1
|
Berillo D, Malika T, Baimakhanova BB, Sadanov AK, Berezin VE, Trenozhnikova LP, Baimakhanova GB, Amangeldi AA, Kerimzhanova B. An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels 2024; 10:646. [PMID: 39451299 PMCID: PMC11508006 DOI: 10.3390/gels10100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024] Open
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar-agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites-such as antibiotics, enzymes, and precursors-and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products.
Collapse
Affiliation(s)
- Dmitriy Berillo
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
- Department of Pharmaceutical and Toxicological Chemistry, School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Turganova Malika
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan;
| | - Baiken B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Amankeldi K. Sadanov
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Vladimir E. Berezin
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Lyudmila P. Trenozhnikova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Gul B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | - Alma A. Amangeldi
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050000, Kazakhstan; (B.B.B.)
| | | |
Collapse
|
2
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Liu J, Tong S, Sun H, Chang Y, Luo H, Yu H, Shen Z. Effect of shaking speed on immobilization of cephalosporin C acylase: Correlation between protein distribution and properties of the immobilized enzymes. Biotechnol Prog 2020; 37:e3063. [PMID: 32776709 DOI: 10.1002/btpr.3063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/06/2022]
Abstract
During enzyme immobilization, enzyme activity and protein distribution are affected by various factors such as enzyme load, temperature, and pH. In general, two types of protein distribution patterns (heterogeneous or homogeneous) are observed inside a porous carrier, owing to differences in preparation parameters. During the immobilization of a fusion protein (CCApH) of cephalosporin C acylase (CCA) and pHluorin (a pH-sensitive mutant of green fluorescent protein), different shaking speeds induced obvious differences in protein distribution on an epoxy carrier, LX-1000EPC. Enzyme immobilization with a homogeneous distribution pattern was observed at a low shaking speed (120 rpm) with an operational stability of 10 batches at 37°C. The operational stability of an immobilisate with heterogeneous protein distribution prepared at a high shaking speed (200 rpm) was six batches. Given the pH-sensitive characteristics of pHluorin in the fusion protein, the intraparticle pH of CCApH immobilisates during catalysis was monitored using confocal laser scanning microscopy. The microenvironmental pH of the immobilisate with heterogeneous protein distribution sharply decreased by about 2 units; this decrease in the pH may be detrimental to the life-span of immobilized CCA. Thus, this work demonstrates the good operational stability of pH-sensitive proton-forming immobilized enzymes with homogeneous protein distribution.
Collapse
Affiliation(s)
- Jingran Liu
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Shuangming Tong
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhongyao Shen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Becaro AA, Mendes AA, Adriano WS, Lopes LA, Vanzolini KL, Fernandez-Lafuente R, Tardioli PW, Cass QB, Giordano RDLC. Immobilization and stabilization of d-hydantoinase from Vigna angularis and its use in the production of N-carbamoyl-d-phenylglycine. Improvement of the reaction yield by allowing chemical racemization of the substrate. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
7
|
Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Lin C, Wu H, Wang J, Huang J, Cao F, Zhuang W, Lu Y, Chen J, Jia H, Ouyang P. Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Changqu Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junyi Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinsha Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yanyu Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Consolati T, Bolivar JM, Petrasek Z, Berenguer J, Hidalgo A, Guisan JM, Nidetzky B. Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles. Methods Mol Biol 2020; 2100:319-333. [PMID: 31939133 DOI: 10.1007/978-1-0716-0215-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
pH is a fundamental variable in enzyme catalysis and its measurement therefore is crucial for understanding and optimizing enzyme-catalyzed reactions. Whereas measurements within homogeneous bulk liquid solution are prominently used, enzymes immobilized inside porous particles often suffer from pH gradients due to partition effects and heterogeneously catalyzed biochemical reactions. Unfortunately, the measurements of intraparticle pH are not available due to the lack of useful suitable methodologies; as a consequence the biocatalyst characterization is hampered. Here, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is described. A genetically encoded ratiometric pH indicator, the superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of enzyme carrier supports. By using controlled, tailor-made immobilization, sYFP is homogeneously distributed within these materials, and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. The hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix is used to show the monitoring of evolution of internal pH. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of the internally heterogeneous environment of immobilized enzymes into solid particles.
Collapse
Affiliation(s)
- Tanja Consolati
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Zdenek Petrasek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Jose Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Madrid, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Madrid, Spain
| | - Jose M Guisan
- Institute of Catalysis and Petroleum Chemistry (ICP-CSIC), Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Graz, Austria.
| |
Collapse
|
10
|
Bolivar JM, Nidetzky B. The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules 2019; 24:molecules24193460. [PMID: 31554193 PMCID: PMC6803829 DOI: 10.3390/molecules24193460] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The liquid milieu in which enzymes operate when they are immobilized in solid materials can be quite different from the milieu in bulk solution. Important differences are in the substrate and product concentration but also in pH and ionic strength. The internal milieu for immobilized enzymes is affected by the chemical properties of the solid material and by the interplay of reaction and diffusion. Enzyme performance is influenced by the internal milieu in terms of catalytic rate (“activity”) and stability. Elucidation, through direct measurement of differences in the internal as compared to the bulk milieu is, therefore, fundamentally important in the mechanistic characterization of immobilized enzymes. The deepened understanding thus acquired is critical for the rational development of immobilized enzyme preparations with optimized properties. Herein we review approaches by opto-chemical sensing to determine the internal milieu of enzymes immobilized in porous particles. We describe analytical principles applied to immobilized enzymes and focus on the determination of pH and the O2 concentration. We show measurements of pH and [O2] with spatiotemporal resolution, using in operando analysis for immobilized preparations of industrially important enzymes. The effect of concentration gradients between solid particle and liquid bulk on enzyme performance is made evident and quantified. Besides its use in enzyme characterization, the method can be applied to the development of process control strategies.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
11
|
Sadraei R, Murphy RS, Laurenti E, Magnacca G. Characterization Methodology To Evaluate the Activity of Supported Soybean Peroxidase. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - R. Scott Murphy
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | | | | |
Collapse
|
12
|
Bilal M, Cui J, Iqbal HMN. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis. Int J Biol Macromol 2019; 130:186-196. [PMID: 30817963 DOI: 10.1016/j.ijbiomac.2019.02.141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Enzymes as green industrial biocatalysts have become a powerful norm that offers several advantages over traditional catalytic agents with regard to process efficiency, reusability, sustainability, and overall cost-effective ratio. However, enzymes obtained from natural origins are often engineered/tailored since their native forms do not fulfill the acute need for the industrial application. Revolutionary developments in protein engineering provide excellent opportunities for designing and constructing novel industrial biocatalysts with improved functional properties including catalytic activity, stability, substrate specificity, and reaction product inhibition. Momentum in enzyme immobilization has enabled robustness and optimal functions in extreme industrial environments, such as high temperature or organic solvents. The emergence of multi-enzyme catalytic cascade based on a combination of biocatalysts presents multifarious opportunities in biosynthesis, biocatalysis, and biotransformation. This review focuses on the emerging and state-of-the-art enzyme engineering trends and approaches to constructing innovative nano- and microstructured biocatalysts with enhanced catalytic activity and stability features requisite for industrial exploitation. Continuous key developments in this direction together with protein engineering in unique ways might offer ever-increasing opportunities for future biocatalysis-based industrial bioprocesses.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
13
|
de Souza IA, Orsi DC, Gomes AJ, Lunardi CN. Enzymatic hydrolysis of starch into sugars is influenced by microgel assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 22:e00342. [PMID: 31080766 PMCID: PMC6500924 DOI: 10.1016/j.btre.2019.e00342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022]
Abstract
The use of alginate and chitosan polymer in the immobilization of Aspergillus oryzae ATCC 3940 fungal crude enzyme extract (CEE) amylase was presented. The assembly results change in the application of optimal pH and temperature hydrolysis to convert starch to sugar. Bead arrangement in three microgel supports: the internal support phase (IP), the external support phase (EP), and the internal and external support phase (UP). The best results were obtained using IP and EP. Reusing beads evaluated the stability of immobilized enzymes on IP support, remained active and bound during three cycles of reuse. For free and immobilized (IP) activity showed pH ranged from 5.0 to 7.0; optimum thermal enzymatic greater activity at 45 °C. The method of building the microgel influencing sugar reduction, in a single-step way to immobilize crude fungal amylase extracts can be used in industry.
Collapse
Affiliation(s)
| | | | | | - Claure N. Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, Universidade de Brasília, Centro Metropolitano, Brasília 72220-275, DF, Brazil
| |
Collapse
|
14
|
Chang Y, Tong S, Luo H, Liu Z, Qin B, Zhu L, Sun H, Yu H, Shen Z. Application of ammonium bicarbonate buffer as a smart microenvironmental pH regulator of immobilized cephalosporin C acylase catalysis in different reactors. Biotechnol Prog 2019; 35:e2846. [DOI: 10.1002/btpr.2846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Yanhong Chang
- Department of Environmental EngineeringUniversity of Science and Technology Beijing Beijing China
- Beijing Key Laboratory of Resource‐oriented Treatment of Industrial Pollutants Beijing China
| | - Shuangming Tong
- Department of Environmental EngineeringUniversity of Science and Technology Beijing Beijing China
- Beijing Key Laboratory of Resource‐oriented Treatment of Industrial Pollutants Beijing China
- Department of Biological Science and EngineeringUniversity of Science and Technology Beijing Beijing China
| | - Hui Luo
- Department of Biological Science and EngineeringUniversity of Science and Technology Beijing Beijing China
| | - Zijia Liu
- Department of Environmental EngineeringUniversity of Science and Technology Beijing Beijing China
- Beijing Key Laboratory of Resource‐oriented Treatment of Industrial Pollutants Beijing China
| | - Bo Qin
- Department of Biological Science and EngineeringUniversity of Science and Technology Beijing Beijing China
| | - Linlin Zhu
- Department of Environmental EngineeringUniversity of Science and Technology Beijing Beijing China
- Beijing Key Laboratory of Resource‐oriented Treatment of Industrial Pollutants Beijing China
- Department of Biological Science and EngineeringUniversity of Science and Technology Beijing Beijing China
| | - Hongxu Sun
- Department of Biological Science and EngineeringUniversity of Science and Technology Beijing Beijing China
| | - Huimin Yu
- Department of Chemical EngineeringTsinghua University Beijing China
| | - Zhongyao Shen
- Department of Chemical EngineeringTsinghua University Beijing China
| |
Collapse
|
15
|
Kong W, Li Q, Li X, Su Y, Yue Q, Zhou W, Gao B. Removal of copper ions from aqueous solutions by adsorption onto wheat straw cellulose-based polymeric composites. J Appl Polym Sci 2018. [DOI: 10.1002/app.46680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjia Kong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
| | - Xiaodi Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
| | - Yuan Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
- School of Mathematic and Quantitative Economics; Shandong University of Finance and Economics; Jinan 250100 China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
| | - Weizhi Zhou
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering; Shandong University; Jinan 250100 China
| |
Collapse
|
16
|
Consolati T, Bolivar JM, Petrasek Z, Berenguer J, Hidalgo A, Guisán JM, Nidetzky B. Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6858-6868. [PMID: 29384355 DOI: 10.1021/acsami.7b16639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.
Collapse
Affiliation(s)
- Tanja Consolati
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Zdenek Petrasek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Jose Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC) , Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC) , Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Jose M Guisán
- Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , C/Marie Curie, 2, Cantoblanco, 28049 Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
17
|
Liu Y, Xu G, Han R, Dong J, Ni Y. Identification of d-carbamoylase for biocatalytic cascade synthesis of d-tryptophan featuring high enantioselectivity. BIORESOURCE TECHNOLOGY 2018; 249:720-728. [PMID: 29096146 DOI: 10.1016/j.biortech.2017.09.162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In this study, an enantioselective d-carbamoylase (AcHyuC) was identified from Arthrobacter crystallopoietes with optimum pH of 8.5, much more compatible with hydantoinase process than other reported d-N-carbamoylases. AcHyuC has a substrate preference for aromatic carbamoyl-compounds. The dynamic kinetic resolution (DKR) cascade was developed by combining this AcHyuC with hydantoin racemase from Arthrobacter aurescens (AaHyuA) and d-hydantoinase from Agrobacterium tumefaciens (AtHyuH) for enantioselective resolution of l-indolylmethylhydantoin into d-Trp. The optimum pH of DKR cascade reaction was determined to be 8.0, and PEG 400 could facilitate the reaction. As much as 80mM l-indolylmethylhydantoin could be fully converted to d-Trp within 12h at 0.5L scale, with 99.4% yield, >99.9% e.e. and productivity of 36.6gL-1d-1. This study provides a new d-carbamoylase compatible with the DKR cascade for efficient production of optically pure d-Trp from l-indolylmethylhydantoin.
Collapse
Affiliation(s)
- Yafei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinjun Dong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
18
|
Benítez-Mateos AI, Nidetzky B, Bolivar JM, López-Gallego F. Single-Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|