1
|
Baohe Li, Li C, Jiang L, Zeng Y, Wang N. Preparation of Molecularly Imprinted Polymer Based on Calcium Acrylate and Acrylic Acid. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Zhimiao Z, Xiao Z, Zhufang W, Xinshan S, Mengqi C, Mengyu C, Yinjiang Z. Enhancing the pollutant removal performance and biological mechanisms by adding ferrous ions into aquaculture wastewater in constructed wetland. BIORESOURCE TECHNOLOGY 2019; 293:122003. [PMID: 31476567 DOI: 10.1016/j.biortech.2019.122003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Aquaculture wastewater seriously threatens the human health. In this study, non-poisonous iron was added into constructed wetlands to purify aquaculture wastewater and the wastewater treatment performances of CWs were explored under the treatment conditions of different plant species and different dosages of ferrous ions. The optimal treatment conditions were experimentally determined as follows: 20 mg/L ferrous ions in CWs planted with Canna indica after 7-day operation, the removal efficiencies of TN, TP and COD were respectively 95 ± 1.9%, 77 ± 1.2% and 62 ± 2%. The improvements in the pollutant removal performance depended on biological mechanisms of plants and microorganisms. The optimal dosage of iron ions could adjust enzyme activities and functional amino acids. Specific functional bacteria (Paracoccus detected based on nirK genetic information and Hydrogenophaga detected based on pufM genetic information) were cultured and domesticated by iron ions. The functional bacteria promoted nitrogen and phosphorus removals.
Collapse
Affiliation(s)
- Zhao Zhimiao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China
| | - Zhang Xiao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China
| | - Wang Zhufang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China
| | - Song Xinshan
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Mengqi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China
| | - Cheng Mengyu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China
| | - Zhang Yinjiang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China.
| |
Collapse
|
3
|
Zhao Z, Zhang X, Cheng M, Song X, Zhang Y, Zhong X. Influences of Iron Compounds on Microbial Diversity and Improvements in Organic C, N, and P Removal Performances in Constructed Wetlands. MICROBIAL ECOLOGY 2019; 78:792-803. [PMID: 31025062 DOI: 10.1007/s00248-019-01379-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The effects of various combinations of iron compounds on the contaminant removal performance in constructed wetlands (CWs) were explored under various initial iron concentrations, contaminant concentrations, different hydraulic retention time (HRT), and different temperatures. The Combo 6 (nanoscale zero-valent iron combined with Fe3+) in CW treatments showed the highest pollutant removal performance under the conditions of C2 initial iron dosage concentration (total iron 0.2 mM) and I2 initial contaminant concentration (COD:TN:TP = 60 mg/L:60 mg/L:1 mg/L) in influent after 72-h HRT. These results were directly verified by two different microbial tests (Biolog test and high-throughput pyrosequencing) and microbial community analysis (principal component analysis of community-level physiological profile, biodiversity index, cluster tree, relative abundance at order of taxonomy level). Specific bacteria related to significant improvements in contaminant removal were domesticated by various combinations of iron compounds. Iron dosage was advised as a green, new, and effective option for wastewater treatment. Graphical Abstract .
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xiao Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Mengqi Cheng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, People's road 2999, Donghua University academic building NO.4, office 5153, Songjiang District, Shanghai, 201620, China.
| | - Yinjiang Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xiangmei Zhong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| |
Collapse
|
4
|
Zheng X, Jin M, Xu H, Chen W, Zhang Y, Yang M, Shao X, Xu Z, Wang W. Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152646. [PMID: 31344958 PMCID: PMC6695854 DOI: 10.3390/ijerph16152646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023]
Abstract
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and nitrogen removal, as well as phosphorus removal and the adsorbed forms of phosphorus were measured and the removal mechanism of these pollutants by the ICWSC-DNBF system for treating SE-WTP were investigated. The results showed that the ICWSC-DNBF achieved good removals of COD, NH4+-N, NO3--N, total N and total P; effluent concentrations were 17.23 mg/L, 3.72 mg/L, 14.32 mg/L, 17.38 mg/L and 0.82 mg/L, respectively. WSC enhanced the P removal due to its high specific surface area and the high number of adsorption sites. Fe-P and Al-P were the main forms of P adsorbed by WSC, accounting for 78.53% of the total adsorbed P. WSC coupled with Fe and C improved the biodegradability of SE-WTP and promoted the removal of organic matter. The removal of N was attributed to the abundant denitrifying microorganisms in the system and the electrochemical effect produced by the internal electrolysis of Fe and C.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Mengqi Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mengmeng Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoyao Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhi Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Weihong Wang
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Nongda east road No.311, Sayibak District, Urumqi, Xinjiang Uygur Autonomous Region, China, 830052
| |
Collapse
|
5
|
Yu LJ, Chen T, Xu Y. Effect of corn cobs as external carbon sources on nitrogen removal in constructed wetlands treating micro-polluted river water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1639-1647. [PMID: 31241469 DOI: 10.2166/wst.2019.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Micro-polluted river water is characterized as having limited biodegradability, low carbon to nitrogen ratio and little organic carbon supply, all of which makes it hard to further purify. Two bench scale constructed wetlands (CWs) with a horizontal subsurface flow mode were set up in the laboratory to evaluate their feasibility and efficiency on denitrification with and without corn cobs as external carbon sources. Micro-polluted river water was used as feed solution. The CW without corn cobs substrates possessed a good performance in removing chemical oxygen demand (COD, <40 mg/L) and ammonia nitrogen (NH3-N, <0.65 mg/L), but less efficiency in removing total nitrogen (TN) and nitrate nitrogen (NO3-N). In marked contrast, the CW with 1% (w/w) corn cobs substrates as external carbon sources achieved a significant improvement in the removal efficiency of TN (increased from 34.2% to 71.9%) and NO3-N (increased from 19% to 71.9%). The incorporation of corn cobs substrates did not cause any obvious increase in the concentrations of COD and NH3-N in the effluent. This improvement in the denitrification efficiency was owing to the released organic carbon from corn cobs substrates, which facilitated the growth of abundant microbes on the surface and pores of the substrate. The open area of the used corn chips is larger than that of the pristine ones, and corn cobs can continue to provide a carbon fiber source for denitrification.
Collapse
Affiliation(s)
- Lu-Ji Yu
- College of Water Conservancy and Environmental Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Chen
- Research Center for Environmental Policy Planning & Assessment of Zhengzhou University, Zhengzhou 450002, China E-mail:
| | - Yanhong Xu
- Research Center for Environmental Policy Planning & Assessment of Zhengzhou University, Zhengzhou 450002, China E-mail:
| |
Collapse
|
6
|
Zhao Z, Xu C, Zhang X, Song X. Addition of iron materials for improving the removal efficiencies of multiple contaminants from wastewater with a low C/N ratio in constructed wetlands at low temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11988-11997. [PMID: 30827018 DOI: 10.1007/s11356-019-04648-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetlands (CWs) are widely used in wastewater treatment. Wastewater generally contains multiple contaminants. In this study, CWs were applied to treat wastewater with a low COD/TN ratio and containing heavy metals. Iron-based material was added in CWs to enhance the treatment efficiency. The contaminant removal efficiency was positively correlated with the dosage of iron-based material. Considering the operation cost, we added 1 g of iron-based material in CW and realized the multi-contaminant removal efficiency after 4-day treatment at low temperature: 99.51% of Cu(II), 87.22% of Cr(VI), 65.62% of TN, and 60.23% of COD. Microbial community analysis and kinetic analysis predicted that the removal mechanism involved ion exchange and microbial denitrification. Specific bacteria were found in CWs with iron-based material, such as Thiobacillus spp. and Thauera spp., indicating that the nitrate removal in the denitrification process was triggered by carbon sources and that Fe2+ worked as both the electron donor and the adjuster of the abundances of specific bacteria. The addition of iron-based material into CWs was a green option to improve the pollutant removal performance.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Chenglong Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xiao Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xinshan Song
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China.
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
7
|
Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. SCIENCE CHINA-LIFE SCIENCES 2018; 61:753-761. [DOI: 10.1007/s11427-017-9228-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
8
|
Zhao Z, Song X, Zhang Y, Zhao Y, Wang B, Wang Y. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems. CHEMOSPHERE 2017; 189:10-20. [PMID: 28922630 DOI: 10.1016/j.chemosphere.2017.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe3+ (5.6 mg L-1), iron powder (2.8 mg L-1), and CaCO3 powder (0.2 mg L-1) in influent as the adjusting agents, initial phosphorus source (PO43-) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe3+ and iron powder produced Fe2+, which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L-1.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China.
| | - Yinjiang Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| | - Bodi Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China
| |
Collapse
|