1
|
Soares Dias AP, Rijo B, Santos F, Galhanos Dos Santos R, Frade T. Overview on biofuels production in a seaweed biorefinery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163714. [PMID: 37100156 DOI: 10.1016/j.scitotenv.2023.163714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
The policy makers gathered at COP27 set a goal of limiting global warming to 1.5 °C above the pre- industrial level which requires a reduction of CO2 emissions of 43% by 2030 (relative to 2019 value). To meet this target, it is imperative to replace fossil derivatives (fuels and chemicals) with biomass derivatives. Given that 70% of planet Earth is the ocean, blue carbon can contribute significantly to the mitigation of anthropogenic carbon emissions. Marine macroalgal, or seaweed, that stores carbon, mostly, in the form of sugars rather than lignocellulosic, like terrestrial biomass, is suitable as input raw material for biorefineries. Seaweed biomass has high growth rates, does not require fresh water or arable land, and therefore does not compete with conventional food production. To make seaweed based biorefineries profitable the valorization of biomass has to be maximized through cascade processes with the production of several high-value products such as pharmaceuticals/chemicals, nutraceuticals, cosmetics, food, feed, fertilizers/biostimulants and low-carbon fuels. The composition of macroalgae, which varies depending on the species (green, red, or brown), the region in which it is grown, and the time of year, determines the variety of goods that can be made from it. Fuels must be made from seaweed leftovers since the market value of pharmaceuticals and chemicals is substantially larger than that of fuels. The following sections present a literature review on seaweed biomass valorization in the context of biorefinery with particular emphasis on low-carbon fuel production processes. An overview of seaweed's geographical distribution, composition, and production processes is also presented.
Collapse
Affiliation(s)
- Ana Paula Soares Dias
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.
| | - Bruna Rijo
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal; CoLAB BIOREF-Collaborative Laboratory for Biorefineries, 4466-901 São Mamede de Infesta, Portugal.
| | - Francisco Santos
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Rui Galhanos Dos Santos
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Tânia Frade
- CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Nagarajan D, Chen CY, Ariyadasa TU, Lee DJ, Chang JS. Macroalgal biomass as a potential resource for lactic acid fermentation. CHEMOSPHERE 2022; 309:136694. [PMID: 36206920 DOI: 10.1016/j.chemosphere.2022.136694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
3
|
Co2P-Co3(PO4)2 nanoparticles immobilized on kelp-derived 3D honeycomb-like P-doped porous carbon as cathode electrode for high-performance asymmetrical supercapacitor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Kang H, Zhang G, Mu G, Zhao C, Huang H, Kang C, Li X, Zhang Q. Design of a Greenhouse Solar-Assisted Heat Pump Dryer for Kelp ( Laminaria japonica): System Performance and Drying Kinetics. Foods 2022; 11:3509. [PMID: 36360124 PMCID: PMC9658940 DOI: 10.3390/foods11213509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
In order to solve a series of problems with kelp drying including long drying time, high energy consumption, low drying efficiency, and poor quality of dried kelp, this work proposes the design of a novel greenhouse double-evaporator solar-assisted heat pump drying system. Experiments on kelp solar-assisted heat pump drying (S-HP) and heat pump drying (HP) under the condition of irradiance of 100-700 W/m2 and a temperature of 30, 40, or 50 °C were conducted and their results were compared in terms of system performance, drying kinetics, and quality impact. The drying time was reduced with increasing irradiance or temperature. The coefficient of performance (COP) and specific moisture extraction rate (SMER) of S-HP were 3.590-6.810, and 1.660-3.725 kg/kW·h, respectively, roughly double those of HP when the temperatures are identical. The Deff of S-HP and HP were 5.431 × 10-11~11.316 × 10-11 m2/s, and 1.037 × 10-11~1.432 × 10-11 m2/s, respectively; additionally, solar radiation greatly improves Deff. The Page model almost perfectly described the changes in the moisture ratio of kelp by S-HP and HP with an inaccuracy of less than 5%. When the temperature was 40 °C and the irradiance was above 400 W/m2, the drying time of S-HP was only 3 h, and the dried kelp maintained the green color with a strong flavor and richness in mannitol. Meanwhile, the coefficient of performance was 6.810, the specific moisture extraction rate was 3.725 kg/kWh, and the energy consumption was 45.2%, lower than that of HP. It can be concluded that S-HP is highly efficient and energy-saving for macroalgae drying and can serve as an alternate technique for the drying of other aquatic products.
Collapse
Affiliation(s)
- Huanyu Kang
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Guochen Zhang
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
- Technology Innovation Center of Marine Fishery Equipment in Liaoning, Dalian 116023, China
- Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Gang Mu
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
- Technology Innovation Center of Marine Fishery Equipment in Liaoning, Dalian 116023, China
- Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Cheng Zhao
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Haolin Huang
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Chengxiang Kang
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xiuchen Li
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
- Technology Innovation Center of Marine Fishery Equipment in Liaoning, Dalian 116023, China
- Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Qian Zhang
- College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
- Technology Innovation Center of Marine Fishery Equipment in Liaoning, Dalian 116023, China
- Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Food-Grade Biorefinery Processing of Macroalgae at Scale: Considerations, Observations and Recommendations. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using brown seaweed kelp species Saccharina latissima and Laminaria digitata as feedstocks, a set of pilot-scale macroalgae processing batches were conducted (50–200 kg per batch) for the production of a range of food-grade liquid and solid fractions. The aim of this communication is to relay a number of lessons learnt during this period in combination with previous relevant observations and considerations for others who are intending to process macroalgae at scale. The novelty of this paper is thus to form a bridge between academic findings and practical know-how. Considerations covers material diversity; abiotic and biotic impact and variation; and supply chain considerations. Observations covers milling and cutting; equipment requirements; and acids including their effects on heavy metals, especially lead. Recommendations summarises key points from this pilot-scale and previous work. These include: harvest seasonality, water quality and proximity to processing facilities; minimising contaminants within the macroalgae such as stones and shells; considering equipment composition and volume for all steps and processes including final product quality; acid choice and its effects on both the equipment used and the metals bioaccumulated within the macroalgae.
Collapse
|
6
|
Chauton MS, Forbord S, Mäkinen S, Sarno A, Slizyte R, Mozuraityte R, Standal IB, Skjermo J. Sustainable resource production for manufacturing bioactives from micro- and macroalgae: Examples from harvesting and cultivation in the Nordic region. PHYSIOLOGIA PLANTARUM 2021; 173:495-506. [PMID: 33751623 DOI: 10.1111/ppl.13391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Micro- and macroalgae are a great and important source of raw material for manufacturing of bioactives and ingredients for food, feed, cosmetics, or pharmaceuticals. Macroalgae (or seaweeds) have been harvested locally from wild stocks in smaller volumes for a long time, and a production chain based on cultivated seaweed for the harvest of considerably larger amounts is in progress for several species. Microalgae and cyanobacteria such as Spirulina have been produced in "backyard ponds" for use in food and feed also for a long time, and now we see the establishment of large production plants to control the cultivation process and increase the production yields. There is also a shift from harvesting or cultivation centered in warmer, sunnier areas to increasing exploitation of natural resources in temperate to boreal regions. In locations with strong seasonal variations in solar irradiance and temperatures, we need to develop procedures to maximize the biomass production in the productive seasons and ensure efficient stabilization of the biomass for year-round processing and product manufacturing. Industrialized biomass production and large-scale manufacturing of bioactives also mean that we must employ sustainable, cost-effective, and environmentally friendly processing methods, including stabilization and extraction methods such as ensiling and subcritical water extraction (SWE) and advanced analytic tools to characterize the products. These topics are focus areas of the Nordic Centre of Excellence (NCoE) NordAqua, and here we present a review of current activities in the field of micro- and macroalgae biomass production sectors illustrated with some of our experiences from the NordAqua consortium.
Collapse
Affiliation(s)
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Sari Mäkinen
- LUKE, Natural Resources Institute Finland, Jokioinen, Finland
| | - Antonio Sarno
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Revilija Mozuraityte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Inger Beate Standal
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Jorunn Skjermo
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| |
Collapse
|
7
|
Zhu X, Healy L, Zhang Z, Maguire J, Sun DW, Tiwari BK. Novel postharvest processing strategies for value-added applications of marine algae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4444-4455. [PMID: 33608900 DOI: 10.1002/jsfa.11166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Marine algae are regarded as a promising nutrients resource in future as they can be sustainably cultured without land and high investment. These macroalgae are now widely processed into food and beverages, fertilizers and animal feed. Furthermore, bioactive compounds such as polysaccharides and polyphenols in seaweeds have proven to have antibacterial, antiviral and antifungal properties that can be utilized in cosmeceuticals, nutraceuticals and pharmaceuticals. As a key procedure in seaweed production, the postharvest process not only requires more laboured and energy but also affect the quality of the final product significantly. This article reviewed all current postharvest processes and technologies of seaweed and addressed potential postharvest strategies for seaweed production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianglu Zhu
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | - Laura Healy
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
- Technological University Dublin, Dublin, Ireland
| | - Zhihang Zhang
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | | | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | |
Collapse
|
8
|
Gallagher JA, Adams JMM, Turner LB, Kirby ME, Toop TA, Mirza MW, Theodorou MK. Bio-processing of macroalgae Palmaria palmata: metabolite fractionation from pressed fresh material and ensiling considerations for long-term storage. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:533-544. [PMID: 33568889 PMCID: PMC7854442 DOI: 10.1007/s10811-020-02295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Red algae, belonging to the phylum Rhodophyta, contain an abundance of useful chemicals including bioactive molecules and present opportunities for the production of different products through biorefinery cascades. The rhodophyte Palmaria palmata, commonly termed dulse or dillisk, grows predominantly on the northern coasts of the Atlantic and Pacific Oceans and is a well-known snack food. Due to its abundance, availability and cultivation capacity, P. palmata was selected for study as a potential candidate for a biorefinery process. In addition to studying juice and solid fractions of freshly harvested P. palmata, we have investigated the novel possibility of preserving algal biomass by ensilaging protocols similar to those employed for terrestrial forage crops. In the metabolite partitioning within the solid and liquid fractions following screw-pressing, the majority of the metabolites screened for-water soluble carbohydrates, proteins and amino acids, lipids, pigments, phenolics and antioxidant activity-remained in the solid fraction, though at differing proportions depending on the metabolite, from 70.8% soluble amino acids to 98.2% chlorophyll a and 98.1% total carotenoids. For the ensiling study, screw-pressed P. palmata, with comparative wilted and chopped, and chopped only samples, were ensiled at scale with and without Safesil silage additive. All samples were successfully ensiled after 90 days, with screw-pressing giving lower or equal pH before and after ensiling compared with the other preparations. Of particular note was the effluent volumes generated during ensiling: 26-49% of the fresh weight, containing 16-34% of the silage dry matter. This may be of advantage depending on the final use of the biomass.
Collapse
Affiliation(s)
- J. A. Gallagher
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - J. M. M. Adams
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - L. B. Turner
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - M. E. Kirby
- Agricultural Centre for Sustainable Energy Systems, Department of Agriculture and the Environment, Harper Adams University, Newport, Shropshire, TF10 8NB UK
| | - T. A. Toop
- Agricultural Centre for Sustainable Energy Systems, Department of Agriculture and the Environment, Harper Adams University, Newport, Shropshire, TF10 8NB UK
| | - M. W. Mirza
- Agricultural Centre for Sustainable Energy Systems, Department of Agriculture and the Environment, Harper Adams University, Newport, Shropshire, TF10 8NB UK
| | - M. K. Theodorou
- Agricultural Centre for Sustainable Energy Systems, Department of Agriculture and the Environment, Harper Adams University, Newport, Shropshire, TF10 8NB UK
| |
Collapse
|
9
|
Øverland M, Mydland LT, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:13-24. [PMID: 29797494 PMCID: PMC6585948 DOI: 10.1002/jsfa.9143] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 05/05/2023]
Abstract
Marine macroalgae are considered as promising sustainable alternatives to conventional terrestrial animal feed resources. The advantages include high growth rate, potential cultivation in saltwater, and no occupation of arable land. Macroalgae are broadly classified as brown (Phaeophyta), red (Rhodophyta) and green (Chlorophyta) algae, and are a diverse group of marine organisms. The nutritional value of macroalgae is highly variable. The protein and essential amino acid content can be low, especially in brown species, and indigestible polysaccharides adversely affect the energy value. Optimal use of macroalgae in feeds requires suitable processing, and biorefinery approaches may increase protein content and improve nutrient availability. Macroalgae are rich in unique bioactive components and there is a growing interest in the potentially beneficial health effects of compounds such as laminarin and fucoidan in different macroalgal and macroalgal products. This review summarizes current literature on different aspects of the use of macroalgae as sources of protein and health-promoting bioactive compounds in feed for monogastric animal species. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Margareth Øverland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Liv T Mydland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Anders Skrede
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| |
Collapse
|
10
|
Gallagher JA, Turner LB, Adams JMM, Barrento S, Dyer PW, Theodorou MK. Species variation in the effects of dewatering treatment on macroalgae. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:2305-2316. [PMID: 30147237 PMCID: PMC6096787 DOI: 10.1007/s10811-018-1420-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
Seaweeds can be a valuable resource for biorefinery and biotechnology applications, but their high water content is a recurrent problem and one of the key bottlenecks for their sustainable use. Treatments to increase dry matter content of the kelp Laminaria digitata were recently described by the authors. However macroalgae are an extremely diverse group of organisms and compositional variation between species may influence the effects of particular treatments. In this study, potential dewatering treatments including drying, osmotic media, and the application of both organic and mineral acids all followed by screw-pressing have been tested on two other species of kelp (Laminaria hyperborea and Saccharina latissima) and a red seaweed (Palmaria palmata). Conditions that dewatered these species were identified and the data have been combined with the previous results for L. digitata. There were significant differences between species across all the traits of interest. However dewatering was highly dependent on specific interactions with both treatment and season of collection. Nevertheless, the dry matter content of brown seaweeds was widely and successfully increased by air drying or acid treatment followed by screw-pressing. The results for P. palmata were quite different, particularly with regard to juice production. For this species, acid treatment did not result in dewatering, but dry matter content could be increased by screw-pressing immediately after harvest. Together the data presented here demonstrate that dewatering pre-treatments need to be specific for the type of seaweed to be processed; important knowledge for the future use of this sustainable biomass resource.
Collapse
Affiliation(s)
- Joe A. Gallagher
- Biorefining Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - Lesley B. Turner
- Biorefining Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - Jessica M. M. Adams
- Biorefining Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - Sara Barrento
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Singleton Park, Swansea, SA2 8PP UK
- CIIMAR, CIIMAR–Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Philip W. Dyer
- Centre for Sustainable Chemical Processes, Department of Chemistry, Durham University, South Road, Durham, DH1 3LE UK
| | - Michael K. Theodorou
- Agricultural Centre for Sustainable Energy Systems, Harper Adams University, Newport, Shropshire TF10 8NB UK
| |
Collapse
|
11
|
|
12
|
UK Macro-Algae Biofuels: A Strategic Management Review and Future Research Agenda. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2017. [DOI: 10.3390/jmse5030032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|