1
|
Lin P, Zhang L, Du G, Chen J, Zhang J, Peng Z. Construction of Saccharomyces cerevisiae Platform Strain for the Biosynthesis of Carotenoids and Apocarotenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9187-9196. [PMID: 40168627 DOI: 10.1021/acs.jafc.5c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Carotenoids and apocarotenoids, natural compounds with vital biological functions, are now sustainably produced via microbial synthesis as an eco-friendly alternative to inefficient and polluting traditional plant-based extraction methods. In their biosynthesis, β-carotene (BC) plays a crucial role as it is the key intermediate from which different downstream derivatives are formed. Here, we engineered a high-producing Saccharomyces cerevisiae platform strain to produce BC through a combination of systematic metabolic engineering and atmospheric and room temperature plasma mutagenesis. The strain achieved a BC production of 2.09 g/L via fed-batch fermentation in a 5-L bioreactor, the highest yield reported in S. cerevisiae to date. Using this platform strain, we constructed zeaxanthin- and β-ionone-producing strains by introducing key enzyme genes. The engineered strains produced 39.09 mg/L of zeaxanthin and 31.87 mg/L of β-ionone in shake-flask cultures. The engineered BC platform established in this study provides a higher starting point for producing diverse BC derivatives.
Collapse
Affiliation(s)
- Ping Lin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang G, Li M, Fan B, Liang X, Wang J, Shi Y, Zheng Q, Li D, An T. Introduction of human m 6Am methyltransferase PCIF1 facilitates the biosynthesis of terpenoids in Saccharomyces cerevisiae. Microb Cell Fact 2025; 24:78. [PMID: 40176045 PMCID: PMC11963462 DOI: 10.1186/s12934-025-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The application of synthetic biology techniques has been recognized as an efficient alternative for the biosynthesis of high-value natural products, and various metabolic engineering strategies have been employed to develop microbial cell factories. However, exploration of more efficient metabolic pathway optimization strategies is still required to further improve the producing potential of microbial cell factories to meet the industrial requirements. RESULTS In this study, we found that the introduction of human N6,2'-O-dimethyladenosine (m6Am) methyltransferase PCIF1 into Saccharomyces cerevisiae significantly promoted the biosynthesis of squalene, increased by 2.3-fold. Transcriptome analysis revealed that PCIF1 upregulated genes associated with glycolysis and acetyl-CoA biosynthesis pathways, and also activated the cell wall integrity mitogen-activated protein kinase (MAPK) pathway to improve the cell wall stress response. Importantly, PCIF1 expression notably enhanced squalene and sesquiterpenoid longifolene production in engineered yeast strains, with 2.3-fold and 1.4-fold higher increase, respectively. CONCLUSION This study presents a PCIF1-based metabolic engineering strategy that could serve as an effective approach for the optimization of terpene biosynthesis in yeast cell factories.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Jun Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yanbing Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
4
|
Wei G, Zhang G, Li M, Zheng Y, Zheng W, Wang B, Zhang Z, Zhang X, Huang Z, Wei T, Shi L, Chen S, Dong L. Panax notoginseng: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides. HORTICULTURE RESEARCH 2024; 11:uhae170. [PMID: 39135729 PMCID: PMC11317898 DOI: 10.1093/hr/uhae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
Panax notoginseng is a famous perennial herb widely used as material for medicine and health-care food. Due to its various therapeutic effects, research work on P. notoginseng has rapidly increased in recent years, urging a comprehensive review of research progress on this important medicinal plant. Here, we summarize the latest studies on the representative bioactive constituents of P. notoginseng and their multiple pharmacological effects, like cardiovascular protection, anti-tumor, and immunomodulatory activities. More importantly, we emphasize the biosynthesis and regulation of ginsenosides, which are the main bioactive ingredients of P. notoginseng. Key enzymes and transcription factors (TFs) involved in the biosynthesis of ginsenosides are reviewed, including diverse CYP450s, UGTs, bHLH, and ERF TFs. We also construct a transcriptional regulatory network based on multi-omics data and predicted candidate TFs mediating the biosynthesis of ginsenosides. Finally, the current three major biotechnological approaches for ginsenoside production are highlighted. This review covers advances in the past decades, providing insights into quality evaluation and perspectives for the rational utilization and development of P. notoginseng resources. Modern omics technologies facilitate the exploration of the molecular mechanisms of ginsenoside biosynthesis, which is crucial to the breeding of novel P. notoginseng varieties. The identification of functional enzymes for biosynthesizing ginsenosides will lead to the formulation of potential strategies for the efficient and large-scale production of specific ginsenosides.
Collapse
Affiliation(s)
- Guangfei Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Mengzhi Li
- Nanyang Institute of Technology, Nanyang, No.80, Changjiang Road, Wulibao Street, Wancheng District, 473000, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Wenke Zheng
- Tianjin University of Traditional Chinese Medicine, No. 312, Anshan West Road, Nankai District, Tianjin, 301617, China
| | - Bo Wang
- Hubei Institute for Drug Control, No.54, Dingziqiao Road, Zhongnan Road, Wuchang District, Wuhan, 430012, China
| | - Zhaoyu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Xiao Zhang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Ziying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Tengyun Wei
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Liping Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, No. 37, 12 Qiao Road, Jinniu District, Chengdu, 611137, China
| | - Linlin Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| |
Collapse
|
5
|
Yang H, Huang L, Zhao D, Zhao H, Chen Y, Li Y, Zeng Y. Protective effect of wheat gluten peptides against ethanol-stress damage in yeast cell and identification of anti-ethanol peptides. Lebensm Wiss Technol 2024; 192:115732. [DOI: 10.1016/j.lwt.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
6
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Qi L, Zhu YX, Wang YK, Tang XX, Li KJ, He M, Sui Y, Wang PM, Zheng DQ, Zhang K. Nonlethal Furfural Exposure Causes Genomic Alterations and Adaptability Evolution in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0121623. [PMID: 37395645 PMCID: PMC10434202 DOI: 10.1128/spectrum.01216-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Furfural is a major inhibitor found in lignocellulosic hydrolysate, a promising feedstock for the biofermentation industry. In this study, we aimed to investigate the potential impact of this furan-derived chemical on yeast genome integrity and phenotypic evolution by using genetic screening systems and high-throughput analyses. Our results showed that the rates of aneuploidy, chromosomal rearrangements (including large deletions and duplications), and loss of heterozygosity (LOH) increased by 50-fold, 23-fold, and 4-fold, respectively, when yeast cells were cultured in medium containing a nonlethal dose of furfural (0.6 g/L). We observed significantly different ratios of genetic events between untreated and furfural-exposed cells, indicating that furfural exposure induced a unique pattern of genomic instability. Furfural exposure also increased the proportion of CG-to-TA and CG-to-AT base substitutions among point mutations, which was correlated with DNA oxidative damage. Interestingly, although monosomy of chromosomes often results in the slower growth of yeast under spontaneous conditions, we found that monosomic chromosome IX contributed to the enhanced furfural tolerance. Additionally, terminal LOH events on the right arm of chromosome IV, which led to homozygosity of the SSD1 allele, were associated with furfural resistance. This study sheds light on the mechanisms underlying the influence of furfural on yeast genome integrity and adaptability evolution. IMPORTANCE Industrial microorganisms are often exposed to multiple environmental stressors and inhibitors during their application. This study demonstrates that nonlethal concentrations of furfural in the culture medium can significantly induce genome instability in the yeast Saccharomyces cerevisiae. Notably, furfural-exposed yeast cells displayed frequent chromosome aberrations, indicating the potent teratogenicity of this inhibitor. We identified specific genomic alterations, including monosomic chromosome IX and loss of heterozygosity of the right arm of chromosome IV, that confer furfural tolerance to a diploid S. cerevisiae strain. These findings enhance our understanding of how microorganisms evolve and adapt to stressful environments and offer insights for developing strategies to improve their performance in industrial applications.
Collapse
Affiliation(s)
- Lei Qi
- Donghai Laboratory, Zhoushan, China
- Ocean College, Zhejiang University, Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | | | - Ye-Ke Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | | | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Min He
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Donghai Laboratory, Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Pin-Mei Wang
- Donghai Laboratory, Zhoushan, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Dao-Qiong Zheng
- Donghai Laboratory, Zhoushan, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
Kyriakou M, Christodoulou M, Ioannou A, Fotopoulos V, Koutinas M. Improvement of stress multi-tolerance and bioethanol production by Saccharomyces cerevisiae immobilised on biochar: Monitoring transcription from defence-related genes. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Pu W, Chen J, Zhou Y, Qiu H, Shi T, Zhou W, Guo X, Cai N, Tan Z, Liu J, Feng J, Wang Y, Zheng P, Sun J. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:31. [PMID: 36829220 PMCID: PMC9951541 DOI: 10.1186/s13068-023-02280-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Huamin Qiu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Zijian Tan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
Qiu S, Blank LM. Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2197-2210. [PMID: 36696911 DOI: 10.1021/acs.jafc.2c06888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant natural products are a seemingly endless resource for novel chemical structures. However, their extraction often results in high prices, fluctuation in both quantity and quality, and negative environmental impact. The latter might result from the extraction procedure but more often from the high amount of plant biomass required. With the advent of synthetic biology, producing natural plant products in large quantities using yeasts as hosts has become possible. Here, we focus on the recent advances in metabolic engineering of the yeasts species Saccharomyces cerevisiae and Yarrowia lipolytica for the synthesis of ginsenoside triterpenoids, namely, dammarenediol-II, protopanaxadiol, protopanaxatriol, compound K, ginsenoside Rh1, ginsenoside Rh2, ginsenoside Rg3, and ginsenoside F1. A discussion is provided on advanced synthetic biology, bioprocess strategies, and current challenges for the biosynthesis of ginsenoside triterpenoids. Finally, future directions in metabolic and process engineering are summarized and may help reify sustainable ginsenoside production.
Collapse
Affiliation(s)
- Shangkun Qiu
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
12
|
Li F, Chen MM, Zhang HM, Wu QP, Han YB. Production of ginsenoside compound K by microbial cell factory using synthetic biology-based strategy: a review. Biotechnol Lett 2023; 45:163-174. [PMID: 36550334 DOI: 10.1007/s10529-022-03326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Ginsenoside compound K (CK) is a major intestinal bacterial metabolite of the protopanaxadiol-type ginsenoside family that can be absorbed in the systemic circulation. CK possesses diverse and important pharmacological properties. The low production and high cost of traditional manufacturing methods based on the extraction and biotransformation of total ginsenosides from ginseng have limited their medical application. However, considerable progress has been made in the area of de novo CK production via microbial cell factories using synthetic biology-based strategies. By introducing key enzymes responsible for CK biosynthesis into microbial cells, CK was produced via a series of in vivo enzymatic reactions that utilize the inherent precursors in microbial cells. After systematic optimization using various metabolic engineering strategies, the yield of CK increased significantly and exceeded the traditional plant extraction-biotransformation method, implying the commercial feasibility of this approach. This review summarizes recent novel advancements in the production of CK using microbial cell factories.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Meng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Min Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qing Ping Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Bin Han
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Zhu Y, Li J, Peng L, Meng L, Diao M, Jiang S, Li J, Xie N. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:230. [PMID: 36335407 PMCID: PMC9636795 DOI: 10.1186/s12934-022-01949-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ginsenosides are Panax plant-derived triterpenoid with wide applications in cardiovascular protection and immunity-boosting. However, the saponins content of Panax plants is fairly low, making it time-consuming and unsustainable by direct extraction. Protopanaxadiol (PPD) is a common precursor of dammarane-type saponins, and its sufficient supply is necessary for the efficient synthesis of ginsenoside. Results In this study, a combinational strategy was used for the construction of an efficient yeast cell factory for PPD production. Firstly, a PPD-producing strain was successfully constructed by modular engineering in Saccharomyces cerevisiae BY4742 at the multi-copy sites. Then, the INO2 gene, encoding a transcriptional activator of the phospholipid biosynthesis, was fine-tuned to promote the endoplasmic reticulum (ER) proliferation and improve the catalytic efficiency of ER-localized enzymes. To increase the metabolic flux of PPD, dynamic control, based on a carbon-source regulated promoter PHXT1, was introduced to repress the competition of sterols. Furthermore, the global transcription factor UPC2-1 was introduced to sterol homeostasis and up-regulate the MVA pathway, and the resulting strain BY-V achieved a PPD production of 78.13 ± 0.38 mg/g DCW (563.60 ± 1.65 mg/L). Finally, sugarcane molasses was used as an inexpensive substrate for the first time in PPD synthesis. The PPD titers reached 1.55 ± 0.02 and 15.88 ± 0.65 g/L in shake flasks and a 5-L bioreactor, respectively. To the best of our knowledge, these results were new records on PPD production. Conclusion The high-level of PPD production in this study and the successful comprehensive utilization of low-cost carbon source -sugarcane molassesindicate that the constructed yeast cell factory is an excellent candidate strain for the production of high-value-added PPD and its derivativeswith great industrial potential. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01949-4.
Collapse
Affiliation(s)
- Yuan Zhu
- grid.256609.e0000 0001 2254 5798College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004 China ,grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Jianxiu Li
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Longyun Peng
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Lijun Meng
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Mengxue Diao
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| | - Shuiyuan Jiang
- grid.469559.20000 0000 9677 2830Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guilin, 541006 China
| | - Jianbin Li
- grid.256609.e0000 0001 2254 5798College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004 China
| | - Nengzhong Xie
- grid.418329.50000 0004 1774 8517State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007 China
| |
Collapse
|
14
|
Protective effects of peptides on the cell wall structure of yeast under osmotic stress. Appl Microbiol Biotechnol 2022; 106:7051-7061. [PMID: 36184688 DOI: 10.1007/s00253-022-12207-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Three peptides (LL, LML, and LLL) were used to examine their influences on the osmotic stress tolerance and cell wall properties of brewer's yeast. Results suggested that peptide supplementation improved the osmotic stress tolerance of yeast through enhancing the integrity and stability of the cell wall. Transmission electron micrographs showed that the thickness of yeast cell wall was increased by peptide addition under osmotic stress. Additionally, quantitative analysis of cell wall polysaccharide components in the LL and LLL groups revealed that they had 27.34% and 24.41% higher chitin levels, 25.73% and 22.59% higher mannan levels, and 17.86% and 21.35% higher β-1,3-glucan levels, respectively, than the control. Furthermore, peptide supplementation could positively modulate the cell wall integrity pathway and up-regulate the expressions of cell wall remodeling-related genes, including FKS1, FKS2, KRE6, MNN9, and CRH1. Thus, these results demonstrated that peptides improved the osmotic stress tolerance of yeast via remodeling the yeast cell wall and reinforcing the structure of the cell wall. KEY POINTS: • Peptide supplementation improved yeast osmotic stress tolerance via cell wall remodeling. • Peptide supplementation enhanced cell wall thickness and stability under osmotic stress. • Peptide supplementation positively modulated the CWI pathway under osmotic stress.
Collapse
|
15
|
Wang S, Xu X, Lv X, Liu Y, Li J, Du G, Liu L. Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae. Front Bioeng Biotechnol 2022; 10:919526. [PMID: 35711645 PMCID: PMC9197265 DOI: 10.3389/fbioe.2022.919526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mogrol plays important roles in antihyperglycemic and antilipidemic through activating the AMP-activated protein kinase pathway. Although the synthesis pathway of mogrol in Siraitia grosvenorii has been clarified, few studies have focused on improving mogrol production. This study employed a modular engineerin g strategy to improve mogrol production in a yeast chassis cell. First, a de novo synthesis pathway of mogrol in Saccharomyces cerevisiae was constructed. Then, the metabolic flux of each synthetic module in mogrol metabolism was systematically optimized, including the enhancement of the precursor supply, inhibition of the sterol synthesis pathway using the Clustered Regularly Interspaced Short Palindromic Repeats Interference system (CRISPRi), and optimization of the expression and reduction system of P450 enzymes. Finally, the mogrol titer was increased to 9.1 μg/L, which was 455-fold higher than that of the original strain. The yeast strains engineered in this work can serve as the basis for creating an alternative way for mogrol production in place of extraction from S. grosvenorii.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Jiang F, Zhou C, Li Y, Deng H, Gong T, Chen J, Chen T, Yang J, Zhu P. Metabolic engineering of yeasts for green and sustainable production of bioactive ginsenosides F2 and 3β,20S-Di-O-Glc-DM. Acta Pharm Sin B 2022; 12:3167-3176. [PMID: 35865098 PMCID: PMC9293705 DOI: 10.1016/j.apsb.2022.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Both natural ginsenoside F2 and unnatural ginsenoside 3β,20S-Di-O-Glc-DM were reported to exhibit anti-tumor activity. Traditional approaches for producing them rely on direct extraction from Panax ginseng, enzymatic catalysis or chemical synthesis, all of which result in low yield and high cost. Metabolic engineering of microbes has been recognized as a green and sustainable biotechnology to produce natural and unnatural products. Hence we engineered the complete biosynthetic pathways of F2 and 3β,20S-Di-O-Glc-DM in Saccharomyces cerevisiae via the CRISPR/Cas9 system. The titers of F2 and 3β,20S-Di-O-Glc-DM were increased from 1.2 to 21.0 mg/L and from 82.0 to 346.1 mg/L at shake flask level, respectively, by multistep metabolic engineering strategies. Additionally, pharmacological evaluation showed that both F2 and 3β,20S-Di-O-Glc-DM exhibited anti-pancreatic cancer activity and the activity of 3β,20S-Di-O-Glc-DM was even better. Furthermore, the titer of 3β,20S-Di-O-Glc-DM reached 2.6 g/L by fed-batch fermentation in a 3 L bioreactor. To our knowledge, this is the first report on demonstrating the anti-pancreatic cancer activity of F2 and 3β,20S-Di-O-Glc-DM, and achieving their de novo biosynthesis by the engineered yeasts. Our work presents an alternative approach to produce F2 and 3β,20S-Di-O-Glc-DM from renewable biomass, which lays a foundation for drug research and development.
Collapse
|
17
|
Ju H, Zhang C, He S, Nan W, Lu W. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Appl Microbiol Biotechnol 2022; 106:1933-1944. [PMID: 35235006 DOI: 10.1007/s00253-022-11819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/27/2022]
Abstract
Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 μg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 μg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shifan He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Weihua Nan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| |
Collapse
|
18
|
Lee YR, Lee WH, Lee SY, Lee J, Kim MS, Moon M, Park GW, Kim HS, Kim JI, Lee JS, Lee S. Regulation of Reactive Oxygen Species Promotes Growth and Carotenoid Production Under Autotrophic Conditions in Rhodobacter sphaeroides. Front Microbiol 2022; 13:847757. [PMID: 35295297 PMCID: PMC8920488 DOI: 10.3389/fmicb.2022.847757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Industrial demand for capture and utilization using microorganisms to reduce CO2, a major cause of global warming, is significantly increasing. Rhodobacter sphaeroides is a suitable strain for the process of converting CO2 into high-value materials because it can accept CO2 and has various metabolic pathways. However, it has been mainly studied for heterotrophic growth that uses sugars and organic acids as carbon sources, not autotrophic growth. Here, we report that the regulation of reactive oxygen species is critical for growth when using CO2 as a sole carbon source in R. sphaeroides. In general, the growth rate is much slower under autotrophic conditions compared to heterotrophic conditions. To improve this, we performed random mutagenesis using N-methyl-N’-nitro-N-nitrosoguanidine (NTG). As a result, we selected the YR-1 strain with a maximum specific growth rate (μ) 1.44 day–1 in the early growth phase, which has a 110% faster growth rate compared to the wild-type. Based on the transcriptome analysis, it was confirmed that the growth was more sensitive to reactive oxygen species under autotrophic conditions. In the YR-1 mutant, the endogenous contents of H2O2 levels and oxidative damage were reduced by 33.3 and 42.7% in the cells, respectively. Furthermore, we measured that concentrations of carotenoids, which are important antioxidants. The total carotenoid is produced 9.63 g/L in the YR-1 mutant, suggesting that the production is 1.7-fold higher than wild-type. Taken together, our observations indicate that controlling ROS promotes cell growth and carotenoid production under autotrophic conditions.
Collapse
Affiliation(s)
- Yu Rim Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Won-Heong Lee
- Interdisciplinary Program of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon, South Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Hui Su Kim
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- Department of Advanced Chemicals and Engineering, Chonnam National University, Gwangju, South Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju, South Korea
- *Correspondence: Sangmin Lee,
| |
Collapse
|
19
|
Li Y, Li J, Diao M, Peng L, Huang S, Xie N. Characterization of a Group of UDP-Glycosyltransferases Involved in the Biosynthesis of Triterpenoid Saponins of Panax notoginseng. ACS Synth Biol 2022; 11:770-779. [PMID: 35107265 DOI: 10.1021/acssynbio.1c00469] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UDP-glycosyltransferase (UGT)-mediated glycosylation is a common modification in triterpene saponins, which exhibit a wide range of bioactivities and important pharmacological effects. However, few UGTs involved in saponin biosynthesis have been identified, limiting the biosynthesis of saponins. In this study, an efficient heterologous expression system was established for evaluating the UGT-mediated glycosylation process of triterpene saponins. Six UGTs (UGTPn17, UGTPn42, UGTPn35, UGTPn87, UGTPn19, and UGTPn12) from Panax notoginseng were predicted and found to be responsible for efficient and direct enzymatic biotransformation of 21 triterpenoid saponins via 26 various glycosylation reactions. Among them, UGTPn87 exhibited promiscuous sugar-donor specificity of UDP-glucose (UDP-Glc) and UDP-xylose (UDP-Xyl) by catalyzing the elongation of the second sugar chain at the C3 or/and C20 sites of protopanaxadiol-type saponins with a UDP-Glc or UDP-Xyl donor, as well as at the C20 site of protopanaxadiol-type saponins with a UDP-Glc donor. Two new saponins, Fd-Xyl and Fe-Xyl, were generated by catalyzing the C3-O-Glc xylosylations of notoginsenoside Fd and notoginsenoside Fe when incubated with UGTPn87. Moreover, the complete biosynthetic pathways of 17 saponins were elucidated, among which notoginsenoside L, vinaginsenoside R16, gypenoside LXXV, and gypenoside XVII were revealed in Panax for the first time. A yeast cell factory was constructed with a yield of Rh2 at 354.69 mg/L and a glycosylation ratio of 60.40% in flasks. Our results reveal the biosynthetic pathway of a group of saponins in P. notoginseng and provide a theoretical basis for producing rare and valuable saponins, promoting their industrial application in medicine and functional foods.
Collapse
Affiliation(s)
- Yanting Li
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jianxiu Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Mengxue Diao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Longyun Peng
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Nengzhong Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
20
|
Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng 2022; 70:115-128. [DOI: 10.1016/j.ymben.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
|
21
|
CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222111836. [PMID: 34769267 PMCID: PMC8584524 DOI: 10.3390/ijms222111836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in Panax ginseng and a long cultivation time (4–6 years). For the biological mass production of the PPD, de novo biosynthetic pathways for PPD were introduced in Saccharomyces cerevisiae and the metabolic flux toward the target molecule was restructured to avoid competition for carbon sources between native metabolic pathways and de novo biosynthetic pathways producing PPD in S. cerevisiae. Here, we report a CRISPRi (clustered regularly interspaced short palindromic repeats interference)-based customized metabolic flux system which downregulates the lanosterol (a competing metabolite of dammarenediol-II (DD-II)) synthase in S. cerevisiae. With the CRISPRi-mediated suppression of lanosterol synthase and diversion of lanosterol to DD-II and PPD in S. cerevisiae, we increased PPD production 14.4-fold in shake-flask fermentation and 5.7-fold in a long-term batch-fed fermentation.
Collapse
|
22
|
Wang J, Guo Y, Yin X, Wang X, Qi X, Xue Z. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Crit Rev Biochem Mol Biol 2021; 57:113-132. [PMID: 34601979 DOI: 10.1080/10409238.2021.1979458] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triterpenoids are one of the largest groups of secondary metabolites and exhibit diverse structures, which are derived from C30 skeletons that are biosynthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene. Triterpenoids have a wide range of biological activities, and are used in functional foods, drugs, and as industrial materials. Due to the low content levels in their native plants and limited feasibility and efficiency of chemical synthesis, heterologous biosynthesis of triterpenoids is the most promising strategy. Herein, we classified 121 triterpene alcohols/ketones according to their conformation and ring numbers, among which 51 skeletons have been experimentally characterized as the products of oxidosqualene cyclases (OSCs). Interestingly, 24 skeletons that have not been reported from nature source were generated by OSCs in heterologous expression. Comprehensive evolutionary analysis of the identified 152 OSCs from 75 species in 25 plant orders show that several pentacyclic triterpene synthases repeatedly originated in multiple plant lineages. Comparative analysis of OSC catalytic reaction revealed that stabilization of intermediate cations, steric hindrance, and conformation of active center amino acid residues are primary factors affecting triterpene formation. Optimization of OSC could be achieved by changing of side-chain orientations of key residues. Recently, methods, such as rationally design of pathways, regulation of metabolic flow, compartmentalization engineering, etc., were introduced in improving chassis for the biosynthesis of triterpenoids. We expect that extensive study of natural variation of large number of OSCs and catalytical mechanism will provide basis for production of high level of triterpenoids by application of synthetic biology strategies.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China.,Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Yanhong Guo
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
23
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
24
|
Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 2021; 11:1813-1834. [PMID: 34386322 PMCID: PMC8343117 DOI: 10.1016/j.apsb.2020.12.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
Collapse
Key Words
- ABA, abscisic acid
- ADP, adenosine diphosphate
- AtCPR (ATR), Arabidopsis thaliana cytochrome P450 reductase
- BARS, baruol synthase
- Biosynthetic pathway
- Biotechnological approach
- CAS, cycloartenol synthase
- CDP, cytidine diphosphate
- CPQ, cucurbitadienol synthase
- CYP, cytochrome P450
- DDS, dammarenediol synthase
- DM, dammarenediol-II
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl pyrophosphate
- FPPS (FPS), farnesyl diphosphate synthase
- GDP, guanosine diphosphate
- Ginsenoside
- HEJA, 2-hydroxyethyl jasmonate
- HMGR, HMG-CoA reductase
- IPP, isopentenyl diphosphate
- ITS, internal transcribed spacer
- JA, jasmonic acid
- JA-Ile, (+)-7-iso-jasmonoyl-l-isoleucine
- JAR, JA-amino acid synthetase
- JAZ, jasmonate ZIM-domain
- KcMS, Kandelia candel multifunctional triterpene synthases
- LAS, lanosterol synthase
- LUP, lupeol synthase
- MEP, methylerythritol phosphate
- MVA, mevalonate
- MVD, mevalonate diphosphate decarboxylase
- MeJA, methyl jasmonate
- NDP, nucleotide diphosphate
- Non-coding RNAs
- OA, oleanane or oleanic acid
- OAS, oleanolic acid synthase
- OCT, ocotillol
- OSC, oxidosqualene cyclase
- PPD, protopanaxadiol
- PPDS, PPD synthase
- PPT, protopanaxatriol
- PPTS, PPT synthase
- Panax species
- RNAi, RNA interference
- SA, salicylic acid
- SE (SQE), squalene epoxidase
- SPL, squamosa promoter-binding protein-like
- SS (SQS), squalene synthase
- SUS, sucrose synthase
- TDP, thymine diphosphate
- Transcription factors
- UDP, uridine diphosphate
- UGPase, UDP-glucose pyrophosphosphprylase
- UGT, UDP-dependent glycosyltransferase
- WGD, whole genome duplication
- α-AS, α-amyrin synthase
- β-AS, β-amyrin synthase
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Carsanba E, Pintado M, Oliveira C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals (Basel) 2021; 14:295. [PMID: 33810302 PMCID: PMC8066412 DOI: 10.3390/ph14040295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural products with significant industrial and pharmaceutical importance. Many of these natural products have antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Production of these compounds are generally carried out through extraction from their natural sources or chemical synthesis. However, these processes are generally unsustainable, produce low yield, and result in wasting of substantial resources, most of them limited. Microbial production of terpenoids provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling. Besides that, fermentation development has a significant importance on achieving high titer, yield, and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not been yet comprehensively discussed in the literature. This review summarizes recent studies of recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae, with special focus on fermentation strategies to increase TYP in order to meet industrial demands to feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed (strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and continuous) are discussed.
Collapse
Affiliation(s)
- Erdem Carsanba
- Amyris BioProducts Portugal, Unipessoal, Lda. Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
26
|
Wang L, Li B, Wang SP, Xia ZY, Gou M, Tang YQ. Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Yang H, Coldea TE, Zeng Y, Zhao H. Wheat gluten hydrolysates promotes fermentation performance of brewer's yeast in very high gravity worts. BIORESOUR BIOPROCESS 2021; 8:5. [PMID: 38650257 PMCID: PMC10973751 DOI: 10.1186/s40643-020-00355-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/17/2020] [Indexed: 11/10/2022] Open
Abstract
The effects of wheat gluten hydrolysates (WGH) and their ethanol elution fractions obtained on XAD-16 resin on physiological activity and fermentation performance of brewer's yeast during very-high-gravity (VHG) worts fermentation were investigated. The results showed that the addition of WGH and their elution fractions in VHG worts significantly enhanced yeast biomass and viability, and further increased the fermentability, ethanol yield and productivity of yeast. Supplementation with 40% ethanol fraction exhibited the highest biomass (6.9 g/L dry cell), cell viability, fermentability (82.05%), ethanol titer (12.19%, v/v) and ethanol productivity during VHG worts fermentation. In addition, 40% ethanol fraction supplementation also caused the most consumption of amino acid and the highest accumulation of intracellular glycerol and trehalose, 15.39% of increase in cell-membrane integrity, 39.61% of enhancement in mitochondrial membrane potential (MMP), and 18.94% of reduction in intracellular reactive oxygen species (ROS) level in yeast under VHG conditions. Therefore, WGH supplementation was an efficient method to improve fermentation performance of brewer's yeast during VHG worts.
Collapse
Affiliation(s)
- Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - Yingjie Zeng
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
- Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
28
|
Wang Z, Zhang R, Yang Q, Zhang J, Zhao Y, Zheng Y, Yang J. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:1-35. [PMID: 33934850 DOI: 10.1016/bs.aambs.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jintian Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
29
|
Guo H, Wang H, Huo YX. Engineering Critical Enzymes and Pathways for Improved Triterpenoid Biosynthesis in Yeast. ACS Synth Biol 2020; 9:2214-2227. [PMID: 32786348 DOI: 10.1021/acssynbio.0c00124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Triterpenoids represent a diverse group of phytochemicals that are widely distributed in the plant kingdom and have many biological activities. The heterologous production of triterpenoids in Saccharomyces cerevisiae has been successfully implemented by introducing various triterpenoid biosynthetic pathways. By engineering related enzymes as well as through yeast metabolism, the yield of various triterpenoids is significantly improved from the milligram per liter scale to the gram per liter scale. This achievement demonstrates that engineering critical enzymes is considered a potential strategy to overcome the main hurdles of the industrial application of these potent natural products. Here, we review strategies for designing enzymes to improve the yield of triterpenoids in S. cerevisiae in terms of three main aspects: 1, elevating the supply of the precursor 2,3-oxidosqualene; 2, optimizing triterpenoid-involved reactions; and 3, lowering the competition of the native sterol pathway. Then, we provide challenges and prospects for further enhancing triterpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huiyan Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
- SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, P. R. China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
30
|
Chu LL, Montecillo JAV, Bae H. Recent Advances in the Metabolic Engineering of Yeasts for Ginsenoside Biosynthesis. Front Bioeng Biotechnol 2020; 8:139. [PMID: 32158753 PMCID: PMC7052115 DOI: 10.3389/fbioe.2020.00139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 01/03/2023] Open
Abstract
Ginsenosides are a group of glycosylated triterpenes isolated from Panax species. Ginsenosides are promising candidates for the prevention and treatment of cancer as well as food additives. However, owing to a lack of efficient approaches for ginsenoside production from plants and chemical synthesis, ginsenosides may not yet have reached their full potential as medicinal resources. In recent years, an alternative approach for ginsenoside production has been developed using the model yeast Saccharomyces cerevisiae and non-conventional yeasts such as Yarrowia lipolytica and Pichia pastoris. In this review, various metabolic engineering strategies, including heterologous gene expression, balancing, and increasing metabolic flux, and enzyme engineering, have been described as recent advanced engineering techniques for improving ginsenoside production. Furthermore, the usefulness of a systems approach and fermentation strategy has been presented. Finally, the present challenges and future research direction for industrial cell factories have been discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Biotechnology, Yeungnam University, Gyeongsan-si, South Korea
| | | | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
31
|
Nan W, Zhao F, Zhang C, Ju H, Lu W. Promotion of compound K production in Saccharomyces cerevisiae by glycerol. Microb Cell Fact 2020; 19:41. [PMID: 32075645 PMCID: PMC7029525 DOI: 10.1186/s12934-020-01306-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ginsenoside compound K (CK), one of the primary active metabolites of protopanaxadiol-type ginsenosides, is produced by the intestinal flora that degrade ginseng saponins and exhibits diverse biological properties such as anticancer, anti-inflammatory, and anti-allergic properties. However, it is less abundant in plants. Therefore, enabling its commercialization by construction of a Saccharomyces cerevisiae cell factory is of considerable significance. RESULTS We induced overexpression of PGM2, UGP1, and UGT1 genes in WLT-MVA5, and obtained a strain that produces ginsenoside CK. The production of CK at 96 h was 263.94 ± 2.36 mg/L, and the conversion rate from protopanaxadiol (PPD) to ginsenoside CK was 64.23 ± 0.41%. Additionally, it was observed that the addition of glycerol was beneficial to the synthesis of CK. When 20% glucose (C mol) in the YPD medium was replaced by the same C mol glycerol, CK production increased to 384.52 ± 15.23 mg/L, which was 45.68% higher than that in YPD medium, and the PPD conversion rate increased to 77.37 ± 3.37% as well. As we previously observed that ethanol is beneficial to the production of PPD, ethanol and glycerol were fed simultaneously in the 5-L bioreactor fed fermentation, and the CK levels reached 1.70 ± 0.16 g/L. CONCLUSIONS In this study, we constructed an S. cerevisiae cell factory that efficiently produced ginsenoside CK. Glycerol effectively increased the glycosylation efficiency of PPD to ginsenoside CK, guiding higher carbon flow to the synthesis of ginsenosides and effectively improving CK production. CK production attained in a 5-L bioreactor was 1.7 g/L after simultaneous feeding of glycerol and ethanol.
Collapse
Affiliation(s)
- Weihua Nan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Fanglong Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350 People’s Republic of China
| |
Collapse
|
32
|
Ma B, Liu M, Li ZH, Tao X, Wei DZ, Wang FQ. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8590-8598. [PMID: 31287301 DOI: 10.1021/acs.jafc.9b03456] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Patchoulol, a natural sesquiterpene compound, is widely used in perfumes and cosmetics. Several strategies were adopted to enhance patchoulol production in Saccharomyces cerevisiae: (i) farnesyl pyrophosphate (FPP) synthase and patchoulol synthase were fused to increase the utilization of FPP precursor; (ii) expression of the limiting genes of the mevalonate pathway was enhanced; (iii) squalene synthase was weakened by a glucose-inducible promoter of HXT1 (promoter for hexose transporter) to reduce metabolic flux from FPP to ergosterol; and (iv) farnesol biosynthesis was inhibited to decrease the consumption of FPP. Glucose was used to balance the trade-off between the competitive squalene and patchoulol pathways. The patchoulol production was 59.2 ± 0.7 mg/L in a shaken flask with a final production of 466.8 ± 12.3 mg/L (20.5 ± 0.5 mg/g dry cell weight) combined with fermentation optimization, which was 7.8-fold higher than the reported maximum production. The work significantly promoted the industrialization process of patchoulol production using biobased microbial platforms.
Collapse
Affiliation(s)
- Bin Ma
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Min Liu
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhen-Hai Li
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyi Tao
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Dong-Zhi Wei
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Feng-Qing Wang
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
33
|
Yang H, Zong X, Xu Y, Li W, Zeng Y, Zhao H. Efficient fermentation of very high-gravity worts by brewer's yeast with wheat gluten hydrolysates and their ultrafiltration fractions supplementations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Wu Y, Xu S, Gao X, Li M, Li D, Lu W. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Microb Cell Fact 2019; 18:83. [PMID: 31103047 PMCID: PMC6525355 DOI: 10.1186/s12934-019-1136-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Background As renewable biomass, lignocellulose remains one of the major choices for most countries in tackling global energy shortage and environment pollution. Efficient utilization of xylose, an important monosaccharide in lignocellulose, is essential for the production of high-value compounds, such as ethanol, lipids, and isoprenoids. Protopanaxadiol (PPD), a kind of isoprenoids, has important medical values and great market potential. Results The engineered protopanaxadiol-producing Yarrowia lipolytica strain, which can use xylose as the sole carbon source, was constructed by introducing xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis, overexpressing endogenous xylulose kinase (ylXKS) and heterologous PPD synthetic modules, and then 18.18 mg/L of PPD was obtained. Metabolic engineering strategies such as regulating cofactor balance, enhancing precursor flux, and improving xylose metabolism rate via XR (K270R/N272D) mutation, the overexpression of tHMG1/ERG9/ERG20 and transaldolase (TAL)/transketolase (TKL)/xylose transporter (TX), were implemented to enhance PPD production. The final Y14 strain exhibited the greatest PPD titer from xylose by fed-batch fermentation in a 5-L fermenter, reaching 300.63 mg/L [yield, 2.505 mg/g (sugar); productivity, 2.505 mg/L/h], which was significantly higher than the titer of glucose fermentation [titer, 167.17 mg/L; yield, 1.194 mg/g (sugar); productivity, 1.548 mg/L/h]. Conclusion The results showed that xylose was more suitable for PPD synthesis than glucose due to the enhanced carbon flux towards acetyl-CoA, the precursor for PPD biosynthetic pathway. This is the first report to produce PPD in Y. lipolytica with xylose as the sole carbon source, which developed a promising strategy for the efficient production of high-value triterpenoid compounds. Electronic supplementary material The online version of this article (10.1186/s12934-019-1136-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yufen Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Shuo Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Xiao Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Man Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Dashuai Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China. .,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China.
| |
Collapse
|
35
|
Zhou X, Zhang Y, Shen Y, Zhang X, Xu S, Shang Z, Xia M, Wang M. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD +/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. BIORESOURCE TECHNOLOGY 2019; 279:209-217. [PMID: 30735930 DOI: 10.1016/j.biortech.2019.01.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
The bioprocess for producing androstenedione (AD) from phytosterols by using Mycobacterium neoaurum is hindered by nicotinamide adenine dinucleotides (NAD+ and NADH) ratio imbalance, insoluble substrate, and lengthy biotransformation period. This study aims to improve the efficiency of AD production through a combined application of cofactor, solvent, and fermentation engineering technologies. Through the enhanced type II NADH dehydrogenase (NDH-II), the NAD+/NADH ratio and ATP levels increased; the release of reactive oxygen species decreased by 42.32%, and the cell viability improved by 54.17%. In surfactant-waste cooking oil-water media, the conversion of phytosterol increased from 23.92% to 94.98%. Repeated batch culture successfully reduced the biotransformation period from 30 to 17 days, the productivity was 13.75 times more than the parent strain. This study is the first to improve the productivity of AD by enhancing NDH-II and provides a new strategy to increase the accumulation of NAD+-dependent metabolites during biotransformation.
Collapse
Affiliation(s)
- Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China.
| | - Xiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuangping Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhihua Shang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China.
| |
Collapse
|
36
|
Zhu C, Chen J, Wang Y, Wang L, Guo X, Chen N, Zheng P, Sun J, Ma Y. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng 2019; 116:2018-2028. [PMID: 30934113 DOI: 10.1002/bit.26981] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/03/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
Abstract
5-Aminolevulinic acid (ALA) is a value-added compound with potential applications in the fields of agriculture and medicine. Although massive efforts have recently been devoted to building microbial producers of ALA through metabolic engineering, few studies focused on the cellular response and tolerance to ALA. In this study, we demonstrated that ALA caused severe cell damage and morphology change of Escherichia coli via generating reactive oxygen species (ROS), which were further determined to be mainly hydrogen peroxide and superoxide anion radical. ALA treatment activated the native antioxidant defense system by upregulating catalase (CAT) and superoxide dismutase (SOD) expression to combat ROS. Further overexpressing CAT (encoded by katG and katE) and SOD (encoded by sodA, sodB, and sodC) not only improved ALA tolerance but also its production level. Notably, coexpression of katE and sodB in an ALA synthase expressing strain enhanced the biomass and final ALA titer by 81% and 117% (11.5 g/L) in a 5 L bioreactor, respectively. This study demonstrates the importance of tolerance engineering in strain development. Reinforcing the antioxidant defense system holds promise to improve the bioproduction of chemicals that cause oxidative stress.
Collapse
Affiliation(s)
- Chengchao Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
37
|
Pan Y, Wang Y, Fan X, Wang W, Yang X, Cui D, Zhao M. Bacterial intracellular nanoparticles exhibiting antioxidant properties and the significance of their formation in ROS detoxification. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:140-146. [PMID: 30623592 DOI: 10.1111/1758-2229.12733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Biogenic magnetic nanoparticles (BMNPs) can be formed by numerous microorganisms. However, the significance of their formation and their possible functions have not been explored in detail. To explore a possible function of Fe3 O4 NPs in Burkholderia sp. strain YN01, we investigated their catalytic abilities in the elimination of intracellular reactive oxygen species (ROS). Changes in ROS content under different conditions were assessed and showed that low oxygen and high iron concentrations in the growth medium promoted ROS production. However, the levels of ROS gradually decreased with BMNP formation, suggesting that these particles possess intrinsic superoxide dismutase (SOD)-like activity and catalase (CAT)-like activity, as proven in this study. To ensure that the observed ROS decrease was not due to antioxidase overexpression caused by the oxidative stress response, SOD and CAT were inhibited in vivo to analyse the ROS variation and BMNP yield under microoxic and high-iron conditions respectively. The results demonstrated that the formation of these intracellular iron nanoparticles was required for the efficient scavenging of excess ROS, which was dependent on their antioxidase-like properties. This result reveals a novel physiological function of biogenic intracellular Fe3 O4 nanoparticles.
Collapse
Affiliation(s)
- Yu Pan
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Yongming Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xingyuan Fan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wenbin Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiumin Yang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
38
|
Stepwise increase in the production of 13R-manoyl oxide through metabolic engineering of Saccharomyces cerevisiae. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Wang P, Wei W, Ye W, Li X, Zhao W, Yang C, Li C, Yan X, Zhou Z. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 2019; 5:5. [PMID: 30652026 PMCID: PMC6331602 DOI: 10.1038/s41421-018-0075-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Synthetic biology approach has been frequently applied to produce plant rare bioactive compounds in microbial cell factories by fermentation. However, to reach an ideal manufactural efficiency, it is necessary to optimize the microbial cell factories systemically by boosting sufficient carbon flux to the precursor synthesis and tuning the expression level and efficiency of key bioparts related to the synthetic pathway. We previously developed a yeast cell factory to produce ginsenoside Rh2 from glucose. However, the ginsenoside Rh2 yield was too low for commercialization due to the low supply of the ginsenoside aglycone protopanaxadiol (PPD) and poor performance of the key UDP-glycosyltransferase (UGT) (biopart UGTPg45) in the final step of the biosynthetic pathway. In the present study, we constructed a PPD-producing chassis via modular engineering of the mevalonic acid pathway and optimization of P450 expression levels. The new yeast chassis could produce 529.0 mg/L of PPD in shake flasks and 11.02 g/L in 10 L fed-batch fermentation. Based on this high PPD-producing chassis, we established a series of cell factories to produce ginsenoside Rh2, which we optimized by improving the C3–OH glycosylation efficiency. We increased the copy number of UGTPg45, and engineered its promoter to increase expression levels. In addition, we screened for more efficient and compatible UGT bioparts from other plant species and mutants originating from the direct evolution of UGTPg45. Combining all engineered strategies, we built a yeast cell factory with the greatest ginsenoside Rh2 production reported to date, 179.3 mg/L in shake flasks and 2.25 g/L in 10 L fed-batch fermentation. The results set up a successful example for improving yeast cell factories to produce plant rare natural products, especially the glycosylated ones.
Collapse
Affiliation(s)
- Pingping Wang
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Wei Wei
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Wei Ye
- 2University of Chinese Academy of Sciences, Beijing, 100049 China.,Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai, 200031 China
| | - Xiaodong Li
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenfang Zhao
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Chengshuai Yang
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaojing Li
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xing Yan
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| | - Zhihua Zhou
- 1CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, 200032 China
| |
Collapse
|
40
|
Zhao F, Bai P, Nan W, Li D, Zhang C, Lu C, Qi H, Lu W. A modular engineering strategy for high‐level production of protopanaxadiol from ethanol by
Saccharomyces cerevisiae. AIChE J 2018. [DOI: 10.1002/aic.16502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fanglong Zhao
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Peng Bai
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Weihua Nan
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Dashuai Li
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Chuanbo Zhang
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Chunzhe Lu
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Haishan Qi
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
| | - Wenyu Lu
- Dept. of Biological EngineeringSchool of Chemical Engineering and Technology, Tianjin University Tianjin P.R. China
- Key Laboratory of System BioengineeringTianjin University, Ministry of Education Tianjin P.R. China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin University, SynBio Res Platform Tianjin P.R. China
| |
Collapse
|
41
|
Wheat gluten hydrolysates separated by macroporous resins enhance the stress tolerance in brewer’s yeast. Food Chem 2018; 268:162-170. [PMID: 30064744 DOI: 10.1016/j.foodchem.2018.06.082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/24/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
|
42
|
Gao X, Caiyin Q, Zhao F, Wu Y, Lu W. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12009-12016. [PMID: 30350965 DOI: 10.1021/acs.jafc.8b04916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protopanaxadiol (PPD), an active triterpene compound, is the precursor of high-value ginsenosides. In this study, we report a strategy for the enhancement of PPD production in Saccharomyces cerevisiae by cofermentation of glucose and xylose. In mixed sugar fermentation, strain GW6 showed higher PPD titer and yield than that obtained from glucose cultivation. Then, engineering strategies were implemented on GW6 to enhance the PPD yields, such as adjustment of the central carbon metabolism, optimization of the mevalonate pathway, reinforcement of the xylose assimilation pathway, and regulation of cofactor balance, namely, overexpression of xPK/PTA, ERG10/ERG12/ERG13, XYL1/XYL2/TAL1, and POS5, respectively. In particular, the final obtained strain GW10, harboring overexpressed POS5, exhibited the highest PPD yield, which was 2.06 mg of PPD/g of mixed sugar. In a 5-L fermenter, PPD titer reached 152.37 mg/L. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of PPD.
Collapse
Affiliation(s)
- Xiao Gao
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Fanglong Zhao
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Yufen Wu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
- Key Laboratory of System Bioengineering (Tianjin University) , Ministry of Education , Tianjin 300072 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , People's Republic of China
| |
Collapse
|
43
|
Yang H, Zong X, Xu Y, Zeng Y, Zhao H. Improvement of Multiple-Stress Tolerance and Ethanol Production in Yeast during Very-High-Gravity Fermentation by Supplementation of Wheat-Gluten Hydrolysates and Their Ultrafiltration Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10233-10241. [PMID: 30203970 DOI: 10.1021/acs.jafc.8b04196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of wheat-gluten hydrolysates (WGH) and their ultrafiltration fractions on multiple-stress tolerance and ethanol production in yeast during very-high-gravity (VHG) fermentation were examined. The results showed that WGH and WHG-ultrafiltration-fraction supplementations could significantly enhance the growth and viability of yeast and further improve the tolerance of yeast to osmotic stress and ethanol stress. The addition of MW < 1 kDa fractions led to 51.08 and 21.70% enhancements in cell-membrane integrity, 30.74 and 10.43% decreases in intracellular ROS accumulation, and 34.18 and 26.16% increases in mitochondrial membrane potential (ΔΨm) in yeast under osmotic stress and ethanol stress, respectively. Moreover, WGH and WHG-ultrafiltration-fraction supplementations also improved the growth and ethanol production of yeast during VHG fermentation, and supplementation with the <1 kDa fraction resulted in a maximum biomass of 16.47 g/L dry cell and an ethanol content of 18.50% (v/v) after VHG fermentation.
Collapse
Affiliation(s)
- Huirong Yang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Xuyan Zong
- School of Biotechnology , Sichuan University of Science and Engineering , Zigong 643000 , PR China
| | - Yingchao Xu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Yingjie Zeng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Haifeng Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| |
Collapse
|
44
|
Yi S, Zhang X, Li HX, Du XX, Liang SW, Zhao XH. Screening and Mutation of Saccharomyces cerevisiae UV-20 with a High Yield of Second Generation Bioethanol and High Tolerance of Temperature, Glucose and Ethanol. Indian J Microbiol 2018; 58:440-447. [PMID: 30262954 DOI: 10.1007/s12088-018-0741-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
A wild-type strain was isolated from slightly rotted pears after three rounds of enrichment culture, identified as Saccharomyces cerevisiae 3308, and evaluated for its fermentation capability of second generation bioethanol and tolerance of temperature, glucose and ethanol. S. cerevisiae 3308 was mutated by using the physical and chemical mutagenesis methods, ultraviolet (UV) and diethyl sulfate (DES), respectively. Positive mutated strains were mainly generated by the treatment of UV, but numerous negative mutations emerged under the treatment of DES. A positive mutated strain, UV-20, produced ethanol from 62.33 ± 1.34 to 122.22 ± 2.80 g/L at 30-45 °C, and had a maximum yield of ethanol at 37 °C. Furthermore, UV-20 produced 121.18 ± 2.51 g/L of second generation bioethanol at 37 °C. Simultaneously, UV-20 exhibited superior tolerance to 50% of glucose and 21% of ethanol. In a conclusion, all of these results indicated that UV-20 has a potential industrial application value.
Collapse
Affiliation(s)
- Shi Yi
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiao Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Han-Xin Li
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiao-Xia Du
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Shao-Wei Liang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xi-Hua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|