1
|
Cazier EA, Pham TN, Cossus L, Abla M, Ilc T, Lawrence P. Exploring industrial lignocellulosic waste: Sources, types, and potential as high-value molecules. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:11-38. [PMID: 39094219 DOI: 10.1016/j.wasman.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Lignocellulosic biomass has a promising role in a circular bioeconomy and may be used to produce valuable molecules for green chemistry. Lignocellulosic biomass, such as food waste, agricultural waste, wood, paper or cardboard, corresponded to 15.7% of all waste produced in Europe in 2020, and has a high potential as a secondary raw material for industrial processes. This review first presents industrial lignocellulosic waste sources, in terms of their composition, quantities and types of lignocellulosic residues. Secondly, the possible high added-value chemicals obtained from transformation of lignocellulosic waste are detailed, as well as their potential for applications in the food industry, biomedical, energy or chemistry sectors, including as sources of polyphenols, enzymes, bioplastic precursors or biofuels. In a third part, various available transformation treatments, such as physical treatments with ultrasound or heat, chemical treatments with acids or bases, and biological treatments with enzymes or microorganisms, are presented. The last part discusses the perspectives of the use of lignocellulosic waste and the fact that decreasing the cost of transformation is one of the major issues for improving the use of lignocellulosic biomass in a circular economy and green chemistry approach, since it is currently often more expensive than petroleum-based counterparts.
Collapse
Affiliation(s)
- Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France(1).
| | - Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Louis Cossus
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Maher Abla
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Tina Ilc
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| |
Collapse
|
2
|
Jilani SB, Olson DG. Mechanism of furfural toxicity and metabolic strategies to engineer tolerance in microbial strains. Microb Cell Fact 2023; 22:221. [PMID: 37891678 PMCID: PMC10612203 DOI: 10.1186/s12934-023-02223-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lignocellulosic biomass represents a carbon neutral cheap and versatile source of carbon which can be converted to biofuels. A pretreatment step is frequently used to make the lignocellulosic carbon bioavailable for microbial metabolism. Dilute acid pretreatment at high temperature and pressure is commonly utilized to efficiently solubilize the pentose fraction by hydrolyzing the hemicellulose fibers and the process results in formation of furans-furfural and 5-hydroxymethyl furfural-and other inhibitors which are detrimental to metabolism. The presence of inhibitors in the medium reduce productivity of microbial biocatalysts and result in increased production costs. Furfural is the key furan inhibitor which acts synergistically along with other inhibitors present in the hydrolysate. In this review, the mode of furfural toxicity on microbial metabolism and metabolic strategies to increase tolerance is discussed. Shared cellular targets between furfural and acetic acid are compared followed by discussing further strategies to engineer tolerance. Finally, the possibility to use furfural as a model inhibitor of dilute acid pretreated lignocellulosic hydrolysate is discussed. The furfural tolerant strains will harbor an efficient lignocellulosic carbon to pyruvate conversion mechanism in presence of stressors in the medium. The pyruvate can be channeled to any metabolite of interest by appropriate modulation of downstream pathway of interest. The aim of this review is to emphasize the use of hydrolysate as a carbon source for bioproduction of biofuels and other compounds of industrial importance.
Collapse
Affiliation(s)
- S Bilal Jilani
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA.
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
3
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
4
|
Nassar HN, El-Azab WIM, El-Gendy NS. Sustainable ecofriendly recruitment of bioethanol fermentation lignocellulosic spent waste biomass for the safe reuse and discharge of petroleum production produced water via biosorption and solid biofuel production. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126845. [PMID: 34418833 DOI: 10.1016/j.jhazmat.2021.126845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Sustainable lignocellulosic spent waste rice straw (SWRS) from bioethanol production inventively applied in this study to valorize petroleum production produced water (PPPW). SWRS expressed efficient pollutant removal over a wide range of petroleum concentration, temperature, pH, salinity, and mixing rate reaching approximately 217 mg/g, within four hours contact time. Kinetic studies revealed a pseudo-second-order chemisorption process with a boundary layer control and 16.97 kJ/mol activation energy where the intra-particle diffusion was not the only rate regulatory step. Thermodynamic studies revealed spontaneous, favorable, and endothermic adsorption, with a strong affinity between the SWRS and oil molecules. Biosorption mechanism studies proved the enrollment of SWRS components' lignin, cellulose, and hemicellulose in the oil uptake with the predominance of chemisorption over physisorption onto the rough and highly porous SWRS surface. A single-stage batch biosorption process was designed based on the best fitted Langmuir adsorption isotherm and applied on a real PPPW sample. The Egyptian standard limits for safe industrial effluents discharge into marine environment with a concomitant decrease in scale formation precursors were achieved recommending its safe reuse for enhanced oil recovery. Finally, for accomplishing zero-waste, SWRS disposed of PPPW treatment substantiated valorized solid biofuel with a sufficient calorific value 38.56 MJ/kg.
Collapse
Affiliation(s)
- Hussein N Nassar
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Egypt
| | - Waleed I M El-Azab
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Nour Sh El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Egypt.
| |
Collapse
|
5
|
Mehta P, Rani R, Gupta R, Puri SK, Ramakumar SSV, Mathur AS. Synergistic integration of wastewaters from second generation ethanol plant for algal biofuel production: an industrially relevant option. 3 Biotech 2022; 12:34. [PMID: 35070624 PMCID: PMC8724354 DOI: 10.1007/s13205-021-03097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The present study provides an integrated method for utilizing the wastewaters from second generation (2G) ethanol pretreatment plant for microalgal biomass and lipid production. The study was conducted using a mixture of wastewaters (referred as MW; pH 4.3) generated after washing of acidic and alkaline-soaked lignocellulosic biomass prior to pretreatment process. The growth studies indicated that the thermotolerant strain of Chlorella pyrenoidosa (C. pyrenoidosa) M18 exhibited higher cell proliferation in wastewater as compared to freshwater. About 20-25% enhancement in biomass (509 mg L-1 d-1 ± 3.09) and lipid productivity (146 mg L-1 d-1 ± 1.34) was observed in MW. The total chlorophyll content and variable fluorescence by maximum fluorescence (Fv/Fm) ratio of strain cultivated in MW were 10.32 µg mL-1 and 0.75, respectively. The use of MW also enhanced the content of saturated and monounsaturated fatty acids in total lipid. The exhausted wastewater medium obtained after harvesting the auto-flocculated biomass was also reused up to three successive growth cycles. The recycled medium without any nutrient addition could be used for two subsequent rounds with enhanced biomass (520 mg L-1 d-1 ± 4.07) and lipid (157.71 mg L-1 d-1 ± 1.09) productivities. This synergistic approach of cultivating thermotolerant microalgae with wastewater from 2G pretreatment plant provides an economical setup for development of commercial algal biofuel technology.
Collapse
Affiliation(s)
- Preeti Mehta
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Rekha Rani
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Ravi Gupta
- Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Suresh Kumar Puri
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | | | | |
Collapse
|
6
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
7
|
Kumar A, Chauhan AS, Bains R, Das P. Rice straw (Oryza sativa L.) biomass conversion to furfural, 5-hydroxymethylfurfural, lignin and bio-char: A comprehensive solution. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Hoang AT, Nizetic S, Ong HC, Chong CT, Atabani AE, Pham VV. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113194. [PMID: 34243094 DOI: 10.1016/j.jenvman.2021.113194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nizetic
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia.
| | - Cheng Tung Chong
- China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China
| | - A E Atabani
- Alternative Fuels Research Laboratroy (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039, Kayseri, Turkey
| | - Van Viet Pham
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Improved high solids loading enzymatic hydrolysis and fermentation of cotton microdust by surfactant addition and optimization of pretreatment. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Su X, Xue Q, Sun M, Liu J, Wong MH, Wang C, Chen S. Co-production of polysaccharides, ginsenosides and succinic acid from Panax ginseng residue: A typical industrial herbal waste. BIORESOURCE TECHNOLOGY 2021; 331:125073. [PMID: 33819907 DOI: 10.1016/j.biortech.2021.125073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Co-production of polysaccharides, ginsenosides and succinic acid was achieved from Panax ginseng residue (PGR) in this study. Physico-chemical separation was first applied to recover the released polysaccharides and ginsenoside. Enzymatic hydrolysis was then conducted to covert the left PGR into mono-sugars which was following transformed into succinic acid by constructing a succinic acid-producing strain of Escherichia coli-ZW333. Results indicated that the yields of polysaccharides and ginsenosides increased according to the increase of deconstruction content of PGR. A total sugar yield reached 52 g/L at 10% PGR loading and increased to 94.33 g/L following fed-batch enzymatic hydrolysis. Finally, 56.28 g/L succinic acid was produced. In total, 18 g ginseng polysaccharides, 230 mg ginsenosides and 39 g succinic acid were produced from 100 g PGR. Accordingly, the total economic output could reach RMB 80,149 from 1 t PGR, illustrating the great value increasement of PGR by this industrially possible process.
Collapse
Affiliation(s)
- Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301607, PR China
| | - Qiang Xue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Mengchu Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Jiarou Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; College of Bioscience and Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050000, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| |
Collapse
|
11
|
Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front Chem 2021; 9:696030. [PMID: 34164381 PMCID: PMC8215366 DOI: 10.3389/fchem.2021.696030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Straw biomass is an inexpensive, sustainable, and abundant renewable feedstock for the production of valuable chemicals and biofuels, which can surmount the main drawbacks such as greenhouse gas emission and environmental pollution, aroused from the consumption of fossil fuels. It is rich in organic content but is not sufficient for extensive applications because of its natural recalcitrance. Therefore, suitable pretreatment is a prerequisite for the efficient production of fermentable sugars by enzymatic hydrolysis. Here, we provide an overview of various pretreatment methods to effectively separate the major components such as hemicellulose, cellulose, and lignin and enhance the accessibility and susceptibility of every single component. This review outlines the diverse approaches (e.g., chemical, physical, biological, and combined treatments) for the excellent conversion of straw biomass to fermentable sugars, summarizes the benefits and drawbacks of each pretreatment method, and proposes some investigation prospects for the future pretreatments.
Collapse
Affiliation(s)
- Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China.,Institute of Crops Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Tsai YC, Du YQ, Yang CF. Anaerobic biohydrogen production from biodetoxified rice straw hydrolysate. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Swart LJ, Bedzo OKK, van Rensburg E, Görgens JF. Intensification of Xylo-oligosaccharides Production by Hydrothermal Treatment of Brewer's Spent Grains: The Use of Extremely Low Acid Catalyst for Reduction of Degradation Products Associated with High Solid Loading. Appl Biochem Biotechnol 2021; 193:1979-2003. [PMID: 33534043 DOI: 10.1007/s12010-021-03525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
Brewers' spent grains (BSG) make up to 85% of a brewery's solid waste, and is either sent to landfill or sold as cheap animal feed supplement. Xylo-oligosaccharides (XOS) obtained from BSG are antioxidants and prebiotics that can be used in food formulations as low-calorie sweeteners and texturisers. The effect of extremely low acid (ELA) catalysis in liquid hot water (LHW) hydrothermal treatment (HTT) was assessed using BSG with dry matter contents of 15% and 25%, achieved by dewatering using a screw press. Batch experiments at low acid loadings of 5, 12.5 and 20 mg/g dry mass and temperatures of 120, 150 and 170 °C significantly affected XOS yield at both levels of dry mass considered. Maximum XOS yields of 76.4% (16.6 g/l) and 65.5% (31.7 g/l) were achieved from raw BSG and screw pressed BSG respectively, both at 170 °C and using 5 mg acid/g dry mass, after 15 min and 5 min, respectively. These XOS yields were obtained with BSG containing up to 63% less water and temperatures more than 20 °C lower than that reported previously. The finding confirms that ELA dosing in LHW HTT allows lowering of the required temperature that can result in a reduction of degradation products, which is especially relevant under high solid conditions. This substantial XOS production intensification through higher solid loadings in HTT not only achieved high product yield, but also provided benefits such as increased product concentrations and decreased process heat requirements.
Collapse
Affiliation(s)
- Lukas J Swart
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Oscar K K Bedzo
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
14
|
Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol and biogas. J Biosci Bioeng 2021; 131:461-468. [PMID: 33526306 DOI: 10.1016/j.jbiosc.2020.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 12/29/2022]
Abstract
Increasing ethanol demand and public concerns about environmental protection promote the production of lignocellulosic bioethanol. Compared to that of starch- and sugar-based bioethanol production, the production of lignocellulosic bioethanol is water-intensive. A large amount of water is consumed during pretreatment, detoxification, saccharification, and fermentation. Water is a limited resource, and very high water consumption limits the industrial production of lignocellulosic bioethanol and decreases its environmental feasibility. In this review, we focused on the potential for reducing water consumption during the production of lignocellulosic bioethanol by performing pretreatment and fermentation at high solid loading, omitting water washing after pretreatment, and recycling wastewater by integrating bioethanol production and anaerobic digestion. In addition, the feasibility of these approaches and their research progress were discussed. This comprehensive review is expected to draw attention to water competition between bioethanol production and human use.
Collapse
|
15
|
Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions. SUSTAINABILITY 2020. [DOI: 10.3390/su122410601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rice straw is an abundant material with the potential to be converted into a sustainable energy resource. Transition-metal catalysis activated the C–O bond in the hemicellulose of raw rice straw, cleaving it to form monosaccharides. The mechanism of rice straw catalytic conversion had a synergistic effect due to in situ acid catalysis and metal catalysis. The conditions for the hydrogenation of hemicellulose from rice straw were optimized: catalyst to rice straw solid/solid ratio of 3:10, stirring speed of 600 r/min, temperature of 160 °C, time of 3 h, solid/liquid ratio of 1:15, and H2 gas pressure of 1.5 MPa. An excellent hemicellulose conversion of 97.3% with the yields of xylose and arabinose at 53.0% and 17.3%, respectively, were obtained. The results from FTIR and SEM experiments also confirmed the destruction of the rigidity and reticulate structure of rice straw after the catalytic reaction.
Collapse
|
16
|
Jilani SB, Dev C, Eqbal D, Jawed K, Prasad R, Yazdani SS. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture. Microb Cell Fact 2020; 19:153. [PMID: 32723338 PMCID: PMC7389444 DOI: 10.1186/s12934-020-01414-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Furfural and 5-hydroxymethyl furfural (5-HMF) are key furan inhibitors that are generated due to breakdown of lignocellulosic sugars at high temperature and acidic treatment conditions. Both furfural and 5-HMF act in a synergistic manner to inhibit microbial metabolism and resistance to both is a desirable characteristic for efficient conversion of lignocellulosic carbon to ethanol. Genetic manipulations targeted toward increasing cellular NADPH pools have successfully imparted tolerance against furfural and 5-HMF. In present study, deletion of pgi gene as a strategy to augment carbon flow through pentose phosphate pathway (PPP) was studied in ethanologenic Escherichia coli strain SSK101 to impart tolerance towards either furfural or 5-HMFor both inhibitors together. RESULTS A key gene of EMP pathway, pgi, was deleted in an ethanologenic E. coli strain SSK42 to yield strain SSK101. In presence of 1 g/L furfural in minimal AM1 media, the rate of biomass formation for strain SSK101 was up to 1.9-fold higher as compared to parent SSK42 strain, and it was able to clear furfural in half the time. Tolerance to inhibitor was associated with glucose as carbon source and not xylose, and the tolerance advantage of SSK101 was neutralized in LB media. Bioreactor studies were performed under binary stress of furfural and 5-HMF (1 g/L each) and different glucose concentrations in a glucose-xylose mixture with final sugar concentration of 5.5%, mimicking major components of dilute acid treated biomass hydrolysate. In the mixture having 6 g/L and 12 g/L glucose, SSK101 strain produced ~ 18 g/L and 20 g/L ethanol, respectively. Interestingly, the maximum ethanol productivity was better at lower glucose load with 0.46 g/(L.h) between 96 and 120 h, as compared to higher glucose load where it was 0.33 g/(L.h) between 144 and 168 h. Importantly, parent strain SSK42 did not exhibit significant metabolic activity under similar conditions of inhibitor load and sugar concentration. CONCLUSIONS E. coli strain SSK101 with pgi deletion had enhanced tolerance against both furfural and 5-HMF, which was associated with presence of glucose in media. Strain SSK101 also had improved fermentation characteristics under both hyperosmotic as well as binary stress of furfural and 5-HMF in media containing glucose-xylose mixture.
Collapse
Affiliation(s)
- Syed Bilal Jilani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Institute of Biotechnology, Amity University, Manesar, Haryana India
| | - Chandra Dev
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Danish Eqbal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Present Address: Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rajendra Prasad
- Institute of Biotechnology, Amity University, Manesar, Haryana India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
17
|
Lorenci Woiciechowski A, Dalmas Neto CJ, Porto de Souza Vandenberghe L, de Carvalho Neto DP, Novak Sydney AC, Letti LAJ, Karp SG, Zevallos Torres LA, Soccol CR. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances. BIORESOURCE TECHNOLOGY 2020; 304:122848. [PMID: 32113832 DOI: 10.1016/j.biortech.2020.122848] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 05/17/2023]
Abstract
Lignocellulosic biomass is one of the most abundant organic resources worldwide and is a promising source of renewable energy and bioproducts. It basically consists of three fractions, cellulose, hemicelluloses and lignin, which confer a recalcitrant structure. As such, pretreatment steps are required to make each fraction available for further use, with acidic, alkaline and combined acidic-alkaline treatments being the most common techniques. This review focuses on recent strategies for lignocellulosic biomass pretreatment, with a critical discussion and comparison of their efficiency based on the composition of the materials. Mild pretreatments usually allow the recovery of the three biomass fractions for further transformation and valorisation. An insight is provided of newly developed technologies from recently filed patents on lignocellulosic biomass pretreatment and the transformation of agro-industrial residues into high value-added products, such as biofuels and organic acids.
Collapse
Affiliation(s)
- Adenise Lorenci Woiciechowski
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Carlos José Dalmas Neto
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Dão Pedro de Carvalho Neto
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Alessandra Cristine Novak Sydney
- Federal University of Technology - Paraná, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil
| | - Luiz Alberto Junior Letti
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luis Alberto Zevallos Torres
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil.
| |
Collapse
|
18
|
Tan L, Zhong J, Jin YL, Sun ZY, Tang YQ, Kida K. Production of bioethanol from unwashed-pretreated rapeseed straw at high solid loading. BIORESOURCE TECHNOLOGY 2020; 303:122949. [PMID: 32058907 DOI: 10.1016/j.biortech.2020.122949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Reduction in water consumption and increase in ethanol concentration are two main challenges for bioethanol production from lignocellulosic materials. To address the two challenges, the aim of this work was to study the production of bioethanol from unwashed-pretreated rapeseed straw (RS) at high solid loading. RS pretreated with 1% (w w-1) H2SO4 at 160 °C for 10 min resulted in excellent digestibility and fermentability of pretreated RS. The unwashed-pretreated RS was subjected to presaccharification and fed-batch simultaneous saccharification and fermentation (P-FB-SSF) at a final solid loading of 22% (w w-1). Ethanol concentration and ethanol yield of 53.1 g L-1 (equivalent to 4.1% (w w-1) based on fermentation slurry) and 72.4% were obtained, respectively. In total, 92.1 g water g-1 ethanol was consumed, a much smaller amount than that observed with washing after pretreatment or fermentation performed at lower solid loading.
Collapse
Affiliation(s)
- Li Tan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jia Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yan-Ling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Yue-Qing Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. BIORESOURCE TECHNOLOGY 2020; 299:122685. [PMID: 31918970 DOI: 10.1016/j.biortech.2019.122685] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Marc Conrad
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía, Unidad Guadalajara de Ingeniería Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV), Zapopan, Jalisco, Mexico
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Ana Torres
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Liliane P Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil; Postgraduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Irina Smirnova
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
20
|
Gopalakrishnan RM, Manavalan T, Ramesh J, Thangavelu KP, Heese K. Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering. Microorganisms 2020; 8:microorganisms8020159. [PMID: 31979278 PMCID: PMC7074786 DOI: 10.3390/microorganisms8020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei produces various saccharification enzymes required for biomass degradation. However, the lack of an effective lignin-degrading enzyme system reduces the species’ efficiency in producing fermentable sugars and increases the pre-treatment costs for biofuel production. In this study, we heterologously expressed the Ganoderma lucidum RMK1 versatile peroxidase gene (vp1) in the Rut-C30 strain of T. reesei. The expression of purified 6×His-tag–containing recombinant G. lucidum-derived protein (rVP1) was confirmed through western blot, which exhibited a single band with a relative molecular weight of 39 kDa. In saccharification and delignification studies using rice straw, the transformant (tVP7, T. reesei Rut-C30 expressing G. lucidum-derived rVP1) showed significant improvement in the yield of total reducing sugar and delignification, compared with that of the parent T. reesei Rut-C30 strain. Scanning electron microscopy (SEM) of tVP7-treated paddy straw showed extensive degradation of several layers of its surface compared with the parent strain due to the presence of G. lucidum-derived rVP1. Our results suggest that the expression of ligninolytic enzymes in cellulase hyperproducing systems helps to integrate the pre-treatment and saccharification steps that may ultimately reduce the costs of bioethanol production.
Collapse
Affiliation(s)
- Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Tamilvendan Manavalan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu 600 113, India;
| | - Kalaichelvan Puthupalayam Thangavelu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
- Correspondence: (K.P.T.); (K.H.)
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
- Correspondence: (K.P.T.); (K.H.)
| |
Collapse
|
21
|
Pérez-Pimienta JA, Papa G, Gladden JM, Simmons BA, Sanchez A. The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production. RSC Adv 2020; 10:18147-18159. [PMID: 35517195 PMCID: PMC9053731 DOI: 10.1039/d0ra04031b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.
Collapse
Affiliation(s)
- José A. Pérez-Pimienta
- Laboratorio de Futuros en Bioenergía
- Unidad Guadalajara de Ingeniería Avanzada
- Centro de Investigación y Estudios Avanzados (CINVESTAV)
- Zapopan
- Mexico
| | - Gabriela Papa
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - John M. Gladden
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - Blake A. Simmons
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía
- Unidad Guadalajara de Ingeniería Avanzada
- Centro de Investigación y Estudios Avanzados (CINVESTAV)
- Zapopan
- Mexico
| |
Collapse
|
22
|
Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:294. [PMID: 31890022 PMCID: PMC6927169 DOI: 10.1186/s13068-019-1634-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
The implementation of biorefineries based on lignocellulosic materials as an alternative to fossil-based refineries calls for efficient methods for fractionation and recovery of the products. The focus for the biorefinery concept for utilisation of biomass has shifted, from design of more or less energy-driven biorefineries, to much more versatile facilities where chemicals and energy carriers can be produced. The sugar-based biorefinery platform requires pretreatment of lignocellulosic materials, which can be very recalcitrant, to improve further processing through enzymatic hydrolysis, and for other downstream unit operations. This review summarises the development in the field of pretreatment (and to some extent, of fractionation) of various lignocellulosic materials. The number of publications indicates that biomass pretreatment plays a very important role for the biorefinery concept to be realised in full scale. The traditional pretreatment methods, for example, steam pretreatment (explosion), organosolv and hydrothermal treatment are covered in the review. In addition, the rapidly increasing interest for chemical treatment employing ionic liquids and deep-eutectic solvents are discussed and reviewed. It can be concluded that the huge variation of lignocellulosic materials makes it difficult to find a general process design for a biorefinery. Therefore, it is difficult to define "the best pretreatment" method. In the end, this depends on the proposed application, and any recommendation of a suitable pretreatment method must be based on a thorough techno-economic evaluation.
Collapse
Affiliation(s)
- Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
23
|
|
24
|
Qi N, Zhao X, Liang C, Hu X, Ye S, Zhang Z, Li X. Enhancement of fermentative H 2 production with peanut shell as supplementary substrate: Effects of acidification and buffer effect. BIORESOURCE TECHNOLOGY 2019; 280:502-504. [PMID: 30777701 DOI: 10.1016/j.biortech.2018.12.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
For bio-H2 fermentation, the progress and H2 yield were significantly affected by culture pH. Our previous research found peanut shell powder (PSP, as supplementary substrate) having a buffer effect on the fermentative time prolongation and H2 yield enhancement. The acid buffer action (ABA), cation exchange capacity (CEC), scanning electron microscope (SEM) and X-ray powder diffraction (XRD) were employed to explore the mechanism and structure changes of PSP. The superior ABA (57.44 ± 0.65 mmol/pH-kg) and CEC (112 ± 2.0 cmol/kg) of PSP, which provided high specific surface area and amorphous content, prolonged the fermentative time. The acidification of volatile fatty acids on PSP was effective to release reducing sugar and enhance hydrogen yield through breaking hemicellulose and amorphous components of cellulose, and enlarging specific surface area. The results indicated that buffer effect and acidification on PSP made positive effects on prolonging fermentation time and enhancing hydrogen yield.
Collapse
Affiliation(s)
- Nan Qi
- School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xin Zhao
- School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Chenghua Liang
- Department of Soil and Environment, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaomin Hu
- School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Sicen Ye
- School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhen Zhang
- School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xuejie Li
- School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
25
|
|
26
|
Mikulski D, Kłosowski G. Efficiency of dilute sulfuric acid pretreatment of distillery stillage in the production of cellulosic ethanol. BIORESOURCE TECHNOLOGY 2018; 268:424-433. [PMID: 30103168 DOI: 10.1016/j.biortech.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to examine suitability of distillery stillage of various origins subjected to dilute sulfuric acidic pretreatment for production of cellulosic ethanol. Optimal conditions for dilute acid pretreatment of: rye and wheat distillery stillage 121 °C, 0.2 M H2SO4, 60 min; maize stillage 131 °C, 0.2 M H2SO4, 60 min. The highest efficiency of enzymatic hydrolysis was achieved for rye and wheat stillage using 1 g of DW and the concentration of cellulolytic enzyme of 24% w/w, and for maize stillage 3 g of DW and enzyme concentration of 24% w/w. The use of rye and wheat stillage for production of ethanol does not require a detoxification process and enables full attenuation of glucose after 48 h of the process. However, the use of maize stillage as a raw material must be preceded by a detoxification process that guarantees a reduction of 5-hydroxymethylfurfural concentration in the fermentation medium.
Collapse
Affiliation(s)
- D Mikulski
- Kazimierz Wielki University, Department of Biotechnology, 85-671 Bydgoszcz, ul. K. J. Poniatowskiego 12, Poland
| | - G Kłosowski
- Kazimierz Wielki University, Department of Biotechnology, 85-671 Bydgoszcz, ul. K. J. Poniatowskiego 12, Poland.
| |
Collapse
|
27
|
Lamb CDC, Silva BMZD, de Souza D, Fornasier F, Riça LB, Schneider RDCDS. Bioethanol production from rice hull and evaluation of the final solid residue. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1422495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christiano de C. Lamb
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | | | - Diego de Souza
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Franccesca Fornasier
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Larissa Brixner Riça
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
28
|
Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis. Catalysts 2018. [DOI: 10.3390/catal8010039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers' spent grain. BIORESOURCE TECHNOLOGY 2018; 248:272-279. [PMID: 28648256 DOI: 10.1016/j.biortech.2017.06.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
In this study, brewer's spent grain (BSG) was subjected to a range pretreatments to study the effect on reducing sugar yield. Glucose and xylose were found to be the predominant sugars in BSG. Brewers spent grain was high in cellulose (19.21g/100g of BSG) and lignin content (30.84g/100g of BSG). Microwave assisted alkali (MAA) pretreatment was found to be the most effective pretreatment for BSG, where the pretreatment was conducted at 400W for 60s. A maximum reducing yield was observed with high biomass loading (1g/10ml), cellulase (158.76μl/10ml), hemicellulase (153.3μl/10ml), pH (5.4) and an incubation time (120h). Upon enzymatic hydrolysis, MAA pretreated BSG yielded 228.25mg of reducing sugar/g of BSG which was 2.86-fold higher compared to native BSG (79.67mg/g of BSG); simultaneously BSG was de-lignified significantly. The changes in functional groups, crystallinity and thermal behaviour was studies by means of FTIR, XRD and DSC, respectively.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, FOCAS Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Nissreen Abu-Ghannam
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland.
| |
Collapse
|
30
|
Momayez F, Karimi K, Karimi S, Horváth IS. Efficient hydrolysis and ethanol production from rice straw by pretreatment with organic acids and effluent of biogas plant. RSC Adv 2017. [DOI: 10.1039/c7ra10063a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effects of biogas effluent and its organic ingredients, i.e., acetic, butyric, lactic, and propionic acid, for the pretreatment of rice straw on enzymatic hydrolysis and ethanol production was studied.
Collapse
Affiliation(s)
- Forough Momayez
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Swedish Centre for Resource Recovery
| | - Keikhosro Karimi
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Industrial Biotechnology Group
| | - Shiva Karimi
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|