1
|
Han K, Park JS, Kim YW, Lee W, Park K, Kim SK. Efficient surface display of single-chain variable fragments against tumor necrosis factor α on engineered probiotic Saccharomyces boulardii and its application in alleviating intestinal inflammation in vivo. N Biotechnol 2025; 86:107-114. [PMID: 39961456 DOI: 10.1016/j.nbt.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Saccharomyces boulardii is a probiotic that can alleviate inflammation in the gut. In this study, a novel surface display system was developed by employing two different single-chain variable fragments (scFvs) against human tumor necrosis factor α as model anti-inflammatory proteins. We first optimized the expression levels of the scFvs by selecting strong constitutive promoters, of which expression cassettes were integrated into the S. boulardii chromosome using the CRISPR/Cas9-based genome editing system. As the signal peptide and anchoring motif are key factors affecting the display efficiency of target proteins, we next sought to find their optimal combination for the development of an efficient surface display system in S. boulardii. Among various combinations of signal peptide and anchoring motif, the engineered S. boulardii, which displayed scFvs using the SED1 signal peptide and DAN4 glycophosphatidylinositol domain (derived from Saccharomyces cerevisiae) as the signal peptide and anchoring motif, respectively, exhibited the highest display efficiency. Finally, the anti-inflammatory effects of the engineered S. boulardii strains displaying a high yield of scFvs, including a low disease activity index score, prevention of colon shortening, and reduction in pro-inflammatory cytokines, were validated using a colitis mouse model. Therefore, we believe that our approach has potential applications in the development of engineered S. boulardii displaying other valuable proteins.
Collapse
Affiliation(s)
- Kanghee Han
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Ji Sun Park
- Department of Systems Biotechnology, Chung-Ang University, Anseongi, Gyeonggi 17546, Republic of Korea
| | - Young-Woo Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Woohyuk Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseongi, Gyeonggi 17546, Republic of Korea.
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
2
|
Bin Nho S, Sang-Hun D, Lee YO, Ahn CH, Park JM, Kim SK. Enhancement of glutathione production in Saccharomyces cerevisiae through inverse metabolic engineering. N Biotechnol 2025:S1871-6784(25)00051-2. [PMID: 40412477 DOI: 10.1016/j.nbt.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/17/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Glutathione is an important tripeptide with a variety of health-promoting effects. Currently, glutathione is produced industrially through a fermentation process using Saccharomyces cerevisiae with high glutathione content. However, the glutathione production yield and titer are relatively low compared to using bacteria as a host strain. The underlying reason for this limitation is that previous studies have mainly focused on gene targets directly related to glutathione production. To overcome this limitation, we aimed to identify novel gene targets capable of enhancing glutathione production in S. cerevisiae. To this end, the #ACR3-12 mutant, exhibiting 1.8-fold higher glutathione content than the wild-type D452-2 strain, was isolated after two rounds of acrolein resistance-mediated screening. Next, the genes responsible for the increased glutathione production were identified by analyzing mutations that occurred in the #ACR3-12 mutant. Notably, the SSD1 and YBL100W-B genes, which encode a translational repressor of cell wall protein synthesis and a Ty2 retrotransposon, respectively, played a crucial role in enhancing glutathione production efficiency. In particular, the D452-2 strain overexpressing the YBL100W-B gene exhibited 1.6- and 2.1-fold higher maximum dry cell weight and glutathione concentration than the wild-type D452-2 strain.
Collapse
Affiliation(s)
- Soo Bin Nho
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Do Sang-Hun
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Young-Oh Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Chan-Hong Ahn
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Jong Myoung Park
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
3
|
Won JY, Lee HJ, Yoon EB, Chin YW, Kim SK. Compartmentalization of heme biosynthetic pathways into yeast mitochondria enhances heme production. NPJ Sci Food 2025; 9:83. [PMID: 40404692 PMCID: PMC12098746 DOI: 10.1038/s41538-025-00453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Saccharomyces cerevisiae is a generally recognized as safe (GRAS) workhorse strain widely used in the food industry for the cost-effective production of food ingredients. However, the heme production yield in yeast is significantly lower than in bacteria for two main reasons: (1) the heme biosynthetic pathway is bifurcated into the cytosol and mitochondria, and (2) yeast's heme biosynthetic protoporphyrin-dependent (PPD) pathway is thermodynamically unfavorable compared with bacteria's coproporphyrin-dependent (CPD) pathway. To overcome these limitations, the PPD and CPD pathways were compartmentalized into the mitochondria by attaching mitochondria-targeting sequences (MTSs) to the N-terminus of the enzymes. All the enzyme activities required for the CPD pathway are present in S. cerevisiae, except for copro-heme decarboxylase (HemQ); therefore, bacterial HemQ with the N-terminal MTS was introduced to complete the CPD pathway. The resulting S. cerevisiae H4+MTS9HemQCg strain with mitochondrial PPD and CPD pathways showed 65% higher heme concentration than the engineered strain with only the mitochondrial PPD pathway. Furthermore, the functional expression level of HemQ from Corynebacterium glutamicum was significantly enhanced in vitro and in vivo by the co-expression of Group-I HSP60 chaperonins (GroEL and GroES) derived from Escherichia coli. The engineered S. cerevisiae H4+MTS9HemQCg+GroELS strain containing the mitochondrial PPD and CPD pathways and the Group-I HSP60 chaperonins produced the highest heme concentration (4.6 mg/L), which was 17% higher than that produced by the H4+MTS9HemQCg strain.
Collapse
Affiliation(s)
- Jae Yoon Won
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Hyun-Jae Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Eun Bi Yoon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, Republic of Korea.
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea.
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea.
| |
Collapse
|
4
|
Park J, Park S, Evelina G, Kim S, Jin YS, Chi WJ, Kim IJ, Kim SR. Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass. Molecules 2024; 29:5695. [PMID: 39683854 DOI: 10.3390/molecules29235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including Komagataella phaffii, are unable to utilize xylose effectively. To address this limitation, we engineered a K. phaffii strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the XYL1, XYL2, and XYL3 genes, resulting in a strain with a strong promoter for XYL2 and weaker promoters for XYL1 and XYL3. This engineered strain exhibited superior growth, achieving 14 g cells/L and a maximal growth rate of 0.4 g cells/L-h in kenaf hydrolysate, outperforming a native strain by 17%. This study is the first to report the introduction of the xylose oxidoreductase pathway into K. phaffii, demonstrating its potential as an industrial platform for producing yeast protein and other products from cellulosic biomass.
Collapse
Affiliation(s)
- Jongbeom Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Grace Evelina
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghee Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Jung Kim
- Department of Food Science & Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52825, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Park BR, Jeong CR, Cha M, Cha YL, Kim SY, Cho JY, Kim SJ. Sustainable Production of Shinorine from Agricultural Wastes Using Engineered Saccharomyces cerevisiae Expressing Novel d-Alanine-d-alanine Ligase from Pseudonocardia pini. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39374232 DOI: 10.1021/acs.jafc.4c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Shinorine, a compound known for its protective properties against UV radiation, is widely used in cosmetics and pharmaceuticals. Despite the construction of various recombinant Saccharomyces cerevisiae strains for shinorine production, achieving industrial-scale yields remains a challenge. In this study, genes encoding enzymes (DDGS, O-MT, and ATP-grasp enzyme) from Actinosynnema mirum were introduced into S. cerevisiae DXdT to enable the heterologous conversion of sedoheptulose 7-phosphate to mycosporine-glycine─the direct biosynthetic precursor of shinorine. Subsequently, a novel d-alanine-d-alanine ligase from Pseudonocardia pini was introduced to produce shinorine. The engineered strain (DXdT-MG-mi89-PP.ddl) produced 267.9 mg/L shinorine with a 48.6 mg/g dry cell weight (DCW) content in a medium supplemented with lignocellulosic hydrolysate derived from rice straw. Notably, the recombinant strain produced 1.7 g/L shinorine with a 79.1 mg/g DCW content from a corn steep liquor medium with a mixture of glucose and xylose. These results support the idea that sustainable shinorine production from agricultural wastes holds significant promise for industrial applications.
Collapse
Affiliation(s)
- Byeong-Ryeol Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chae-Rim Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseok Cha
- Research Center for Biological Cybernetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Lok Cha
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Soo-Yeon Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Research Center for Biological Cybernetics, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Lee HJ, Shin DJ, Nho SB, Lee KW, Kim SK. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Biotechnol J 2024; 19:e202400351. [PMID: 39380497 DOI: 10.1002/biot.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024]
Abstract
Heme is a key ingredient required to mimic the color and flavor of meat in plant-based alternatives. This study aimed to develop a yeast-based microbial cell factory for efficient and sustainable production of heme. To this end, first, Hem12p (uroporphyrinogen decarboxylase) was identified as the rate-limiting enzyme in the heme biosynthetic pathway present in Saccharomyces cerevisiae D452-2. Next, we investigated the effects of disruption of the genes involved in the competition for heme biosynthesis precursors, transcriptional repression, and heme degradation (HMX1) on heme production efficiency. Of the knock-out strains constructed in this study, only the HMX1-deficient strain produced heme at a higher concentration than the background strain without gene disruption. In addition, overexpression of PUG1 encoding a plasma membrane transporter involved in protoporphyrin IX (the precursor to heme biosynthesis) uptake led to a significant increase in intracellular heme concentration. As a result, among the various engineered strains constructed in this study, the ΔHMX1/H3&12 + PUG1 strain, the HMX1-deficient strain overexpressing HEM3, HEM12, and PUG1, produced the highest concentration of heme (4.6 mg/L) in batch fermentation, which was 3.9-fold higher than that produced by the wild-type D452-2 strain. In a glucose-limited fed-batch fermentation, the ΔHMX1/H3&12 + PUG1 strain produced 28 mg/L heme in 66 h.
Collapse
Affiliation(s)
- Hyun-Jae Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Dong Joo Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Soo Bin Nho
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
- GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
7
|
Park JS, Kim YW, Kim H, Kim SK, Park K. Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase. J Microbiol Biotechnol 2023; 33:1506-1512. [PMID: 37482802 DOI: 10.4014/jmb.2305.05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Young-Woo Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyungdong Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
8
|
Lee YO, Do SH, Won JY, Chin YW, Chewaka LS, Park BR, Kim SJ, Kim SK. Inverse metabolic engineering for improving protein content in Saccharomyces cerevisiae. Biotechnol J 2023; 18:e2300014. [PMID: 37272298 DOI: 10.1002/biot.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Production of Saccharomyces cerevisiae-based single cell protein (SCP) has recently received great attention due to the steady increase in the world's population and environmental issues. In this study, an inverse metabolic engineering approach was applied to improve the production of yeast SCP. Specifically, an S. cerevisiae mutant library, generated using UV-random mutagenesis, was screened for three rounds to isolate mutants with improved protein content and/or concentration. The #1021 mutant strain exhibited a respective 31% and 23% higher amino acid content and concentration than the parental S. cerevisiae D452-2 strain. Notably, the content, concentration, and composition of amino acids produced by the PAN2* strain, with a single nucleotide polymorphism in PAN2 coding for a catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, were virtually identical to those produced by the #1021 mutant strain. In a glucose-limited fed-batch fermentation, the PAN2* strain produced 19.5 g L-1 amino acids in 89 h, which was 16% higher than that produced by the parental D452-2 strain. This study highlights the benefits of inverse metabolic engineering for enhancing the production titer and yield of target molecules without prior knowledge of rate-limiting steps involved in their biosynthetic pathways.
Collapse
Affiliation(s)
- Young-Oh Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Sang-Hun Do
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Jae Yoon Won
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Young-Wook Chin
- Traditional Food Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Legesse S Chewaka
- Department of Agro-food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Bo-Ram Park
- Department of Agro-food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
9
|
Troiano DT, Hofmann T, Brethauer S, Studer MHP. Toward optimal use of biomass as carbon source for chemical bioproduction. Curr Opin Biotechnol 2023; 81:102942. [PMID: 37062153 DOI: 10.1016/j.copbio.2023.102942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Biomass is widely identified as a promising, renewable replacement for fossil feedstocks in the production of energy, fuels, and chemicals. However, the sustainable supply of biomass is limited. Economic and ecological criteria support prioritization of biomass as a carbon source for organic chemicals; however, utilization for energy currently dominates. Therefore, to optimize the use of available biomass feedstock, biorefining development must focus on high carbon efficiencies and enabling the conversion of all biomass fractions, including lignin and fermentation-derived CO2. Additionally, novel technological platforms should allow the incorporation of nontraditional, currently underutilized carbon feedstocks (e.g. manure) into biorefining processes. To this end, funneling of waste feedstocks to a single product (e.g. methane) and subsequent conversion to chemicals is a promising approach.
Collapse
Affiliation(s)
- Derek T Troiano
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Tobias Hofmann
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Simone Brethauer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Michael H-P Studer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland.
| |
Collapse
|
10
|
Jeon GB, Lee HJ, Park JP, Park K, Choi CH, Kim SK. Efficient production of glutathione in Saccharomyces cerevisiae via a synthetic isozyme system. Biotechnol J 2023; 18:e2200398. [PMID: 36326163 DOI: 10.1002/biot.202200398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, has multiple beneficial effects on human health. Previous studies have focused on producing glutathione in Saccharomyces cerevisiae by overexpressing γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), which are the rate-limiting enzymes involved in the glutathione biosynthetic pathway. However, the production yield and titer of glutathione remain low due to the feedback inhibition on GSH1. To overcome this limitation, a synthetic isozyme system consisting of a novel bifunctional enzyme (GshF) from Gram-positive bacteria possessing both GSH1 and GSH2 activities, in addition to GSH1/GSH2, was introduced into S. cerevisiae, as GshF is insensitive to feedback inhibition. Given the HSP60 chaperonin system mismatch between bacteria and S. cerevisiae, co-expression of Group-I HSP60 chaperonins (GroEL and GroES) from Escherichia coli was required for functional expression of GshF. Among various strains constructed in this study, the SKSC222 strain capable of synthesizing glutathione with the synthetic isozyme system produced 240 mg L-1 glutathione with glutathione content and yield of 4.3% and 25.6 mgglutathione /gglucose , respectively. These values were 6.6-, 4.9-, and 4.3-fold higher than the corresponding values of the wild-type strain. In a glucose-limited fed-batch fermentation, the SKSC222 strain produced 2.0 g L-1 glutathione in 67 h. Therefore, this study highlights the benefits of the synthetic isozyme system in enhancing the production titer and yield of value-added chemicals by engineered strains of S. cerevisiae.
Collapse
Affiliation(s)
- Gi-Beom Jeon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Hyun-Jae Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| |
Collapse
|
11
|
Kim SR, Cha M, Kim T, Song S, Kang HJ, Jung Y, Cho JY, Moh SH, Kim SJ. Sustainable Production of Shinorine from Lignocellulosic Biomass by Metabolically Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15848-15858. [PMID: 36475725 DOI: 10.1021/acs.jafc.2c07218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mycosporine-like amino acids (MAAs) have been used in cosmetics and pharmaceuticals. The purpose of this work was to develop yeast strains for sustainable and economical production of MAAs, especially shinorine. First, genes involved in MAA biosynthetic pathway from Actinosynnema mirum were introduced into Saccharomyces cerevisiae for heterologous shinorine production. Second, combinatorial expression of wild and mutant xylose reductase was adopted in the engineered S. cerevisiae to facilitate xylose utilization in the pentose phosphate pathway. Finally, the accumulation of sedoheptulose 7-phosphate (S7P) was attempted by deleting transaldolase-encoding TAL1 in the pentose phosphate pathway to increase carbon flux toward shinorine production. In fed-batch fermentation, the engineered strain (DXdT-M) produced 751 mg/L shinorine in 71 h. Ultimately, 54 mg/L MAAs was produced by DXdT-M from rice straw hydrolysate. The results suggest that shinorine production by S. cerevisiae might be a promising process for sustainable production and industrial applications.
Collapse
Affiliation(s)
- So-Rim Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseok Cha
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Taeok Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sihoon Song
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology and Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Younghoon Jung
- School of Food Science and Biotechnology and Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Hyun Moh
- Bio-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Wang H, Cao L, Li Q, Wijayawardene NN, Zhao J, Cheng M, Li QR, Li X, Promputtha I, Kang YQ. Overexpressing GRE3 in Saccharomyces cerevisiae enables high ethanol production from different lignocellulose hydrolysates. Front Microbiol 2022; 13:1085114. [PMID: 36601405 PMCID: PMC9807136 DOI: 10.3389/fmicb.2022.1085114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The efficiently renewable bioethanol can help to alleviate energy crisis and environmental pollution. Genetically modified strains for efficient use of xylose and developing lignocellulosic hydrolysates play an essential role in facilitating cellulosic ethanol production. Here we present a promising strain GRE3OE via GRE3 overexpressed in a previously reported Saccharomyces cerevisiae strain WXY70. A comprehensive evaluation of the fermentation level of GRE3OE in alkaline-distilled sweet sorghum bagasse, sorghum straw and xylose mother liquor hydrolysate. Under simulated corn stover hydrolysate, GRE3OE produced 53.39 g/L ethanol within 48 h. GRE3OE produced about 0.498 g/g total sugar in sorghum straw hydrolysate solution. Moreover, GRE3OE consumed more xylose than WXY70 in the high-concentration xylose mother liquor. Taken together, GRE3OE could be a candidate strain for industrial ethanol development, which is due to its remarkable fermentation efficiency during different lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Haijie Wang
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China,Section of Genetics, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka,National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Jian Zhao
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Cheng
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,Department of Hospital Infection Management, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi-Rui Li
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaobin Li
- Chishui Riverside Jiangi-Flavour Baijiu Research Center, Guizhou Sunveen Liquor Co., Ltd, Guiyang, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand,Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ying-Qian Kang
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Ying-Qian Kang,
| |
Collapse
|
13
|
Lee YG, Kim C, Kuanyshev N, Kang NK, Fatma Z, Wu ZY, Cheng MH, Singh V, Yoshikuni Y, Zhao H, Jin YS. Cas9-Based Metabolic Engineering of Issatchenkia orientalis for Enhanced Utilization of Cellulosic Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12085-12094. [PMID: 36103687 DOI: 10.1021/acs.jafc.2c04251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Issatchenkia orientalis, exhibiting high tolerance against harsh environmental conditions, is a promising metabolic engineering host for producing fuels and chemicals from cellulosic hydrolysates containing fermentation inhibitors under acidic conditions. Although genetic tools for I. orientalis exist, they require auxotrophic mutants so that the selection of a host strain is limited. We developed a drug resistance gene (cloNAT)-based genome-editing method for engineering any I. orientalis strains and engineered I. orientalis strains isolated from various sources for xylose fermentation. Specifically, xylose reductase, xylitol dehydrogenase, and xylulokinase from Scheffersomyces stipitis were integrated into an intended chromosomal locus in four I. orientalis strains (SD108, IO21, IO45, and IO46) through Cas9-based genome editing. The resulting strains (SD108X, IO21X, IO45X, and IO46X) efficiently produced ethanol from cellulosic and hemicellulosic hydrolysates even though the pH adjustment and nitrogen source were not provided. As they presented different fermenting capacities, selection of a host I. orientalis strain was crucial for producing fuels and chemicals using cellulosic hydrolysates.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, South Korea
| | - Chanwoo Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nurzhan Kuanyshev
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Nam Kyu Kang
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Genome-edited Saccharomyces cerevisiae strains for improving quality, safety, and flavor of fermented foods. Food Microbiol 2022; 104:103971. [DOI: 10.1016/j.fm.2021.103971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
15
|
Mohan C, Easterling M, Yau YY. Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2022; 24:369-385. [PMID: 34667393 PMCID: PMC8517945 DOI: 10.1007/s12355-021-01045-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Plant-based biofuels present a promising alternative to depleting non-renewable fuel resources. One of the benefits of biofuel is reduced environmental impact, including reduction in greenhouse gas emission which causes climate change. Sugarcane is one of the most important bioenergy crops. Sugarcane juice is used to produce table sugar and first-generation biofuel (e.g., bioethanol). Sugarcane bagasse is also a potential material for second-generation cellulosic biofuel production. Researchers worldwide are striving to improve sugarcane biomass yield and quality by a variety of means including biotechnological tools. This paper reviews the use of sugarcane as a feedstock for biofuel production, and gene manipulation tools and approaches, including RNAi and genome-editing tools, such as TALENs and CRISPR-Cas9, for improving its quality. The specific focus here is on CRISPR system because it is low cost, simple in design and versatile compared to other genome-editing tools. The advance of CRISPR-Cas9 technology has transformed plant research with its ability to precisely delete, insert or replace genes in recent years. Lignin is the primary material responsible for biomass recalcitrance in biofuel production. The use of genome editing technology to modify lignin composition and distribution in sugarcane cell wall has been realized. The current and potential applications of genome editing technology for sugarcane improvement are discussed. The advantages and limitations of utilizing RNAi and TALEN techniques in sugarcane improvement are discussed as well.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mona Easterling
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
- Northeast Campus, Tulsa Community College, 3727 East Apache St, Tulsa, OK 74115 USA
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| |
Collapse
|
16
|
Optimization of the supply chain for the production of biomass-based fuels and high-added value products in Mexico. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Davydenko S, Meledina T, Mittenberg A, Shabelnikov S, Vonsky M, Morozov A. Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production. Bioengineering (Basel) 2020; 7:E147. [PMID: 33217975 PMCID: PMC7711625 DOI: 10.3390/bioengineering7040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
Yeast strains are convenient models for studying domestication processes. The ability of yeast to ferment carbon sources from various substrates and to produce ethanol and carbon dioxide is the core of brewing, winemaking, and ethanol production technologies. The present study reveals the differences among yeast strains used in various industries. To understand this, we performed a proteomic study of industrial Saccharomyces cerevisiae strains followed by a comparative analysis of available yeast genetic data. Individual protein expression levels in domesticated strains from different industries indicated modulation resulting from response to technological environments. The innovative nature of this research was the discovery of genes overexpressed in yeast strains adapted to brewing, baking, and ethanol production, typical genes for specific domestication were found. We discovered a gene set typical for brewer's yeast strains. Baker's yeast had a specific gene adapted to osmotic stress. Toxic stress was typical for yeast used for ethanol production. The data obtained can be applied for targeted improvement of industrial strains.
Collapse
Affiliation(s)
- Svetlana Davydenko
- Innovation & Research Department, Baltika Breweries—Part of the Carlsberg Group, 6-th Verkhnij ln. 3, 194292 St. Petersburg, Russia;
| | - Tatiana Meledina
- Faculty of Biotechnologies (BioTech), ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia;
| | - Alexey Mittenberg
- Proteomics and Mass Spectrometry Group, Cell Technologies Center, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia; (A.M.); (S.S.)
| | - Sergey Shabelnikov
- Proteomics and Mass Spectrometry Group, Cell Technologies Center, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia; (A.M.); (S.S.)
| | - Maksim Vonsky
- Department of State Standards and Reference Materials in the Area of Bioanalytical and Medical Measurements, D.I. Mendeleyev Institute for Metrology VNIIM, Moskovsky pr. 19, 190005 St. Petersburg, Russia;
| | - Artyom Morozov
- Faculty of Biotechnologies (BioTech), ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia;
| |
Collapse
|
18
|
Cellulosic Ethanol: Improving Cost Efficiency by Coupling Semi-Continuous Fermentation and Simultaneous Saccharification Strategies. Processes (Basel) 2020. [DOI: 10.3390/pr8111459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel approach to improve ethanol production from sugarcane bagasse is proposed. Biomass was pretreated with sodium hydroxide, sulfuric, oxalic, and maleic acids (1% w/v) at different temperatures (130–170 °C) and times (10–30 min). The pretreatment with NaOH at 160 °C for 20 min was found to be the most efficient for further enzymatic saccharification. A semi-continuous fermentation system coupled with a simultaneous saccharification and fermentation strategy was used, attaining fermented liquor every 24 h. The amount of enzymes needed for saccharification was optimized, as well as the production time and ethanol concentration. The process occurred with near to complete depletion of glucose, obtaining ethanol concentrations ranging from 8.36 to 10.79% (v/v). The whole system, at bench scale, showed stability over 30 days, and ease of management and control. This strategy may improve cost efficiency in the production of cellulosic ethanol at industrial scale.
Collapse
|
19
|
Maia JLD, Cardoso JS, Mastrantonio DJDS, Bierhals CK, Moreira JB, Costa JAV, Morais MGD. Microalgae starch: A promising raw material for the bioethanol production. Int J Biol Macromol 2020; 165:2739-2749. [PMID: 33470200 DOI: 10.1016/j.ijbiomac.2020.10.159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Ethanol is currently the most successful biofuel and can be produced from microalgal biomass (third-generation). Ethanol from microalgal biomass has advantages because it does not use arable land and reduces environmental impacts through the sequestration of CO2 from the atmosphere. In this way, micro and macroalgal starch, which is structurally similar to that from higher plants can be considered a promise raw material for the production of bioethanol. Thus, strategies can be used to intensify the carbohydrate concentration in the microalgal biomass enabling the production of third-generation bioethanol. The microalgae biomass can be destined to biorefineries so that the residual biomass generated from the extraction processes is used for the production of high value-added products. Therefore, the process will have an impact on reducing the production costs and the generation of waste. In this context, this review aims to bring concepts and perspectives on the production of third-generation bioethanol, demonstrating the microalgal biomass potential as a carbon source to produce bioethanol and supply part of the world energy demand. The main factors that influence the microalgal cultivation and fermentation process, as well as the processes of transformation of biomass into the easily fermentable substrate are also discussed.
Collapse
Affiliation(s)
- Jorge Lucas da Maia
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Jéssica Soares Cardoso
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Duna Joanol da Silveira Mastrantonio
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Caroline Krause Bierhals
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
20
|
Candida intermedia CBS 141442: A Novel Glucose/Xylose Co-Fermenting Isolate for Lignocellulosic Bioethanol Production. ENERGIES 2020. [DOI: 10.3390/en13205363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study describes the isolation of the novel strain Candida intermedia CBS 141442 and investigates the potential of this microorganism for the conversion of lignocellulosic streams. Different C. intermedia clones were isolated during an adaptive laboratory evolution experiment under the selection pressure of lignocellulosic hydrolysate and in strong competition with industrial, xylose-fermenting Saccharomyces cerevisiae cells. Isolates showed different but stable colony and cell morphologies when growing in a solid agar medium (smooth, intermediate and complex morphology) and liquid medium (unicellular, aggregates and pseudohyphal morphology). Clones of the same morphology showed similar fermentation patterns, and the C. intermedia clone I5 (CBS 141442) was selected for further testing due to its superior capacity for xylose consumption (90% of the initial xylose concentration within 72 h) and the highest ethanol yields (0.25 ± 0.02 g ethanol/g sugars consumed). Compared to the well-known yeast Scheffersomyces stipitis, the selected strain showed slightly higher tolerance to the lignocellulosic-derived inhibitors when fermenting a wheat straw hydrolysate. Furthermore, its higher glucose consumption rates (compared to S. stipitis) and its capacity for glucose and xylose co-fermentation makes C. intermedia CBS 141442 an attractive microorganism for the conversion of lignocellulosic substrates, as demonstrated in simultaneous saccharification and fermentation processes.
Collapse
|
21
|
Suleiman M, Krüger A, Antranikian G. Biomass-degrading glycoside hydrolases of archaeal origin. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:153. [PMID: 32905355 PMCID: PMC7469102 DOI: 10.1186/s13068-020-01792-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
During the last decades, the impact of hyperthermophiles and their enzymes has been intensively investigated for implementation in various high-temperature biotechnological processes. Biocatalysts of hyperthermophiles have proven to show extremely high thermo-activities and thermo-stabilities and are identified as suitable candidates for numerous industrial processes with harsh conditions, including the process of an efficient plant biomass pretreatment and conversion. Already-characterized archaea-originated glycoside hydrolases (GHs) have shown highly impressive features and numerous enzyme characterizations indicated that these biocatalysts show maximum activities at a higher temperature range compared to bacterial ones. However, compared to bacterial biomass-degrading enzymes, the number of characterized archaeal ones remains low. To discover new promising archaeal GH candidates, it is necessary to study in detail the microbiology and enzymology of extremely high-temperature habitats, ranging from terrestrial to marine hydrothermal systems. State-of-the art technologies such as sequencing of genomes and metagenomes and automated binning of genomes out of metagenomes, combined with classical microbiological culture-dependent approaches, have been successfully performed to detect novel promising biomass-degrading hyperthermozymes. In this review, we will focus on the detection, characterization and similarities of archaeal GHs and their unique characteristics. The potential of hyperthermozymes and their impact on high-temperature industrial applications have not yet been exhausted.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anna Krüger
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Antonopoulou G. Designing Efficient Processes for Sustainable Bioethanol and Bio-Hydrogen Production from Grass Lawn Waste. Molecules 2020; 25:molecules25122889. [PMID: 32586042 PMCID: PMC7355486 DOI: 10.3390/molecules25122889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/04/2022] Open
Abstract
The effect of thermal, acid and alkali pretreatment methods on biological hydrogen (BHP) and bioethanol production (BP) from grass lawn (GL) waste was investigated, under different process schemes. BHP from the whole pretreatment slurry of GL was performed through mixed microbial cultures in simultaneous saccharification and fermentation (SSF) mode, while BP was carried out through the C5yeast Pichia stipitis, in SSF mode. From these experiments, the best pretreatment conditions were determined and the efficiencies for each process were assessed and compared, when using either the whole pretreatment slurry or the separated fractions (solid and liquid), the separate hydrolysis and fermentation (SHF) or SSF mode, and especially for BP, the use of other yeasts such as Pachysolen tannophilus or Saccharomyces cerevisiae. The experimental results showed that pretreatment with 10 gH2SO4/100 g total solids (TS) was the optimum for both BHP and BP. Separation of solid and liquid pretreated fractions led to the highest BHP (270.1 mL H2/g TS, corresponding to 3.4 MJ/kg TS) and also BP (108.8 mg ethanol/g TS, corresponding to 2.9 MJ/kg TS) yields. The latter was achieved by using P. stipitis for the fermentation of the hydrolysate and S. serevisiae for the solid fraction fermentation, at SSF.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, 26504 Patras, Greece
| |
Collapse
|
23
|
Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020; 8:microorganisms8020274. [PMID: 32085437 PMCID: PMC7074673 DOI: 10.3390/microorganisms8020274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 01/07/2023] Open
Abstract
Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final product concentration and render industrial yeast strains unable to be reused. Alternative approaches to controlling contamination, including the use of antibiotics, have been developed and proposed as solutions. However, more efficient and industry-friendly approaches are needed for use in industrial applications. This review covers: (i) general information about industrial uses of yeast fermentation, (ii) microbial contamination and its effects on yeast fermentation, and (iii) currently used and suggested approaches/strategies for controlling microbial contamination at the industrial and/or laboratory scale.
Collapse
|
24
|
|
25
|
Geijer C, Faria-Oliveira F, Moreno AD, Stenberg S, Mazurkewich S, Olsson L. Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:48. [PMID: 32190113 PMCID: PMC7068945 DOI: 10.1186/s13068-020-1663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND An economically viable production of biofuels and biochemicals from lignocellulose requires microorganisms that can readily convert both the cellulosic and hemicellulosic fractions into product. The yeast Candida intermedia displays a high capacity for uptake and conversion of several lignocellulosic sugars including the abundant pentose d-xylose, an underutilized carbon source since most industrially relevant microorganisms cannot naturally ferment it. Thus, C. intermedia constitutes an important source of knowledge and genetic information that could be transferred to industrial microorganisms such as Saccharomyces cerevisiae to improve their capacity to ferment lignocellulose-derived xylose. RESULTS To understand the genetic determinants that underlie the metabolic properties of C. intermedia, we sequenced the genomes of both the in-house-isolated strain CBS 141442 and the reference strain PYCC 4715. De novo genome assembly and subsequent analysis revealed C. intermedia to be a haploid species belonging to the CTG clade of ascomycetous yeasts. The two strains have highly similar genome sizes and number of protein-encoding genes, but they differ on the chromosomal level due to numerous translocations of large and small genomic segments. The transcriptional profiles for CBS 141442 grown in medium with either high or low concentrations of glucose and xylose were determined through RNA-sequencing analysis, revealing distinct clusters of co-regulated genes in response to different specific growth rates, carbon sources and osmotic stress. Analysis of the genomic and transcriptomic data also identified multiple xylose reductases, one of which displayed dual NADH/NADPH co-factor specificity that likely plays an important role for co-factor recycling during xylose fermentation. CONCLUSIONS In the present study, we performed the first genomic and transcriptomic analysis of C. intermedia and identified several novel genes for conversion of xylose. Together the results provide insights into the mechanisms underlying saccharide utilization in C. intermedia and reveal potential target genes to aid in xylose fermentation in S. cerevisiae.
Collapse
Affiliation(s)
- Cecilia Geijer
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Fábio Faria-Oliveira
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Antonio D. Moreno
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Present Address: Biofuels Unit, Department of Energy, CIEMAT, Madrid, Spain
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee SM. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:12. [PMID: 31993090 PMCID: PMC6975041 DOI: 10.1186/s13068-019-1641-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. RESULTS In this study, we developed a powerful mixed-sugar co-fermenting strain of S. cerevisiae, XUSEA, with improved xylose conversion capacity during simultaneous glucose/xylose co-fermentation. To reinforce xylose catabolism, the overexpression target in the pentose phosphate pathway was selected using a DNA assembler method and overexpressed increasing xylose consumption and ethanol production by twofold. The performance of the newly engineered strain with improved xylose catabolism was further boosted by elevating fermentation temperature and thus significantly reduced the co-fermentation time by half. Through combined efforts of reinforcing the pathway of xylose catabolism and elevating the fermentation temperature, XUSEA achieved simultaneous co-fermentation of lignocellulosic hydrolysates, composed of 39.6 g L-1 glucose and 23.1 g L-1 xylose, within 24 h producing 30.1 g L-1 ethanol with a yield of 0.48 g g-1. CONCLUSIONS Owing to its superior co-fermentation performance and ability for further engineering, XUSEA has potential as a platform in a lignocellulosic biorefinery toward realizing a more economical and sustainable process for large-scale bioethanol production.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
27
|
Review of Solvents Based on Biomass for Mitigation of Wax Paraffin in Indonesian Oilfield. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper presents a review of the expectations and challenges of using biomass in the prevention and slowing of paraffin wax deposition that takes place during the crude oil production process. The inhibition of the deposition process involves the use of solvents from biomass that are generally available around the crude oil production field. The processes used to scale down the precipitation of wax include mixing crude oil with the manufacturer’s solvent composed of toluene and xylene. The goal is to assess solvents sourced from biomass that are capable to slow down the wax deposition process. Wax appearance temperature is an important characteristic to evaluate the possible wax precipitation of a given fluid. Wax precipitation can be reduced by using some chemical additives, often called the pour point depressant. This additive is expected to be produced from local biomass which can compete with solvents currently produced on the market.
Collapse
|
28
|
Improving ionic liquid tolerance in Saccharomyces cerevisiae through heterologous expression and directed evolution of an ILT1 homolog from Yarrowia lipolytica. ACTA ACUST UNITED AC 2019; 46:1715-1724. [DOI: 10.1007/s10295-019-02228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
Abstract
Abstract
Ionic liquids show promise for deconstruction of lignocellulosic biomass prior to fermentation. Yet, imidazolium ionic liquids (IILs) can be toxic to microbes even at concentrations present after recovery. Here, we show that dominant overexpression of an Ilt1p homolog (encoded by YlILT1/YALI0C04884) from the IIL-tolerant yeast Yarrowia lipolytica confers an improvement in 1-ethyl-3-methylimidazolium acetate tolerance in Saccharomyces cerevisiae compared to the endogenous Ilt1p (ScILT1/YDR090C). We subsequently enhance tolerance in S. cerevisiae through directed evolution of YlILT1 using growth-based selection, leading to identification of mutants that grow in up to 3.5% v/v ionic liquid. Lastly, we demonstrate that strains expressing YlILT1 variants demonstrate improved growth rate and ethanol production in the presence of residual IIL. This shows that dominant overexpression of a heterologous protein (wild type or evolved) from an IIL-tolerant yeast can increase tolerance in S. cerevisiae at concentrations relevant to bioethanol production from IIL-treated biomass.
Collapse
|
29
|
Easmin F, Sasano Y, Kimura S, Hassan N, Ekino K, Taguchi H, Harashima S. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. J Biosci Bioeng 2019; 129:129-139. [PMID: 31585858 DOI: 10.1016/j.jbiosc.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022]
Abstract
Genome manipulation, especially the deletion or replacement of chromosomal regions, is a salient tool for the analysis of genome function. Because of low homologous recombination activity, however, current methods are limited to manipulating only one chromosomal region in a single transformation, making the simultaneous deletion or replacement of multiple chromosomal regions difficult, laborious, and time-consuming. Here, we have developed two highly efficient and versatile genome engineering technologies, named clustered regularly interspaced short palindromic repeats (CRISPR)-PCR-mediated chromosomal deletion (PCD) (CRISPR-PCD) and PCR-mediated chromosomal replacement (CRISPR-PCRep), that integrate the CRISPR-associated protein 9 (Cas9) genome editing system (CRISPR/Cas9) into, respectively, the PCD method for chromosomal deletion and our newly developed PCRep method for chromosomal replacement. Integration of CRISPR induces double strand breaks to activate homologous recombination, and thus enhances the efficiency of deletion by PCD and replacement by PCRep, enabling multiple chromosomal regions to be manipulated simultaneously for the first time. Our data show that CRISPR-PCD can delete two internal or terminal chromosomal regions, while CRISPR-PCRep can replace triple chromosomal regions simultaneously in a single transformation. Colony PCR analysis of structural alterations showed that triple replacement of four different sets of chromosomal regions was successful in 83%-100% of transformants analyzed. These novel genome engineering technologies, which greatly reduce time and labor for genome manipulation, will provide powerful tools to facilitate the simultaneous multiple deletion and replacement of chromosomal regions, enabling the rapid analysis of genome function and breeding of useful industrial yeast strains.
Collapse
Affiliation(s)
- Farhana Easmin
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yu Sasano
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shunta Kimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0781, Japan
| | - Naim Hassan
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hisataka Taguchi
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Satoshi Harashima
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| |
Collapse
|
30
|
Fabricio MF, Valente P, Záchia Ayub MA. Oleaginous yeast Meyerozyma guilliermondii shows fermentative metabolism of sugars in the biosynthesis of ethanol and converts raw glycerol and cheese whey permeate into polyunsaturated fatty acids. Biotechnol Prog 2019; 35:e2895. [PMID: 31425639 DOI: 10.1002/btpr.2895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 11/05/2022]
Abstract
We studied the biotechnological potential of the recently isolated yeast Meyerozyma guilliermondii BI281A to produce polyunsaturated fatty acids and ethanol, comparing products yields using glucose, raw glycerol from biodiesel synthesis, or whey permeate as substrates. The yeast metabolism was evaluated for different C/N ratios (100:1 and 50:1). Results found that M. guilliermondii BI281A was able to assimilate all tested substrates, and the most efficient conversion obtained was observed using raw glycerol as carbon source (C/N ratio 50:1), concerning biomass formation (5.67 g·L-1 ) and lipid production (1.04 g·L-1 ), representing 18% of dry cell weight. Bioreactors experiments under pH and aeration-controlled conditions were conducted. Obtained fatty acids were composed of ~67% of unsaturated fatty acids, distributed as palmitoleic acid (C16:1 , 9.4%), oleic acid (C18:1 , 47.2%), linoleic acid (C18:2 n-6 , 9.6%), and linolenic acid (C18:3 n-3 , 1.3%). Showing fermentative metabolism, which is unusual for oleaginous yeasts, M. guilliermondii produced 13.7 g·L-1 of ethanol (yields of 0.27) when growing on glucose medium. These results suggest the promising use of this uncommonly studied yeast to produce unsaturated fatty acids and ethanol using cheap agro-industrial residues as substrates in bioprocess.
Collapse
Affiliation(s)
- Mariana Fensterseifer Fabricio
- Biotechnology Laboratory (BiotecLab) of Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Valente
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology Laboratory (BiotecLab) of Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Kim JW, Lee YG, Kim SJ, Jin YS, Seo JH. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. J Biotechnol 2019; 304:31-37. [PMID: 31421146 DOI: 10.1016/j.jbiotec.2019.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/06/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
Abstract
2,3-Butanediol (2,3-BD) can be produced at high titers by engineered Saccharomyces cerevisiae by abolishing the ethanol biosynthetic pathway and introducing the bacterial butanediol-producing pathway. However, production of 2,3-BD instead of ethanol by engineered S. cerevisiae has resulted in glycerol production because of surplus NADH accumulation caused by a lower degree of reduction (γ = 5.5) of 2,3-BD than that (γ = 6) of ethanol. In order to eliminate glycerol production and resolve redox imbalance during 2,3-BD production, both GPD1 and GPD2 coding for glycerol-3-phosphate dehydrogenases were disrupted after overexpressing NADH oxidase from Lactococcus lactis. As disruption of the GPD genes caused growth defects due to limited supply of C2 compounds, Candida tropicalis PDC1 was additionally introduced to provide a necessary amount of C2 compounds while minimizing ethanol production. The resulting strain (BD5_T2 nox_dGPD1,2_CtPDC1) produced 99.4 g/L of 2,3-BD with 0.5 g/L glycerol accumulation in a batch culture. The fed-batch fermentation led to production of 108.6 g/L 2,3-BD with a negligible amount of glycerol production, resulting in a high BD yield (0.462 g2,3-BD/gglucose) corresponding to 92.4 % of the theoretical yield. These results demonstrate that glycerol-free production of 2,3-BD by engineered yeast is feasible.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea
| | - Soo-Jung Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea.
| |
Collapse
|
32
|
Abstract
Background: Common buckwheat (Fagopyrum esculentum Moench) is an annual spring-emerging crop that is classified among the dicotyledons, due to the manner of its cultivation, use, and chemical composition of seeds. The use of buckwheat straw for energy purposes—for example, for the production of second generation bioethanol—might enable its wider application and increase the cost-effectiveness of tillage. Methods: In this study, we examined the usability of buckwheat straw for the production of bioethanol. We pretreated the raw material with ionic liquids and subsequently performed enzymatic hydrolysis and alcoholic fermentation. The obtained chemometric data were analyzed using the Partial Least Squares (PLS) regression model. PLS regression in combination with spectral analysis within the near-infrared (NIR) spectrum allowed for the rapid determination of the amount of cellulose in the raw material and also provided information on the changes taking place in its structure. Results: We obtained good results for the combination of 1-ethyl-3-methylimidazolium acetate as the ionic liquid and Cellic CTec2 as the enzymatic preparation for the pretreatment of buckwheat straw. The highest concentration of glucose following 72 h of enzymatic hydrolysis was found to be around 5.5 g/dm3. The highest concentration of ethanol (3.31 g/dm3) was obtained with the combination of 1-butyl-3-methylimidazolium acetate for the pretreatment and cellulase from Trichoderma reesei for enzymatic hydrolysis. Conclusions: In summary, the efficiency of the fermentation process is strictly associated with the pool of available fermenting sugars, and it depends on the type of ionic liquid used during the pretreatment and on the enzymatic preparation. It is possible to obtain bioethanol from buckwheat straw using ionic liquid for pretreatment of the raw material prior to the enzymatic hydrolysis and alcoholic fermentation of the material.
Collapse
|
33
|
Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioprocess Biosyst Eng 2019; 42:883-896. [PMID: 30820665 DOI: 10.1007/s00449-019-02090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.47, 0.38 and 1.62 g/g DW/h, with an ethanol titre of 41.07 g/L and yield of 0.42 g/g. Industrial wheat straw hydrolysate fermentation resulted in maximal specific rates of glucose and xylose consumption, and ethanol production of 2.61, 0.54 and 1.38 g/g DW/h, respectively, with an ethanol titre of 54.11 g/L and yield of 0.44 g/g. These are among the best for wheat straw hydrolysate fermentation through separate hydrolysis and cofermentation.
Collapse
|
34
|
Alvim MCT, Vital CE, Barros E, Vieira NM, da Silveira FA, Balbino TR, Diniz RHS, Brito AF, Bazzolli DMS, de Oliveira Ramos HJ, da Silveira WB. Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses. Antonie van Leeuwenhoek 2019; 112:827-845. [DOI: 10.1007/s10482-018-01214-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
35
|
Lee YG, Seo JH. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:204. [PMID: 31485270 PMCID: PMC6714309 DOI: 10.1186/s13068-019-1545-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 08/17/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BDO) is a valuable chemical for industrial applications. Bacteria can produce 2,3-BDO with a high productivity, though most of their classification as pathogens makes them undesirable for the industrial-scale production. Though Saccharomyces cerevisiae (GRAS microorganism) was engineered to produce 2,3-BDO efficiently in the previous studies, their 2,3-BDO productivity, yield, and titer were still uncompetitive compared to those of bacteria production. Thus, we propose an industrial polyploid S. cerevisiae as a host for efficient production of 2,3-BDO with high growth rate, rapid sugar consumption rate, and resistance to harsh conditions. Genetic manipulation tools for polyploid yeast had been limited; therefore, we engineered an industrial polyploid S. cerevisiae strain based on the CRISPR-Cas9 genome-editing system to produce 2,3-BDO instead of ethanol. RESULTS Endogenous genes coding for pyruvate decarboxylase and alcohol dehydrogenase were partially disrupted to prevent declined growth rate and C2-compound limitation. A bacterial 2,3-BDO-producing pathway was also introduced in engineered polyploid S. cerevisiae. A fatal redox imbalance was controlled through the heterologous NADH oxidase from Lactococcus lactis during the 2,3-BDO production. The resulting strain (YG01_SDBN) still retained the beneficial traits as polyploid strains for the large-scale fermentation. The combination of partially disrupted PDC (pyruvate decarboxylase) and ADH (alcohol dehydrogenase) did not cause the severe growth defects typically found in all pdc- or adh-deficient yeast. The YG01_SDBN strain produced 178 g/L of 2,3-BDO from glucose with an impressive productivity (2.64 g/L h). When a cassava hydrolysate was used as a sole carbon source, this strain produced 132 g/L of 2,3-BDO with a productivity of 1.92 g/L h. CONCLUSIONS The microbial production of 2,3-BDO has been limited to bacteria and haploid laboratorial S. cerevisiae strains. This study suggests that an industrial polyploid S. cerevisiae (YG01_SDBN) can produce high concentration of 2,3-BDO with various advantages. Integration of metabolic engineering of the industrial yeast at the gene level with optimization of fed-batch fermentation at the process scale resulted in a remarkable achievement of 2,3-BDO production at 178 g/L of 2,3-BDO concentration and 2.64 g/L h of productivity. Furthermore, this strain could make a bioconversion of a cassava hydrolysate to 2,3-BDO with economic and environmental benefits. The engineered industrial polyploid strain could be applicable to production of biofuels and biochemicals in large-scale fermentations particularly when using modified CRISPR-Cas9 tools.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
36
|
Lee KM, Kim SK, Lee YG, Park KH, Seo JH. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 268:271-277. [PMID: 30081287 DOI: 10.1016/j.biortech.2018.07.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 05/26/2023]
Abstract
Saccharomyces cerevisiae has a natural ability to produce higher alcohols, making it a promising candidate for production of isobutanol. However, the several pathways competing with isobutanol biosynthesis lead to production of substantial amounts of l-valine and l-isoleucine in mitochondria and isobutyrate, l-leucine, and ethanol in cytosol. To increase flux to isobutanol by removing by-product formation, the genes associated with formation of l-valine (BAT1), l-isoleucine (ILV1), isobutyrate (ALD6), l-leucine (LEU1), and ethanol (ADH1) were disrupted to construct the S. cerevisiae WΔGBIALA1_2vec strain. This strain showed 8.9 and 8.6 folds increases in isobutanol concentration and yield, respectively, relative the corresponding values of the background strain on glucose medium. In a bioreactor fermentation with a gas trapping system, the WΔGBIALA1_2vec strain produced 662 mg/L isobutanol concentration with a yield of 6.71 mgisobutanol/gglucose. With elimination of the competing pathways, the WΔGBIALA1_2vec strain would serve as a platform strain for isobutanol production.
Collapse
Affiliation(s)
- Kyung-Muk Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hye Park
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Yang P, Wu Y, Zheng Z, Cao L, Zhu X, Mu D, Jiang S. CRISPR-Cas9 Approach Constructing Cellulase sestc-Engineered Saccharomyces cerevisiae for the Production of Orange Peel Ethanol. Front Microbiol 2018; 9:2436. [PMID: 30364071 PMCID: PMC6191481 DOI: 10.3389/fmicb.2018.02436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
The development of lignocellulosic bioethanol plays an important role in the substitution of petrochemical energy and high-value utilization of agricultural wastes. The safe and stable expression of cellulase gene sestc was achieved by applying the clustered regularly interspaced short palindromic repeats-Cas9 approach to the integration of sestc expression cassette containing Agaricus biporus glyceraldehyde-3-phosphate-dehydrogenase gene (gpd) promoter in the Saccharomyces cerevisiae chromosome. The target insertion site was found to be located in the S. cerevisiae hexokinase 2 by designing a gRNA expression vector. The recombinant SESTC protein exhibited a size of approximately 44 kDa in the engineered S. cerevisiae. By using orange peel as the fermentation substrate, the filter paper, endo-1,4-β-glucanase, exo-1,4-β-glucanase activities of the transformants were 1.06, 337.42, and 1.36 U/mL, which were 35.3-fold, 23.03-fold, and 17-fold higher than those from wild-type S. cerevisiae, respectively. After 6 h treatment, approximately 20 g/L glucose was obtained. Under anaerobic conditions the highest ethanol concentration reached 7.53 g/L after 48 h fermentation and was 37.7-fold higher than that of wild-type S. cerevisiae (0.2 g/L). The engineered strains may provide a valuable material for the development of lignocellulosic ethanol.
Collapse
Affiliation(s)
- Peizhou Yang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Haldar D, Gayen K, Sen D. Enumeration of monosugars’ inhibition characteristics on the kinetics of enzymatic hydrolysis of cellulose. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production. Appl Microbiol Biotechnol 2018; 102:8989-9002. [PMID: 30121750 DOI: 10.1007/s00253-018-9306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
In this study, an evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production was characterized by multi-omic approaches. Genome sequencing of the HJ7-14 revealed a point mutation in the GAL83 gene (G703A) involved in the catabolite repression as well as the galactose metabolism. Cultural and transcriptional analyses of a S. cerevisiae mutant with chromosomal GAL83(G703A) indicated that the catabolite repression onto the galactose metabolism was considerably relieved in all cell growth stages. Untargeted metabolomic approach revealed that metabolic phenotypes between the control D452-2 and HJ7-14 strains were clearly discriminated in time-dependent manner. Especially in early growth stage at 6 h, the HJ7-14 showed dramatic and coordinated alteration in central carbon and amino acid metabolisms. Through metabolomic re-organization, fold changes in fatty acid metabolism and metabolites related to stress response system were also found upon glucose depletion and active galactose utilization. Multi-omic characterization using genome sequencing, transcription, and metabolome profiling clearly unveiled that the GAL83 gene mutation partially relieved glucose-dependent catabolite repression and allowed the evolved HJ7-14 to efficiently convert algal sugars to ethanol. Our finding could be applicable for engineering of S. cerevisiae able to covert red algal biomass to other biofuels and biochemicals.
Collapse
|
40
|
Promon SK, Kamal W, Rahman SS, Hossain MM, Choudhury N. Bioethanol production using vegetable peels medium and the effective role of cellulolytic bacterial (Bacillus subtilis) pre-treatment. F1000Res 2018; 7:271. [PMID: 29899975 PMCID: PMC5968363 DOI: 10.12688/f1000research.13952.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background: The requirement of an alternative clean energy source is increasing with the elevating energy demand of modern age. Bioethanol is considered as an excellent candidate to satiate this demand. Methods: Yeast isolates were used for the production of bioethanol using cellulosic vegetable wastes as substrate. Efficient bioconversion of lignocellulosic biomass into ethanol was achieved by the action of cellulolytic bacteria ( Bacillus subtilis). After proper isolation, identification and characterization of stress tolerances (thermo-, ethanol-, pH-, osmo- & sugar tolerance), optimization of physiochemical parameters for ethanol production by the yeast isolates was assessed. Very inexpensive and easily available raw materials (vegetable peels) were used as fermentation media. Fermentation was optimized with respect to temperature, reducing sugar concentration and pH. Results: It was observed that temperatures of 30°C and pH 6.0 were optimum for fermentation with a maximum yield of ethanol. The results indicated an overall increase in yields upon the pretreatment of Bacillus subtilis; maximum ethanol percentages for isolate SC1 obtained after 48-hour incubation under pretreated substrate was 14.17% in contrast to untreated media which yielded 6.21% after the same period. Isolate with the highest ethanol production capability was identified as members of the ethanol-producing Saccharomyces species after stress tolerance studies and biochemical characterization using Analytical Profile Index (API) ® 20C AUX and nitrate broth test. Introduction of Bacillus subtilis increased the alcohol production rate from the fermentation of cellulosic materials. Conclusions: The study suggested that the kitchen waste can serve as a raw material in ethanol fermentation.
Collapse
Affiliation(s)
- Salman Khan Promon
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Wasif Kamal
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Shafkat Shamim Rahman
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh.,United Surgical (BD) Ltd, Kadda, Gazipur, 1702, Bangladesh
| | - M Mahboob Hossain
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Naiyyum Choudhury
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh.,Bangladesh Atomic Energy Regulatory Authority (BAERA), Dhaka, 1207, Bangladesh
| |
Collapse
|
41
|
Walker GM, Walker RSK. Enhancing Yeast Alcoholic Fermentations. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:87-129. [PMID: 30342724 DOI: 10.1016/bs.aambs.2018.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of ethanol by yeast fermentation represents the largest of all global biotechnologies. Consequently, the yeast Saccharomyces cerevisiae is the world's premier industrial microorganism, which is responsible not only for the production of alcoholic beverages, including beer, wine, and distilled spirits, but also for the billions of liters of bioethanol produced annually for use as a renewable transportation fuel. Although humankind has exploited the fermentative activities of yeasts for millennia, many aspects of alcohol fermentation remain poorly understood. This chapter will review some of the key considerations in optimizing industrial alcohol fermentations with a particular emphasis on enhancement opportunities involving cell physiology and strain engineering of the major microbial ethanologen, the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Graeme M Walker
- School of Science, Engineering & Technology, Abertay University, Dundee, Scotland, United Kingdom
| | - Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
42
|
Lian J, HamediRad M, Zhao H. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. Biotechnol J 2018; 13:e1700601. [PMID: 29436783 DOI: 10.1002/biot.201700601] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. This review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.
Collapse
Affiliation(s)
- Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL 61801, United States
| | - Mohammad HamediRad
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, UrbanaIL 61801, United States.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana,IL 61801, United States
| |
Collapse
|
43
|
Kim SJ, Sim HJ, Kim JW, Lee YG, Park YC, Seo JH. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1551-1557. [PMID: 28651874 DOI: 10.1016/j.biortech.2017.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to produce 2,3-butanediol (2,3-BDO) from xylose efficiently by modulation of the xylose metabolic pathway in engineered Saccharomyces cerevisiae. Expression of the Scheffersomyces stipitis transaldolase and NADH-preferring xylose reductase in S. cerevisiae improved xylose consumption rate by a 2.1-fold and 2,3-BDO productivity by a 1.8-fold. Expression of the Lactococcus lactis noxE gene encoding NADH oxidase also increased 2,3-BDO yield by decreasing glycerol accumulation. Additionally, the disadvantage of C2-dependent growth of pyruvate decarboxylase-deficient (Pdc-) S. cerevisiae was overcome by expression of the Candida tropicalis PDC1 gene. A fed-batch fermentation of the BD5X-TXmNP strain resulted in 96.8g/L 2,3-BDO and 0.58g/L-h productivity from xylose, which were 15.6- and 2-fold increases compared with the corresponding values of the BD5X strain. It was concluded that facilitation of the xylose metabolic pathway, oxidation of NADH and relief of C2-dependency synergistically triggered 2,3-BDO production from xylose in Pdc-S. cerevisiae.
Collapse
Affiliation(s)
- Soo-Jung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Hee-Jin Sim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Woo Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Jin-Ho Seo
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
44
|
Jo JH, Park YC, Jin YS, Seo JH. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. BIORESOURCE TECHNOLOGY 2017; 241:88-94. [PMID: 28550778 DOI: 10.1016/j.biortech.2017.05.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 05/12/2023]
Abstract
Engineered Saccharomyces cerevisiae has been used for ethanol production from xylose, the abundant sugar in lignocellulosic hydrolyzates. Development of engineered S. cerevisiae able to utilize xylose effectively is crucial for economical and sustainable production of fuels. To this end, the xylose-metabolic genes (XYL1, XYL2 and XYL3) from Scheffersomyces stipitis have been introduced into S. cerevisiae. The resulting engineered S. cerevisiae strains, however, often exhibit undesirable phenotypes such as slow xylose assimilation and xylitol accumulation. This work was undertaken to construct an improved xylose-fermenting strain by developing a synthetic isozyme system of xylose reductase (XR). The DXS strain having both wild XR and mutant XR showed low xylitol accumulation and fast xylose consumption compared to the engineered strains expressing only one type of XRs, resulting in improved ethanol yield and productivity. These results suggest that the introduction of the XR-based synthetic isozyme system is a promising strategy to develop efficient xylose-fermenting strains.
Collapse
Affiliation(s)
- Jung-Hyun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
45
|
Retooling microorganisms for the fermentative production of alcohols. Curr Opin Biotechnol 2017; 50:1-10. [PMID: 28888164 DOI: 10.1016/j.copbio.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022]
Abstract
Bioengineering and synthetic biology approaches have revolutionised the field of biotechnology, enabling the introduction of non-native and de novo pathways for biofuels production. This 'retooling' of microorganisms is also applied to the utilisation of mixed carbon components derived from lignocellulosic biomass, a major technical barrier for the development of economically viable fermentations. This review will discuss recent advances in microorganism engineering for efficient production of alcohols from waste biomass. These advances span the introduction of new pathways to alcohols, host modifications for more cost-effective utilisation of lignocellulosic waste and modifications of existing pathways for generating new fuel additives.
Collapse
|