1
|
Hao T, Xu Y, Liang C, Peng X, Yu S, Peng L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. CHEMOSPHERE 2024; 353:141535. [PMID: 38403121 DOI: 10.1016/j.chemosphere.2024.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.
Collapse
Affiliation(s)
- Tianqi Hao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Xiaoshuai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
2
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Valencia A, LeMen C, Ellero C, Lafforgue-Baldas C, F. Morris J, Schmitz P. Direct observation of the microfiltration of yeast cells at the micro-scale: Characterization of cake properties. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnol Adv 2022; 60:108001. [PMID: 35680002 DOI: 10.1016/j.biotechadv.2022.108001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Rhodopseudomonas palustris is an attractive option for biotechnical applications and industrial engineering due to its metabolic versatility and its ability to catabolize a wide variety of feedstocks and convert them to several high-value products. Given its adaptable metabolism, R. palustris has been studied and applied in an extensive variety of applications such as examining metabolic tradeoffs for environmental perturbations, biodegradation of aromatic compounds, environmental remediation, biofuel production, agricultural biostimulation, and bioelectricity production. This review provides a holistic summary of the commercial applications for R. palustris as a biotechnology chassis and suggests future perspectives for research and engineering.
Collapse
Affiliation(s)
- Brandi Brown
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
5
|
Yu S, Xu Y, Liang C, Lou W, Peng L. Spectral bands of incandescent lamp leading to variable productivity of purple bacteria biomass and microbial protein: Full is better than segmented. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153736. [PMID: 35143796 DOI: 10.1016/j.scitotenv.2022.153736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) are competent microorganisms capable of producing value-added products from waste streams. Light source is one of the most influential factors determining the efficiency of this process. Previous studies mostly focused on optimizing light intensity, while the impact of spectral bands on PNSB growth is still unknown. To fill the knowledge gap, this study investigated the responses of PNSB (i.e., Rhodobacter sphaeroides) growth, protein content and enzyme activity to various spectral bands of an incandescent lamp for the first time. It was found that the full spectrum of the incandescent lamp was propitious to cultivate PNSB than segmented spectral bands, as demonstrated by the maximum biomass yield of 1.05 g biomass g-1 CODremoved, specific growth rate of 0.53 d-1 and protein concentration of 0.48 g L-1. The production of biomass and protein under infrared (IR) spectral band were slightly lower than those under full spectrum, but 3.2 and 1.7 times higher than the average values (0.14 g L-1 and 0.07 g L-1) under visible spectral bands, respectively. The variation trends of enzymatic activities, such as fructose-1,6-bisphosphatase (FBP) and photopigments were consistent with that of PNSB biomass upon varying spectral bands, suggesting that the spectral bands might induce a variable PNSB biomass via affecting the Calvin cycle and photophosphorylation process. These results provide a new perspective that spectrum bands of light sources should be considered in the process optimization.
Collapse
Affiliation(s)
- Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
6
|
Liu S, Li H, Daigger GT, Huang J, Song G. Material biosynthesis, mechanism regulation and resource recycling of biomass and high-value substances from wastewater treatment by photosynthetic bacteria: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153200. [PMID: 35063511 DOI: 10.1016/j.scitotenv.2022.153200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The environmental-friendly and economic benefits generated from photosynthetic bacteria (PSB) wastewater treatment have attracted significant attention. This process of resource recovery can produce PSB biomass and high-value substances including single cell protein, Coenzyme Q10, polyhydroxyalkanoates (PHA), 5-aminolevulinic acid, carotenoids, bacteriocin, and polyhydroxy chain alkyl esters, etc. for application in various fields, such as agriculture, medical treatment, chemical, animal husbandry and food industry while treating wastewaters. The main contents of this review are summarized as follows: physiological characteristics, mechanism and application of PSB and potential of single cell protein (SCP) production are described; PSB wastewater treatment technology, including procedures and characteristics, typical cases, influencing factors and bioresource recovery by membrane bioreactor are detailed systematically. The future development of PSB-based resource recovery and wastewater treatment are also provided, particularly concerning PSB-membrane reactor (MBR) process, regulation of biosynthesis mechanism of high-value substances and downstream separation and purification technology. This will provide a promising and new alternative for wastewater treatment recycling.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Heng Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China
| |
Collapse
|
7
|
Lu H, Zhang G, He S, Zhao R, Zhu D. Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World J Microbiol Biotechnol 2021; 37:161. [PMID: 34436687 DOI: 10.1007/s11274-021-03133-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Shortage of water, energy, and bioresources in the world has led to the exploration of new technologies that achieve resource recovery from wastewater, which has become a new sustainable trend. Photosynthetic non-sulfur bacteria (PNSB), the most ancient photo microorganism, not only treats different wastewater types, but also generates PNSB cells, which are non-toxic bioresources and containing many value-added products. These bioresources can be used as raw materials in the agricultural, food, and medical industries. Therefore, PNSB or PNSB-based wastewater resource recovery technology can be simultaneously used to treat wastewater and produce useful bioresources. Compared with traditional wastewater treatment, this technology can reduce CO2 emissions, promote the N recovery ratio and prevent residual sludge disposal or generation. After being developed for over half a century, PNSB wastewater resource recovery technology is currently extended towards industrial applications. Here, this technology is comprehensively introduced in terms of (1) PNSB characteristics and metabolism; (2) PNSB wastewater treatment and bioresource recovery efficiency; (3) the relative factors influencing the performance of this technology, including light, oxygen, strains, wastewater types, hydraulic retention time, on wastewater treatment, and resource production; (4) PNSB value-added bioresources and their generation from wastewater; (5) the scale-up history of PNSB technology; (6) Finally, the future perspectives and challenges of this technology were also analysed and summarised.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Guangming Zhang
- Key Laboratory of Environmental Biotechnology, China Academy of Science, Shuangqing Road, Beijing, 100084, China. .,School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Da Zhu
- Nan Tong Ju Yi Cheng Guang Biotechnology Co. LTD., Nantong, 226321, China
| |
Collapse
|
8
|
Cao L, Zhang R, Zhou J, Huang Z. Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8610-8624. [PMID: 34324332 DOI: 10.1021/acs.jafc.1c03192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas β-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
9
|
Lu B, Wang L, Zheng X, Hu Z, Pan Z. Co-metabolic biodegradation of 4-chlorophenol by photosynthetic bacteria. ENVIRONMENTAL TECHNOLOGY 2021; 42:2361-2371. [PMID: 31846595 DOI: 10.1080/09593330.2019.1701567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
ABSTRACTEnvironmental contamination by 4-chlorophenol (4-CP) is a major concern. Photosynthetic bacteria have the ability to biodegrade 4-CP under dark aerobic conditions. In this study, we found that using different carbon sources (i.e. glucose, sodium acetate, sodium propionate sucrose, and malic acid) as co-metabolic substrates accelerated the biodegradation of 4-CP, and this acceleration was especially pronounced in the glucose treatment. A maximum degradation rate of 96.99% was reached under a concentration of 3.0 g·L-1 after 6 days of culture. The optimum conditions were pH 7.5, a temperature of 30°C, and a rotation speed of 135 rpm. The biodegradation of 4-CP was achieved at a range of salinities (0-3.0% NaCl, w/v). The biodegradation kinetics agreed with the Haldane model, and the kinetic constants were rmax = 0.14 d-1, Km = 33.9 mg·L-1, and Ki = 159.6 mg·L-1. Additionally, the coexistence of phenol or 2,4-dichlorophenol (2, 4-DCP) had a certain impact on the degradation of 4-CP under dark aerobic conditions. When the coexisting phenol concentration reached 100 mg·L-1, the maximum degradation rate of 4-CP reached 90.20%. The degradation rate of 4-CP decreased as the concentration of coexisting 2, 4-DCP increased.
Collapse
Affiliation(s)
- Binchao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Liang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhongce Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Cheng J, Wu X, Jin B, Zhang C, Zheng R, Qin L. Coupling of Immobilized Photosynthetic Bacteria with a Graphene Oxides/PSF Composite Membrane for Textile Wastewater Treatment: Biodegradation Performance and Membrane Anti-Fouling Behavior. MEMBRANES 2021; 11:membranes11030226. [PMID: 33810181 PMCID: PMC8004613 DOI: 10.3390/membranes11030226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
The membrane bioreactor (MBR), as one of the promising technologies, has been widely applied for treatments of wastewater. However, serious membrane fouling and low microbial activity have been reported as major problems hindering the development of the MBR. To overcome these drawbacks, we intend to improve the MBR process in the view of membrane surface modification and efficient granular bacteria cultivation. In the present study, immobilized photosynthetic bacteria integration with graphene oxide (GO)/polysulfone (PSF) composite membrane separation (IPMBR) was first applied for textile wastewater treatment. Due to the high activity of immobilized cells, the IPMBR system exhibited higher efficiency on the removal of color, ammonia-nitrogen, and chemical oxygen demand than the conventional MBR system. In comparison with a pure PSF membrane, GO/PSF composite membrane presented the higher hydrophilicity (water contact angles of 62.9°) and more attractive permeability (178.5 L/m2h) by reducing the adhesion of hydrophobic foulants. During the whole operation, the immobilized photobioreactor exhibited approximately seven times higher membrane permeability that that of the conventional MBR. Meanwhile, the effect of the structure and character of immobilized photosynthetic bacteria on the membrane fouling reduction was investigated in detail. The change of extracellular polymeric substance concentration, settleability and particle size of flocs was very beneficial to alleviate membrane fouling. As a result, this research will open a new avenue for developing efficient and anti-fouling MBR technology in the future.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Hydraulic Engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China; (J.C.); (C.Z.); (R.Z.)
| | - Xiaofeng Wu
- Yiwu Academy of Science and Technology, Zhejiang University of Technology, Jinhua 322000, China;
| | - Binbin Jin
- Department of Hydraulic Engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China; (J.C.); (C.Z.); (R.Z.)
- College of Water Conservancy and Hydropower Engineering, HoHai University, Nanjing 210098, China
- Correspondence: (B.J.); (L.Q.); Tel.: +86-0571-8832-0470 (L.Q.)
| | - Chenchen Zhang
- Department of Hydraulic Engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China; (J.C.); (C.Z.); (R.Z.)
- College of Water Conservancy and Hydropower Engineering, HoHai University, Nanjing 210098, China
| | - Rongwei Zheng
- Department of Hydraulic Engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China; (J.C.); (C.Z.); (R.Z.)
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (B.J.); (L.Q.); Tel.: +86-0571-8832-0470 (L.Q.)
| |
Collapse
|
11
|
Wang F, Xu Z, Wang C, Guo Z, Yuan Z, Kang H, Li J, Lu F, Liu Y. Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application. Int J Biol Macromol 2021; 176:37-46. [PMID: 33571594 DOI: 10.1016/j.ijbiomac.2021.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
Although lots of tyrosinases have been isolated from bacteria, few studies are focused on tyrosinases from Bacillus sp.. In this study, a tyrosinase from B. aryabhattai TCCC 111983 (TYR) was functionally expressed, purified, and then biochemically characterized. The recombinant tyrosinase (rTYR) presented a good catalytic activity in a broad temperature and pH range, retaining over 60% of the relative activity at 30 °C-90 °C and 45% at pH 3.0 to 10.0. Especially, rTYR exhibited 20% of its maximum activity at 0 °C, and it also showed a variable stability towards different effectors. It presented high tolerance towards salinity and chloride, retaining 81% of its original activity in 2 M NaCl. Kinetic parameters indicated that rTYR displayed a relatively good affinity for both l-tyrosine and l-DOPA. Additionally, rTYR demonstrated remarkable advantages on efficient decolorizing azo and anthraquinonic food dyes (carmine and erythrosin), and more five industrial dyes with or without mediators in acidic, neutral, and alkaline conditions. As the first report on the tyrosinase from B. aryabhattai, the aforementioned results indicated that rTYR would be potential for food industrial applications.
Collapse
Affiliation(s)
- Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehua Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chen Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehui Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoting Yuan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongwei Kang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. WATER RESEARCH 2020; 187:116430. [PMID: 33011566 DOI: 10.1016/j.watres.2020.116430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Low microbial activity and serious membrane biofouling are still critical problems that hinder the extensive application of membrane bioreactor (MBR) for industrial wastewater treatment. To address these bottlenecks, we report a new specialized microorganism encapsulation strategy for constructing a highly efficient MBR system. In our study, the algae-entrapping fiber macrospheres with polymeric coating were first coupled with membrane separation for treating refractory high-ammonia nitrogen wastewater. In comparison with traditional alginate beads, the developed macrocapsule (~0.5 cm) exhibited higher biomass harvesting and lower microbial leakage because of the confined micro-aerobic environment created by dual encapsulation of rigid inorganic macrosphere and porous polymeric layers. Application of algae-encapsulating macrocapsule to MBR presented excellent chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal efficiency of 62.23 and 97.38 %, respectively, which were higher than the corresponding values for algae/SA beads and free algae. The biodegradation performance of NH3-N by encapsulated microalgae was similar or superior to that by free cells when the initial content of ammonia nitrogen ranged from 50 to 100 mg/L. The results well demonstrated that the GFS@polymer macrocapsule as a physical barrier reduced the inhibitory effect of higher concentration ammonia nitrogen on the bioactivity of living cells. Importantly, the encapsulated core-shell macrocapsules showed superior anti-biofouling capacity, which had a membrane resistance of 3-5 times lower than that of cell/alginate beads and free cells. This work will open a new avenue to develop a novel encapsulated MBR for various non-degradable wastewater treatments as an energy-saving and sustainable way.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Mingzhen Gao
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Mengyuan Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lihua Feng
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qiuhua Liu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| |
Collapse
|
13
|
Hülsen T, Sander EM, Jensen PD, Batstone DJ. Application of purple phototrophic bacteria in a biofilm photobioreactor for single cell protein production: Biofilm vs suspended growth. WATER RESEARCH 2020; 181:115909. [PMID: 32492592 DOI: 10.1016/j.watres.2020.115909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Single cell protein (SCP), has been proposed as alternative to effectively upgrade and recycle organics and nutrients from wastewater. Biomass recovery is a critical issue, and recovery as a biofilm is effective in comparison with sedimentation of suspended biomass. This study aims to determine the applicability of purple phototrophic bacteria (PPB) biofilm on infra-red irradiated, submerged surfaces for the treatment of pre-settled red meat processing wastewater, and SCP generation. PPB removed up to 66% of COD and 42% of TN and TP during batch operation with total areal productivities between 15 and 20 gVS m-2 d-1 achieved. More than 60% of the total biomass grew attached (as biofilm) with the remainder being suspended. The biofilm can be harvested at around 160 gTS L-1 with high protein (>96 g L-1) and low ash contents (>4.0% compared to >30% in the wastewater). The compositions of attached and suspended biomass differed significantly, where the suspended fraction resembled the wastewater composition (e.g. in terms of inert components). The PPB community was similar in the suspended and biofilm fractions while the biofilm had higher relative abundance of PPB representatives (57% vs 43%). A consistent product composition is highly relevant for the manufacturer and ultimately determines the value as feed, feed additive, or supplement.
Collapse
Affiliation(s)
- Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, Queensland, 4072, Australia.
| | - Elisa Marx Sander
- Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, Queensland, 4072, Australia
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, Queensland, 4072, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
14
|
Hosakul P, Kantachote D, Saritpongteeraka K, Phuttaro C, Chaiprapat S. Upgrading industrial effluent for agricultural reuse: effects of digestate concentration and wood vinegar dosage on biosynthesis of plant growth promotor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14589-14600. [PMID: 32048192 DOI: 10.1007/s11356-020-08014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Emphasis on water reuse in agricultural sector receives a renewed interest to close the loop in circular economy, especially in dry and water-stressed regions. In this work, wastewater from cooperative smoked sheet rubber factory and the effluent (digestate) from its treatment system (anaerobic digester) were used as medium to grow purple non-sulfur bacteria (PNSB), Rhodopseudomonas palustris strain PP803, with wood vinegar supplement at mid-log growth phase to stimulate the release of 5-aminolevulinic acid (ALA), a plant growth promotor. Wastewater-to-digestate ratios (D:W) represented by soluble chemical oxygen demand (SCOD) were found to influence both the growth of R. palustris and synthesis of ALA. The highest ALA release of 16.02 ± 0.75 μM and the biomass accumulation of 1302 ± 78 mg/L were obtained from the medium SCOD of 4953 mg/L. Although retarding biomass accumulation by 28-36%, wood vinegar (WV) addition was proven to improve ALA release by 40%. Result suggested that SCOD of 3438 mg/L (75:25 D:W) contained sufficient carbon source for PNSB growth and was chosen to subsequently run the photo-bioreactor (PBR) to sustain R. palustris PP803 cells production. In continuous PBR operation, PNSB proliferation suffered from the low organic concentration in PBR at low organic loading. An organic loading increase to 1.21 g COD/L day was found to attain highest biomass concentration and longest PNSB dominant period over microalgea. In this study, a real-time monitoring protocol of PNSB and microalgae was specifically developed based on image color analysis at acceptable accuracy (R2 = 0.94). In the final assay, verification of the PBR-grown inoculant was conducted and ALA release efficiency was discussed under various wood vinegar dosages and dosing frequencies. This work has advanced our understandings closer to practical field application.
Collapse
Affiliation(s)
- Passagorn Hosakul
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Kanyarat Saritpongteeraka
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand
- Center of Excellence on Energy Technology and Environment, Postgraduate and Research Development Office (PERDO), Bangkok, 10400, Thailand
| | - Chettaphong Phuttaro
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand
- Center of Excellence on Energy Technology and Environment, Postgraduate and Research Development Office (PERDO), Bangkok, 10400, Thailand
| | - Sumate Chaiprapat
- Department of Civil Engineering, Environmental Engineering Program, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand.
- PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Songkhla, 90112, Thailand.
- Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
15
|
Wang Y, Xue Y, Zhang C. Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136501. [PMID: 31931214 DOI: 10.1016/j.scitotenv.2020.136501] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Saline wastewater originates from many industries, containing a large amount of salt (NaCl) and other toxic and harmful organic matter, which have a great impact on the soil and groundwater. However, the treatment of saline wastewater is a serious problem because organic contents are hard to degrade with the high salinity by the common water treatment technologies. Herein, an electrochemical process coupled with ultraviolet (UV) irradiation was proposed for the saline wastewater treatment. High efficiency of p-nitrophenol (p-NP) and ammonia degradation were contributed from the in situ electrochemical produced active chlorine and photo-induced chlorine radicals. Under the optimal conditions (0.10 A, 0.05 M NaCl, and pH 6.00), approximately 98.91% p-NP was removed after 60 min with the rate constant of 7.521 × 10-2 min-1 in the electrochemical process, and 28.99% mineralization rate was obtained, while with the synergistic effect of UV and electrochemistry, approximately 100% of p-NP removal (k = 9.331 × 10-2 min-1) was achieved by 30 min treatment and about 83.70% of p-NP can be mineralized to CO2 after 60 min. The study on the synergistic mechanism of enhanced degradation performance illustrated that Cl with high oxidation capacity played an important role in the p-NP oxidation. Besides, based on the chlorine radical reactions, this method was also effectively applied to remove ammonia nitrogen (92.00% removal of total nitrogen in 100 min) for nitrogen-containing wastewater. Thus, this study offers a promising approach for the treatment of saline industry wastewater.
Collapse
Affiliation(s)
- Yunting Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing 100083, People's Republic of China
| | - Yudong Xue
- College of Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | - Chunhui Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
16
|
Chen J, Wei J, Ma C, Yang Z, Li Z, Yang X, Wang M, Zhang H, Hu J, Zhang C. Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? ENVIRONMENT INTERNATIONAL 2020; 137:105417. [PMID: 32120141 DOI: 10.1016/j.envint.2019.105417] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 05/23/2023]
Abstract
A paradigm shift is underway in wastewater treatment from pollution removal to resource or energy recovery. However, conventional activated sludge (CAS) as the core technology of wastewater treatment is confronted with severe challenges on high energy consumption, sludge disposal and inevitable greenhouse gas emission, which are posing a serious impact on the current wastewater industry. It is urgent to find new alternative methods to remedy these defects. Photosynthetic bacteria (PSB) have flexible metabolic modes and high tolerance, which enhance the removal of nutrients, heavy metals and organic contaminants efficiency in different wastewater. The unique phototrophic growth of PSB breaks the restriction of nutrient metabolism in the CAS system. Recent studies have shown that PSB-based technologies can not only achieve the recovery of nutrient and energy, but also improve the degradation efficiency of refractory substances. If the application parameters can be determined, there will be great prospects and economic effects. This review summarizes the research breakthroughs and application promotion of PSB-based wastewater treatment technology in recent years. Comparing discussed the superiority and inferiority from the perspective of application range, performance differences and recovery possibility. Pathways involved in the nutrient substance and the corresponding influencing parameters are also described in detail. The mode of PSB biodegradation processes presented a promising alternative for new wastewater treatment scheme. In the future, more mechanical and model studies, deterministic operating parameters, revolutionary process design is need for large-scale industrial promotion of PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mingsheng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Huaqing Zhang
- Qinglin Environmental Protection Co. Ltd., Ningbo 315000, China
| | - Jiawei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
17
|
Valencia A, Le Men C, Ellero C, Lafforgue-Baldas C, Schmitz P, Morris JF. Direct observation at the microscale of particle deposition during the first stage of the microfiltration process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Cao K, Zhi R, Zhang G. Photosynthetic bacteria wastewater treatment with the production of value-added products: A review. BIORESOURCE TECHNOLOGY 2020; 299:122648. [PMID: 31889604 DOI: 10.1016/j.biortech.2019.122648] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Wastewater resource recovery can generate environmental and economic benefits; especially, value-added substance recovery from wastewater can create profits. Photosynthetic bacteria (PSB) can produce protein, coenzyme Q10, 5-ALA, carotenoids, bacteriochlorin, and polyhydroxyalkanoates while treating wastewaters. This review consists of four parts: (1) PSB wastewater treatment, including influence factors and enhancement methods for value-added substances production; (2) downstream processing, including cell separation from effluent, extraction of value-added substances, and purification; (3) comparison among different wastewater resource recovery technologies and brief economic analysis; (4) future development. The focus of this review is the whole procedure of PSB value-added substance production from wastewater. Recent progress of theoretical researches, practical researches and economic issues were systematically summarized and critically analyzed with the scope of promoting PSB technology from concept to practice.
Collapse
Affiliation(s)
- Kefan Cao
- School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Ran Zhi
- School of Environment and Natural Resources, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Beichen District, Tianjin 300130, China.
| |
Collapse
|
19
|
Li C, Zhang X, Lu Y, Fan Z, Wang T, Zhang G. Cometabolic degradation of p-chloroaniline by the genus Brevibacillus bacteria with extra carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121198. [PMID: 31541955 DOI: 10.1016/j.jhazmat.2019.121198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/31/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, we discovered and isolated a new genus Brevibacillus strain from effluent of dyeing and finishing factory containing highly toxic p-chloroanilines (PCA). Based on the morphological, physiological and biochemical characteristics, as well as 16S rDNA sequence, the strain was identified and denominated as Brevibacillus S-618. Co-metabolism effect was found with extra carbon sources including sodium succinate, sodium citrate, ammonium chloride and glucose which can efficiently promote the biodegradation process of PCA. Under the optimal growth conditions at temperature of 30 °C, pH˜7 and air-water ratio of 0.3 m3/m3·min, the degradation rate of PCA in a 2 L pilot bioreactor with high concentration of 180 mg/L increased from 86.7% to 100% within 72 h after adding sodium succinate. The release of chloride ions during the growth process of the strain was equivalent to the degradation amount of PCA. Meanwhile, the cleavage pathway of PCA degradation by Brevibacillus S-618 was proposed by analysis of enzyme activities of microorganism and intermediate products in the reaction. Benefiting from excellent degradation ability and unique characters in high pollutant contents, high efficient bioreactor can easily be scale up for industrial application. Our study provides a facile route for cost-effectively and environmental-friendly degrading hazardous chemicals.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xu Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Tiecheng Wang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
20
|
Li C, Li X, Qin L, Wu W, Meng Q, Shen C, Zhang G. Membrane photo-bioreactor coupled with heterogeneous Fenton fluidized bed for high salinity wastewater treatment: Pollutant removal, photosynthetic bacteria harvest and membrane anti-fouling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133953. [PMID: 31450050 DOI: 10.1016/j.scitotenv.2019.133953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, efficient photosynthetic bacteria (PSB)-GO/PVDF membrane photo-bioreactor (MPBR) combined with heterogeneous Fenton fluidized bed was built and successfully applied for treatment of actual refractory seafood-processing wastewater with extremely high salinity. As effective pre-treatment, heterogeneous Fenton was designed for removing non-biodegradable organics and reducing iron-sludge discharge. In MPBR, GO/PVDF membrane fabricated by chemical grafting GO nanosheets was first used for salt-tolerated PSB harvest. Compared with original PVDF membrane, GO/PVDF membrane exhibited enhanced hydrophilicity, better permeability (4.4 times) and attractive flux recover rate (94%), which was attributed to remarkable reduction in hydrophobic proteins amount of extracellular polymeric substances (EPS). Importantly, COD and NH3-N removal efficiency of MPBR with GO/PVDF membrane were kept about 95 and 98%, respectively, and average biomass productivity reached as high as 105 mg/L·d. This study provides a promising and economical way to build efficient MBR combined with new materials for high salinity hazardous wastewater treatment.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Xiong Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Wei Wu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38(#), 310027 Hangzhou, PR China
| | - Chong Shen
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38(#), 310027 Hangzhou, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China.
| |
Collapse
|
21
|
Yang A, Zhang G, Meng F, Zhi R, Zhang P, Zhu Y. Nitrogen metabolism in photosynthetic bacteria wastewater treatment: A novel nitrogen transformation pathway. BIORESOURCE TECHNOLOGY 2019; 294:122162. [PMID: 31561156 DOI: 10.1016/j.biortech.2019.122162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen removal from wastewater is a worldwide environmental problem. Photosynthetic bacteria (PSB) were reported to have a great potential in treating varieties of nitrogen-contaminated wastewater. However, their nitrogen metabolic mechanism is still unclear, which was further explored in this work. The results showed that PSB can efficiently utilize NH4+-N, NO3--N and NO2--N. Over 90% nitrogen removal efficiencies were obtained under suitable condition. 35 ~ 51% of removed nitrogen was transformed to N2 and N2O. In addition, basically no mutual transformation occurred between NH4+-N, NO3--N and NO2--N in PSB, which is different from other biological technologies. Combining with the analysis of functional gene groups, it indicated that there might be a new direct nitrogen transformation pathway, i.e. NH4+ might be directly oxidized to N2/N2O in nitrogen metabolism of PSB, which breaks the limitations of existing technologies, and proposed a new understanding of nitrogen metabolism in PSB.
Collapse
Affiliation(s)
- Anqi Yang
- Yunnan Provincial Department of Housing and Urban-rural Development, Kunming 650228, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Fan Meng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Ran Zhi
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yichun Zhu
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
22
|
Lee DJ, Hsieh MH. Forward osmosis membrane processes for wastewater bioremediation: Research needs. BIORESOURCE TECHNOLOGY 2019; 290:121795. [PMID: 31326216 DOI: 10.1016/j.biortech.2019.121795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Increasing research and development works have been made to develop forward osmosis (FO) processes as a cost-effective substitute for energy intensive water vacuum suction facility in submerged membrane bioreactor (MBR) applications. Perceived to be a spontaneous water driven process without external applied pressures, the FO has been applied in lab and pilot scales for wastewater bioremediation. This paper reviewed the state-of-the-art developments on the FO unit, the process, and ways of enhancing process performance, particularly on the aspects of flux enhancement, flow resistance reduction, and draw solute with low reverse salt diffusion, which are relevant to enhanced osmotic MBR performance. The perspective to realize the use of FO processes in revision of currently existing energy intensive osmotic MBR processes is discussed with research needs being highlighted.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| | - Meng-Huan Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Hülsen T, Hsieh K, Batstone DJ. Saline wastewater treatment with purple phototrophic bacteria. WATER RESEARCH 2019; 160:259-267. [PMID: 31154123 DOI: 10.1016/j.watres.2019.05.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Biological removal of organics, nitrogen and from saline wastewaters is adversely impacted by high salinity, which can be a major concern for treatment of industrial or domestic saline wastewater. In anaerobic treatment systems, sulfidogensis, especially when treating sulfate-rich saline wastewaters (e.g. seawater has 930 mgSO4-S L-1, or 2800 mg L-1 as SO42-) can cause additional biological, operational, and safety issues, due to H2S toxicity. Here, the use of anaerobic purple phototrophic bacteria (PPB) is tested as mediator to treat high salinity domestic wastewater (NaCl), and marine wastewater (Red Sea Salt - high sulfate, potassium, etc.) in a continuous anaerobic infra-red photo bioreactor, operated over 372d. Saline adapted PPB simultaneously removed COD, nitrogen and phosphorus with biomass yields of 0.8 gCOD gCOD-1. Batch activity tests found a broad optimum peak for saline adapted PPB between 30 and 70 mS cm-1, and 50% reduced activity at 140 mS cm-1 (3.5x seawater). For marine wastewater, high sulfate influent concentrations (770 mgSO4-S L-1) did not result in substantial H2S production (<1.6 mgS L-1) over 80 d. When irradiation was removed, sulfide rapidly rose to >90 mgS L-1 and the process failed. The results indicate rapid adaptation to high-salt conditions (both NaCl and marine), and the capacity for PPB to form a combined wastewater treatment/resource recovery process, particularly for salty industrial wastewater.
Collapse
Affiliation(s)
- Tim Hülsen
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Kent Hsieh
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
24
|
Lu H, Zhang G, Zheng Z, Meng F, Du T, He S. Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: A review. BIORESOURCE TECHNOLOGY 2019; 278:383-399. [PMID: 30683503 DOI: 10.1016/j.biortech.2019.01.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Generating or recycling water and resources from wastewater other than just treating wastewater is one of the most popular trends worldwide. Photosynthetic bacteria (PSB) wastewater treatment and resource recovery technology is one of the most potential methods. PSBs are non-toxic and contain lots of value-added products that can be utilized in the agricultural and food industries. They are effective to degrade pollutants and synthesize useful biomass, thus realizing wastewater treatment, bioresource production, and eliminating waste sludge. If all the nutrients in wastewaters could be bio-converted by PSB, then pollutant reductions and economic benefits would be achieved. This review paper firstly describes and summarizes this technology, including PSBs classification, metabolism, and the market application. The feasibility, technical procedures, bioreactors, pollutant removal, and bioresource production are also summarized, compared and evaluated. Issues that concern the advantages and industrialization of this technologies at the plant scale are also discussed.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| | - Guangming Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Ziqiao Zheng
- Yantai Research Institute, China Agriculture University, Yantai 264000, China
| | - Fan Meng
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Taisheng Du
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
25
|
Vo HNP, Ngo HH, Guo W, Liu Y, Chang SW, Nguyen DD, Nguyen PD, Bui XT, Ren J. Identification of the pollutants' removal and mechanism by microalgae in saline wastewater. BIORESOURCE TECHNOLOGY 2019; 275:44-52. [PMID: 30576913 DOI: 10.1016/j.biortech.2018.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the growth dynamics of a freshwater and marine microalgae with supported biochemical performance in saline wastewater, the pollutants assimilation by a developed method, and the mechanism of salinity's effect to pollutants assimilation. Maximal biomass yield was 400-500 mg/L at 0.1-1% salinity while the TOC, NO3--N, PO43--P were eliminated 39.5-92.1%, 23-97.4% and 7-30.6%, respectively. The biomass yield and pollutants removal efficiencies reduced significantly when salinity rose from 0.1 to 5%. The freshwater Chlorella vulgaris performed its best with a focus on TOC removal at 0.1% salinity. The marine Chlorella sp. was prominent for removing NO3--N at 0.1-1% salinity. Through the developed method, the freshwater C. vulgaris competed to the marine microalgae referring to pollutants assimilation up to 5% salinity. This study unveiled the mechanism of salinity's effect with evidence of salt layer formation and salt accumulation in microalgae.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Phuoc Dan Nguyen
- Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT)- Vietnam, National University, Dist. 10, Ho Chi Minh City, Viet nam
| | - Xuan Thanh Bui
- Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT)- Vietnam, National University, Dist. 10, Ho Chi Minh City, Viet nam
| | - Jiawei Ren
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
26
|
Lu H, Peng M, Zhang G, Li B, Li Y. Brewery wastewater treatment and resource recovery through long term continuous-mode operation in pilot photosynthetic bacteria-membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:196-205. [PMID: 30055485 DOI: 10.1016/j.scitotenv.2018.07.268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Photosynthetic bacteria (PSB) are considered ideal for high COD wastewater treatment and resource recovery. This work is the first continuous-mode long-term (440 days) pilot study (240 L) by using PSB-membrane (PSB-MBR) system for such purpose. Results showed that the system started-up in 27 days for brewery wastewater and then stably operated under various temperature, initial COD and pH conditions, which showed fast start-up and strong robustness. Comparing with small-batch PSB-MBR system, the capacity of pollutants treatment degradation rate in the pilot-continuous PSB-MBR system was promoted. The operation parameters for pilot-continuous PSB-MBR system were determined as follows: light-micro aerobic, 72 h hydraulic retention time, 1200 mg L-1 inoculum size and 1.0 g L-1 d-1 organic loading rate, 2.5 F/M. Under these conditions, the COD and NH4+ in effluent were below 80 and 15 mg L-1, respectively. The PSB cell production reached 483.5 mg L-1 d-1 with protein, polysaccharides, carotenoid, bacteriochlorophyll, and coenzyme Q10 of 420.9, 177.6, 2.53, 10.75, 38.6 mg g-1, respectively, showing great potential of resource recovery from organic wastewater. In addition, the collected biomass had no acute toxicity to crucian carps. This work provides a base for the scale-up of this novel technology.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| | - Meng Peng
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Guangming Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Baoming Li
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| | - Yuanyuan Li
- Policy Research Center for Environment and Economy, Ministry of Environmental Protection, Beijing 100029, China.
| |
Collapse
|
27
|
Efficient Culture of Rhodopseudomonas Palustris Using Landfill Leachate. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Khan MA, Ngo HH, Guo W, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Liang H. Can membrane bioreactor be a smart option for water treatment? ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Qin L, Zhang Y, Xu Z, Zhang G. Advanced membrane bioreactors systems: New materials and hybrid process design. BIORESOURCE TECHNOLOGY 2018; 269:476-488. [PMID: 30139558 DOI: 10.1016/j.biortech.2018.08.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/26/2023]
Abstract
Membrane bioreactor (MBR) is deemed as one of the most powerful technologies for efficient municipal and industrial wastewater treatment around the world. However, low microbial activity of activated sludge and serious membrane fouling still remain big challenges in worldwide application of MBR technology. Nowadays, more and more progresses on the research and development of advanced MBR with new materials and hybrid process are just on the way. In this paper, an overview on the perspective of high efficient strains applied into MBR for biological activity enhancement and fouling reduction is provided first. Secondly, as emerging fouling control strategy, design and fabrication of novel anti-fouling composited membranes are comprehensively highlighted. Meanwhile, hybrid MBR systems integrated with some novel dynamic membrane modules and/or with other technologies like advanced oxidation processes (AOPs) are introduced and compared. Finally, the challenges and opportunities of advanced MBRs combined with bioenergy production in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yufan Zhang
- College of Engineering, University of California, Berkeley, CA 94720, USA; Department of Mechanical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
30
|
Fan Z, Qin L, Zheng W, Meng Q, Shen C, Zhang G. Oscillating membrane photoreactor combined with salt-tolerated Chlorella pyrenoidosa for landfill leachates treatment. BIORESOURCE TECHNOLOGY 2018; 269:134-142. [PMID: 30170142 DOI: 10.1016/j.biortech.2018.08.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel oscillating membrane (OM) photoreactor combined with salt-tolerated Chlorella was developed for old landfill leachates treatment, in which harvesting of highly-active algae was easily performed on large scale. Compared with control membrane photo-bioreactor (CMPBR), OM-MPBR exhibited excellent NH3-N removal efficiency as high as 94.0%. With light time prolonged, an increase in biomass production and NH3 removal rates was observed due to more energy provided for Chlorella cells. By comparison, it was found the highest membrane flux (99.6 L/m2 h bar) was obtained in OM-MPBR, which was attributed to strong shear stress on interface of liquid/membrane effectively reducing bio-foulants. It was clear that energy consumptions of OM-MPBR on biomass productivity (0.68 kWh/kg cell) and NH3 removal (0.0151 kWh/kg NH3-N) were lower than CMPBR. The new coupling system opens a door to scalable development of promising and economical MBR for environmental pollution control and biomass energy production.
Collapse
Affiliation(s)
- Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Zheng
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qin Meng
- Department of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Chong Shen
- Department of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
31
|
Yang A, Zhao W, Peng M, Zhang G, Zhi R, Meng F. A special light-aerobic condition for photosynthetic bacteria-membrane bioreactor technology. BIORESOURCE TECHNOLOGY 2018; 268:820-823. [PMID: 30104104 DOI: 10.1016/j.biortech.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The combined photosynthetic bacteria (PSB) and membrane bioreactor (MBR) technology has the great advantage of simultaneously realizing wastewater purification and bio-resource recovery and has attracted increasing attention in recent years. Light-oxygen conditions are the most vital factor in wastewater treatment. The special light-aerobic condition was first applied to PSB-MBR wastewater treatment, and it was compared with three typical light-oxygen conditions. The results showed that the highest chemical oxygen demand (COD) removal efficiency (96.28%) and the highest biomass production (1.12 g/L/d) were simultaneously obtained under light-aerobic condition. This phenomenon overcame the limitations whereby optimal pollutant removal and bio-resource recovery could not be achieved at the same time. An analysis of the microbial community showed that different light-oxygen conditions caused large variations in the microbial community composition of PSB-MBR. The microbial diversity was lower when light and oxygen co-existed.
Collapse
Affiliation(s)
- Anqi Yang
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Wei Zhao
- Heilongjiang Province Hydraulic Research Institute, Harbin 150080, China
| | - Meng Peng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guangming Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Ran Zhi
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Fan Meng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| |
Collapse
|
32
|
Effects of light-oxygen conditions on microbial community of photosynthetic bacteria during treating high-ammonia wastewater. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Barzin J, Safarpour M, Kordkatooli Z, Vahedi M. Improved microfiltration and bacteria removal performance of polyethersulfone membranes prepared by modified vapor-induced phase separation. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jalal Barzin
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Mahdie Safarpour
- Department of Chemistry, Faculty of Basic Science; Azarbaijan Shahid Madani University; PO Box 83714-161 Tabriz Iran
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Zahra Kordkatooli
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Mohammad Vahedi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| |
Collapse
|
34
|
Peng M, Yang A, Chen Y, Zhang G, Meng F, Ma X, Li Y. Microbiology community changes during the start-up and operation of a photosynthetic bacteria-membrane bioreactor for wastewater treatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|