheat bran, rapeseed cake, rice hull and crude glycerol in a 5 L flask at 28 °C, and the initial moisture content and inoculum size was set as 70% and 15%, individually. A 30 L scale-up fermentation showed similar parameters and produced 9.27 mg·gds-1 natamycin at the 8th day. Besides, natamycin could be continuously produced by repeated-batch fermentation for 5 cycles through SSF. Compared to SmF, SSF led to a 50.05% cost reduction of raw materials, less energy consumption and waste water discharge, which was of great significance in industrial fermentation. To our best knowledge, this is the first report on natamycin production through SSF process.
Collapse
Affiliation(s)
- Xin Zeng
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Wenyun Miao
- Family Planning Service Center, Rizhao Maternal and Child Care Service Hospital, 28(#) Weihai Road, Rizhao 276826, People's Republic of China
| | - Huawei Zeng
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Kuo Zhao
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Yaling Zhou
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Juan Zhang
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Qinxue Zhao
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Delinur Tursun
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China.
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, 100(#) Dongshan Road, Huaibei 235000, People's Republic of China.
| |
Collapse
|
25
|
Xu D, Yao H, Cao C, Xu Z, Li S, Xu Z, Zhou J, Feng X, Xu H. Enhancement of ε-poly-l-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioprocess Biosyst Eng 2018; 41:1337-1345. [DOI: 10.1007/s00449-018-1961-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
|
26
|
Pan L, Chen XS, Liu MM, Liu YJ, Mao ZG. Efficient production of ε-poly-l-lysine from glucose by two-stage fermentation using pH shock strategy. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|