1
|
Rani J, Dhoble AS. Effect of fungal pretreatment by Pycnoporus sanguineus and Trichoderma longibrachiatum on the anaerobic digestion of rice straw. BIORESOURCE TECHNOLOGY 2023; 387:129503. [PMID: 37506938 DOI: 10.1016/j.biortech.2023.129503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Rice straw is composed of complex lignocellulosic biomass, representing a major obstacle in its conversion to bioenergy. The objective of this study was to evaluate the usefulness of less explored fungal strains Trichoderma longibrachiatum (TL) and Pycnoporus sanguineus (PS) in improving hydrolysis and bioavailability of rice straw in anaerobic digestion (AD). The fungal treatment of rice straw for 10 days by PS and TL increased biogas production by 20.79% and 17.85% and reduced soluble chemical oxygen demand (sCOD) by 71.43% and 64.70%, respectively. The AD samples containing fungal-treated rice straw showed higher lignocellulolytic enzyme activities contributing to better process performance. The taxonomic profile of microbial communities in treated samples showed increased diversity that could sustain consistent system performance and exhibit enhanced resilience against pH fluctuations. Metagenomic analysis revealed 60.82% increase in Proteobacteria in PS and 11.58% increase in Bacteroidetes in TL-treated rice straw samples resulting in improved hydrolysis.
Collapse
Affiliation(s)
- Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Cheng XC, Wei YN, Yuan LL, Qin Z, Liu HM, Wang XD. Structural characterization of lignin-carbohydrate complexes from Chinese quince fruits extracted after enzymatic hydrolysis pretreatment. Int J Biol Macromol 2023; 246:125664. [PMID: 37406919 DOI: 10.1016/j.ijbiomac.2023.125664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/07/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Chinese quince fruit (CQF) contains abundant pectin; however, the pectin cannot be efficiently separated by conventional approaches because of strong lignin-carbohydrate complexes (LCC). In this study, to elucidate the structural characteristics of the original LCC formed by lignin and pectin in CQF, single and multiple enzymatic hydrolysis pretreatments were innovatively performed, and the resulting LCC preparations were comprehensively characterized using a series of techniques. The enzymatic hydrolysis pretreatments significantly increase the LCC yield, releasing LCC fractions with low molecular weights (Mw = 4660-8288 Da). LCC-4, isolated by pretreatment with cellulase plus xylanase, had the highest galacturonic acid content (15.5 %), followed by LCC-2 (isolated by xylanase pretreatment) of 14.0 %. In CQF, lignin develops lignin-carbohydrate (LC) bonds with pectin to form LCC, with phenyl-glycoside bond being the dominant linkage. Although the pectinase pretreatment reduced the pectin content, signals of the LC linkages in the 2D-HSQC spectra were enhanced. LCC-4 could be considered as the most representative of the original LCC in CQF due to its high pectin content and multiple LCC signals in the 2D-HSQC spectrum. The structural understanding of the original LCC in CQF will lay a foundation for designing appropriate methods for extracting pectin from CQF.
Collapse
Affiliation(s)
- Xi-Chuang Cheng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Engineering Research Center of Forestry Biomass Materials and Bioenergy, Ministry of Education, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ya-Nan Wei
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Lu-Lu Yuan
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Souza Filho PF, Dos Santos ES. Solid-State Fermentation of Steam-Exploded Opuntia ficus-indica Cladodes Using Trichoderma reesei CCT-2768 for the Production of Cellulolytic Enzymes. Appl Biochem Biotechnol 2023; 195:1675-1698. [PMID: 36367617 DOI: 10.1007/s12010-022-04222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
The sustainable development of the drylands, i.e., regions with limited availability of water, depends on the exploitation of the few biomass types that can thrive in such conditions, such as the Opuntia ficus-indica, a plant of the Cactaceae family. In the present study, the cladodes of O. ficus-indica were used as a substrate by the fungus Trichoderma reesei CCT-2768 for the production of cellulolytic enzymes through solid-state fermentation. Firstly, the extraction of the mucilage, soluble components of industrial interest, was evaluated. Temperature, water-to-biomass ratio, and time of mixture were varied using an experimental design and impacted, especially, the pectin removal. Then, the lignocellulosic residue was used for the production of enzymes; the effect of the water activity, biomass pretreatment, mineral supplementation, temperature, and inoculum size on the enzymatic production were investigated using two sets of experimental designs. The steam explosion pretreatment exposed the fiber to the microbial action and boosted the enzyme production, provided that the medium was supplemented with salts. This combination has improved the production of xylanase, CMCase, FPase, and polygalacturonase by 27, 62, 98, and 185%, respectively. The temperature of 35 °C was determined as the optimal for the production of FPase, xylanase, and polygalacturonase, while no effect was observed on the production of CMCase and β-glucosidase. The optimization of the enzymatic production performed in this study can potentially provide a new application for the Opuntia biomass and improve the sustainable development of the drylands.
Collapse
Affiliation(s)
- Pedro F Souza Filho
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte, 59078-970, Natal, Brazil. .,Chemical Engineering Department, Federal University of Pernambuco, 50740-590, Recife, Brazil.
| | - Everaldo S Dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte, 59078-970, Natal, Brazil
| |
Collapse
|
4
|
Ji H, Wang L, Tao F, Yao Z, Li X, Dong C, Pang Z. A hydrotrope pretreatment for stabilized lignin extraction and high titer ethanol production. BIORESOUR BIOPROCESS 2022; 9:40. [PMID: 38647740 PMCID: PMC10992416 DOI: 10.1186/s40643-022-00530-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
The biomass pretreatment strategies using organic acids facilitate lignin removal and enhance the enzymatic digestion of cellulose. However, lignin always suffers a severe and irreversible condensation. The newly generated C-C bonds dramatically affect its further upgrading. In this study, we used a recyclable hydrotrope (p-Toluenessulfonic acid, p-TsOH) to dissolve lignin under mild condition and stabilized lignin with a quenching agent (formaldehyde, FA) during extraction, achieving both value-added lignin extraction and efficient enzymatic saccharification of cellulose. Approximately 63.7% of lignin was dissolved by 80% (wt. %) p-TsOH with 1.5% FA addition at 80 °C, 30 min. The obtained lignin was characterized by FTIR spectroscopy, TGA, 2D HSQC NMR spectroscopy, and GPC. The results indicated that the extracted lignin exhibited excellent properties, such as light color, a low molecular weight (Mw, 5371 g/mol), and a narrow polydispersity (Mw/Mn, 1.63). The pretreated substrate was converted to ethanol via a quasi-simultaneous saccharification and fermentation process (Q-SSF). After fermentation of 60 h, the ethanol concentration reached 38.7 ± 3.3 g/L which was equivalent to a theoretical ethanol yield of 82.9 ± 2.2% based on the glucan content, while the residual glucose concentration was only 4.69 ± 1.4 g/L. In short, this pretreatment strategy protected lignin to form new C-C linkages and improved the enzymatic saccharification of glucan for high-titer ethanol production.
Collapse
Affiliation(s)
- Hairui Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Le Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Zhipeng Yao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China.
| | - Zhiqiang Pang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| |
Collapse
|
5
|
KONG WQ, LIU MW, WANG ST, GAO HH, QIN Z, LIU HM, WANG XD, HE JR. Enhancing extraction of proanthocyanidins from Chinese quince fruit by ball-milling and enzyme hydrolysis: yield, structure, and bioactivities. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.94422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Zhao QIN
- Henan University of Technology, China
| | | | | | - Jing-Ren HE
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| |
Collapse
|
6
|
Hoang AT, Nizetic S, Ong HC, Chong CT, Atabani AE, Pham VV. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113194. [PMID: 34243094 DOI: 10.1016/j.jenvman.2021.113194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nizetic
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia.
| | - Cheng Tung Chong
- China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China
| | - A E Atabani
- Alternative Fuels Research Laboratroy (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039, Kayseri, Turkey
| | - Van Viet Pham
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
7
|
De Farias PM, de Vasconcelos LB, Ferreira ME, Pascall M, Tapia-Blácido DR. Nopal cladode (Opuntia ficus-indica) flour: Production, characterization, and evaluation for producing bioactive film. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Qi N, Hu X, Xin X, Ye S, Fu Z, Zhao X. Mechanisms of biohydrogen recovery enhancement from peanut shell by C. guangxiense: Temperature pretreatment ranges from -80 to 100 °C. BIORESOURCE TECHNOLOGY 2020; 304:123026. [PMID: 32127244 DOI: 10.1016/j.biortech.2020.123026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The potential of low-cost bioenergy recovery from peanut shell was limited for its complex cellulose structure. In order to enhance the total reducing sugar (TRS) yield for bio-H2 production, peanut shell with heat (HT, 50-100 °C) or freezing pretreatment (FT, -80 to 0 °C) under different duration (0.5-12 h) was investigated. For uncovering the enhancement mechanisms, morphological feature and crystalline structure were analyzed by scanning electron microscope (SEM) and X-ray powder diffraction (XRD). The optimal pretreatment of 50 °C for 12 h was obtained with TRS yield increased 73.6%, while the H2 yield of 1.25 ml/mg-TRS was peaked with pretreatment at -80 °C. The SEM and XRD further demonstrated that mechanisms of HT and FT were realized through different ways, which were cracking and collapsing in HT, and delamination and peeling in FT, respectively.
Collapse
Affiliation(s)
- Nan Qi
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaomin Hu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaotong Xin
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Sicen Ye
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhongtian Fu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xin Zhao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
9
|
Combining Autoclaving with Mild Alkaline Solution as a Pretreatment Technique to Enhance Glucose Recovery from the Invasive Weed Chloris barbata. Biomolecules 2019; 9:biom9040120. [PMID: 30925658 PMCID: PMC6523731 DOI: 10.3390/biom9040120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Developing an optimum pretreatment condition to enhance glucose recovery assessed the potential of Chloris barbata, which is a common invasive weed in Thailand, as a feedstock for bioethanol production. Chloris barbata was exposed to autoclave-assisted alkaline pretreatment by using different sodium hydroxide (NaOH) concentrations (1% to 4%) and heat intensities (110 °C to 130 °C) that were dissipated from autoclaving. The optimum condition for pretreatment was determined to be 2% NaOH at 110 °C for 60 min. At this condition, maximum hydrolysis efficiency (90.0%) and glucose recovery (30.7%), as compared to those of raw C. barbata (15.15% and 6.20%, respectively), were observed. Evaluation of glucose production from 1000 g of C. barbata based on material balance analysis revealed an estimated yield of 304 g after pretreatment at the optimum condition when compared to that of raw C. barbata (61 g), an increase of five-fold. Structural analysis by the scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed the disruption of the intact structure of C. barbata and an increase in the cellulose crystallinity index (CrI), respectively. The results from this study demonstrate the efficiency of using C. barbata as a potential feedstock for bioethanol production.
Collapse
|
10
|
Tsegaye B, Balomajumder C, Roy P. Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech 2018; 8:447. [PMID: 30333949 PMCID: PMC6181904 DOI: 10.1007/s13205-018-1471-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 01/26/2023] Open
Abstract
In this study, two bacterial strains capable of degrading lignin, cellulose, and hemicellulose were isolated from wood feeding termite. The isolates were identified by 16S rRNA gene sequencing. A bacterium Ochrobactrum oryzae BMP03 capable of degrading lignin was isolated on alkali lignin medium and Bacillus sp. BMP01 strain capable of degrading cellulose and hemicellulose were isolated on carboxymethyl cellulose and xylan media. The efficiency of bacterial degradation was studied by evaluating the composition of rice straw both before and after degradation. The appearance of new cellulose bands at 1382, 1276, 1200, and 871 cm-1, and the absence of former lignin bands at 1726, 1307, and 1246 cm-1 was observed after biodelignification. This was further confirmed by the formation of channeling and layering of the microstructure of biodelignified rice straw observed under electron microscope. Maximum lignin removal was achieved in separate biodelignification and hydrolysis process after the 14th day of treatment by Ochrobactrum oryzae BMP03 (53.74% lignin removal). Hydrolysis of the biodelignified rice straw released 69.96% of total reducing sugars after the 14th day hydrolysis by Bacillus sp. BMP01. In simultaneous delignification and hydrolysis process, about 58.67% of total reducing sugars were obtained after the 13th day of biotreatment. Separate delignification and hydrolysis process were found to be effective in lignin removal and sugar released than the simultaneous process. The bacteria, Bacillus sp. BMP01, has the ability to degrade hemicellulose and cellulose simultaneously. Overall, these results demonstrate that the possibility of rice straw bioconversion into reducing sugars by bacteria from termite gut.
Collapse
Affiliation(s)
- Bahiru Tsegaye
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Chandrajit Balomajumder
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
11
|
Qin Z, Wang XD, Liu HM, Wang DM, Qin GY. Structural characterization of Chinese quince fruit lignin pretreated with enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 262:212-220. [PMID: 29709839 DOI: 10.1016/j.biortech.2018.04.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Lignin is an increasingly valuable raw material for industrial, pharmaceutical and the food industries; natural antioxidants are also being used more and more widely. The Chinese quince fruits have an abundance of lignins with antioxidant properties; however, the lignins cannot be isolated by the methods conventionally used on other sources (e.g., wood, straw). In this investigation, multi-enzymatic hydrolytic pretreatments were used to isolate lignins from Chinese quince fruit, and the structures of these multi-enzyme mixture lignin (EML) fractions were then analyzed and compared with conventional cellulolytic enzyme lignin (CEL). EML fractions are structurally similar to CEL fractions except for an increased S/G ratio, greater number of β-O-4 linkages, higher average molecular weight and decreased thermal stability. The EML-2 fraction in particular seemed most representative of the lignins isolated, and it exhibited the highest antioxidant activity in comparison with CEL and other EML fractions.
Collapse
Affiliation(s)
- Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Dong-Min Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Guang-Yong Qin
- Institute of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 253:252-255. [PMID: 29353753 DOI: 10.1016/j.biortech.2018.01.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Zizania latifolia commonly known as wild rice grass which is available in huge quantities in Loktak Lake is a major concern as it occupies a large area of the Lake and causing a several environmental problems. The investigation of present study was to evaluate possibilities of using Zizania latifolia as feed stock for bioethanol production. The method involved the pretreatment with dilute acid or alkali followed by enzymatic hydrolysis with commercial cellulase. Acid pretreatment was performed with 10% biomass loading with different concentration of acids (0.4-2% w/v) and alkali (0.25-1.5% w/v). Maximum sugar release of 457 mg/g was obtained from 10% biomass loading and 2% w/v of acids. Alkali pretreatment is not effective for this grass. Physicochemical characterization of untreated and treated biomass was carried out by XRD, FTIR, SEM and corresponding alterations in the chemical composition were also monitored. Results showed the feasibility of this grass as biofuel (bioethanol) feed stock and can be potential approach to address the sustainable utilization phumdis grasses of Loktak Lake for the production of value added product.
Collapse
Affiliation(s)
- Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Aswini Kumar Okram
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695019, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695019, India
| |
Collapse
|
13
|
Alencar BRA, Dutra ED, Sampaio EVDSB, Menezes RSC, Morais MA. Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production. BIORESOURCE TECHNOLOGY 2018; 250:273-280. [PMID: 29174905 DOI: 10.1016/j.biortech.2017.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The optimization of enzymatic hydrolysis, with high solids loading, of two species of cactus pear for bioethanol production was tested evaluating the influence of surfactant Tween 80 and pretreatment with H2O and H2SO4 (1% v/v) (50 °C, 150 rpm, 3 h). XRD and FTIR analyzes were performed. Afterwards, the influence of the factors cellulase (FPU g-1), pectinase (U g-1) and solids load (% w/v), on the hydrolysis of varieties (50 °C, 150 rpm, 48 h), and the fermentation of the optimal point (33 °C, 8 h) were evaluated. The pretreatments and the Tween 80 did not increase the hydrolysis yields and Rotacional Central Compound Design indicated that the pectinase factor was not significant. The best cellulase and solids load conditions were 10 FPU g-1 of biomass and 30% w/v for both species. The fermentation efficiency of hydrolysates for Nopalea cochenillifera and Opuntia ficus-indica were 76.3% and 82.8%, respectively, showing their potential for bioethanol production.
Collapse
Affiliation(s)
- Bárbara Ribeiro Alves Alencar
- Interdepartmental Research Group in Metabolic Engineering, Department of Genetics, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| | - Emmanuel Damilano Dutra
- Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, 50740-540 Recife, PE, Brazil
| | | | - Rômulo Simões Cezar Menezes
- Research Group on Biomass Energy, Department of Nuclear Energy, Federal University of Pernambuco, 50740-540 Recife, PE, Brazil.
| | - Marcos Antônio Morais
- Interdepartmental Research Group in Metabolic Engineering, Department of Genetics, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
14
|
Sahoo D, Ummalyma SB, Okram AK, Sukumaran RK, George E, Pandey A. Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. BIORESOURCE TECHNOLOGY 2017; 242:133-138. [PMID: 28341381 DOI: 10.1016/j.biortech.2017.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
The aim of present study was to evaluate feasibility of using the Para grass as feedstock for production of bioethanol. Process involved the pretreatment with dilute acid or alkali and followed by enzymatic saccharification with commercial cellulase. Maximum sugar release of 696mg/g was obtained from 10% biomass loading and 0.5% w/v of alkali whereas in the case of acid pretreatment maximum sugar of 660mg/g was obtained from 20% biomass loading and 2% w/v acid loading. Results showed that Para grass utilization as a biorefinery feedstock can be a potential strategy to address the sustainable utilization of this invasive grass thereby keeping its population in check in the Loktak Lake.
Collapse
Affiliation(s)
- Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), National Institute Under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), National Institute Under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Aswini Kumar Okram
- Institute of Bioresources and Sustainable Development (IBSD), National Institute Under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 19, India
| | - Emrin George
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 19, India
| | - Ashok Pandey
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali 160 071, India
| |
Collapse
|