1
|
Jakob A, Likozar B, Grilc M. Model-Assisted Optimization of Xylose, Arabinose, Glucose, Mannose, Galactose and Real Hemicellulose Streams Dehydration To (Hydroxymethyl)Furfural and Levulinic Acid. CHEMSUSCHEM 2024; 17:e202400962. [PMID: 38959341 PMCID: PMC11660753 DOI: 10.1002/cssc.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Conversion of hemicellulose streams and the constituent monosaccharides, xylose, arabinose, glucose, mannose, and galactose, was conducted to produce value-added chemicals, including furfural, hydroxymethylfurfural (HMF), levulinic acid and anhydrosugars. The study aimed at developing a kinetic model relevant for direct post-Organosolv hemicellulose conversion. Monosaccharides served as a tool to in detail describe the kinetic behavior and segregate contribution of hydrothermal decomposition and acid catalyzed dehydration at the temperature range of 120-190 °C. Catalyst free aqueous media demonstrated enhanced formation of furanics, while elevated temperatures led to significant saccharide isomerization. The introduction of sulfuric and formic acids maximized furfural yield and significantly reduced HMF concentration by facilitating its rehydration into levulinic acid (46 mol%). Formic acid additionally substantially enhanced formation of anhydrosaccharides. An excellent correlation between modeled and experimental data enabled process optimization to maximize furanic yield in two distinct hemicellulose streams. Sulfuric acid-containing hemicellulose stream achieved the highest furfural yield after 30 minutes at 238 °C, primarily due to the high Ea for pentose dehydration (150-160 kJ mol-1). Contrarily, formic acid-containing hemicellulose stream enabled maximal furfural yield at more moderate temperature and extended reaction time due to its lower Ea for the same reaction step (115-125 kJ mol-1).
Collapse
Affiliation(s)
- Ana Jakob
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19Ljubljana1000Slovenia
- University of Nova GoricaVipavska 13Nova Gorica5000Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19Ljubljana1000Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19Ljubljana1000Slovenia
- University of Nova GoricaVipavska 13Nova Gorica5000Slovenia
| |
Collapse
|
2
|
Pendse DS, Deshmukh M, Pande A. Different pre-treatments and kinetic models for bioethanol production from lignocellulosic biomass: A review. Heliyon 2023; 9:e16604. [PMID: 37260877 PMCID: PMC10227349 DOI: 10.1016/j.heliyon.2023.e16604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Lignocellulosic biomass is the generally explored substrate to produce bioethanol for environmental sustainability due to its availability in abundance. However, the complex network of cellulose-hemicellulose-lignin present in it makes its hydrolysis as a challenging task. To boost the effectiveness of conversion, biomass is pre-treated before enzymatic hydrolysis to alter or destroy its original composition. Enzymes like Cellulases are widely used for breaking down cellulose into fermentable sugars. Enzymatic hydrolysis is a complex process involving many influencing factors such as pH, temperature, substrate concentration. This review presents major four pre-treatment methods used for hydrolysing different substrates under varied reaction conditions along with their mechanism and limitations. A relative comparison of data analysis for most widely studied 10 kinetic models is briefly explained in terms of substrates used to get the brief insight about hydrolysis rates. The summary of pre-treatment methods and hydrolysis rates including cellulase enzyme kinetics will be the value addition for upcoming researchers for optimising the hydrolysis process.
Collapse
Affiliation(s)
- Dhanashri S Pendse
- Research Scholar, School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Minal Deshmukh
- School of Petroleum Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Ashwini Pande
- School of Petroleum Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, India
| |
Collapse
|
3
|
Lee H, Jung Sohn Y, Jeon S, Yang H, Son J, Jin Kim Y, Jae Park S. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. BIORESOURCE TECHNOLOGY 2023; 376:128879. [PMID: 36921642 DOI: 10.1016/j.biortech.2023.128879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane industry is a major agricultural sector capable of producing sugars with byproducts including straw, bagasse, and molasses. Sugarcane byproducts are no longer wastes since they can be converted into carbon-rich resources for biorefinery if pretreatment of these is well established. Considerable efforts have been devoted to effective pretreatment techniques for each sugarcane byproduct to supply feedstocks in microbial fermentation to produce value-added fuels, chemicals, and polymers. These value-added chains, which start with low-value industrial wastes and end with high-value products, can make sugarcane-based biorefinery a more viable option for the modern chemical industry. In this review, recent advances in sugarcane valorization techniques are presented, ranging from sugarcane processing, pretreatment, and microbial production of value-added products. Three lucrative products, ethanol, 2,3-butanediol, and polyhydroxyalkanoates, whose production from sugarcane wastes has been widely researched, are being explored. Future studies and development in sugarcane waste biorefinery are discussed to overcome the challenges remaining.
Collapse
Affiliation(s)
- Haeyoung Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Subeen Jeon
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyoju Yang
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Michelin M, Ximenes E, M Polizeli MDLT, Ladisch MR. Inhibition of enzyme hydrolysis of cellulose by phenols from hydrothermally pretreated sugarcane straw. Enzyme Microb Technol 2023; 166:110227. [PMID: 36931149 DOI: 10.1016/j.enzmictec.2023.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Relatively few studies have addressed the characterization of sugarcane straw (SCS) for production of fermentable sugars through enzyme hydrolysis. Straw is a major co-product of the sugarcane harvest in Brazil that has potential to sustainably increase cellulosic feedstocks in Brazil by 50%. Pretreatment of 10% w/v straw with liquid hot water (LHW) at 180 °C for 50 min (severity, So, of 4.05), solubilizes hemicellulose, preserves glucan, and generates 4.49 g/L soluble phenolic compounds in the resulting liquid. Extracts from washing pretreated solids with excess hot water followed by acetone resulted in 1.10 and 0.83 g/L phenolics, respectively. Acetone-derived extracts were more inhibitory and decreased glucose yield for enzyme hydrolysis of Solka Floc (a lignin-free cellulose) by 42%. In comparison, pretreated straw washed with hot water or acetone was readily hydrolyzed to 92% and 97% by cellulase enzyme. Hydrothermally treated SCS has the potential to provide a valuable and added source of fermentable sugars suitable for bioprocessing into biofuels and bioproducts when cellulase enzyme inhibitors are removed after pretreatment.
Collapse
Affiliation(s)
- Michele Michelin
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2032, USA; Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil; Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eduardo Ximenes
- Department of Environment and Occupational Health, School of Public Health, Innovation Center, Indiana University, Bloomington, IN 47408, USA
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2032, USA.
| |
Collapse
|
5
|
Wang M, Qiao J, Sheng Y, Wei J, Cui H, Li X, Yue G. Bioconversion of corn fiber to bioethanol: Status and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:256-268. [PMID: 36577277 DOI: 10.1016/j.wasman.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the rising demand for green energy, bioethanol has attracted increasing attention from academia and industry. Limited by the bottleneck of bioethanol yield in traditional corn starch dry milling processes, an increasing number of studies focus on fully utilizing all corn ingredients, especially kernel fiber, to further improve the bioethanol yield. This mini-review addresses the technological challenges and opportunities on the way to achieving the efficient conversion of corn fiber. Significant advances during the review period include the detailed characterization of different forms of corn kernel fiber and the development of off-line and in-situ conversion strategies. Lessons from cellulosic ethanol technologies offer new ways to utilize corn fiber in traditional processes. However, the commercialization of corn kernel fiber conversion may be hampered by enzyme cost, conversion efficiency, and overall process economics. Thus, future studies should address these technical limitations.
Collapse
Affiliation(s)
- Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Yijie Sheng
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Junnan Wei
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - Guojun Yue
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| |
Collapse
|
6
|
Bona D, Scrinzi D, Tonon G, Ventura M, Nardin T, Zottele F, Andreis D, Andreottola G, Fiori L, Silvestri S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114894. [PMID: 35334400 DOI: 10.1016/j.jenvman.2022.114894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 °C for 3 h) and co-composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m2; 51.45 mmol N2O/m2; 112 mol NH3/m2) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.
Collapse
Affiliation(s)
- Daniela Bona
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Giustino Tonon
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Fabio Zottele
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Daniele Andreis
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| | - Silvia Silvestri
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| |
Collapse
|
7
|
He X, Zhang T, Niu Y, Xue Q, Ali EF, Shaheen SM, Tsang DCW, Rinklebe J. Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118877. [PMID: 35077837 DOI: 10.1016/j.envpol.2022.118877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The effects of catalytic hydrothermal (HT) pretreatment on animal manure followed by the addition of hydrochar on the nutrients recovery have not yet been investigated using a combination of chemical, microscopic, and spectroscopic techniques. Therefore, a catalytic HT process was employed to pretreat swine manure without additives (manure-HT) and with H2O2 addition (manure-HT- H2O2) to improve the conversion efficiency of labile or organic phosphorus (P) to inorganic phase. Then, a Ca-Al layered double hydroxide hydrochar (Ca/Al LDH@HC) derived from corn cob biomass was synthesized and applied to enhance P sorption. Scanning electron microscopy (SEM), and three-dimensional excitation emission matrix (3D-EEM), X-ray photoelectron spectroscopy (XPS), P k-edge X-ray absorption near edge structure (XANES), were used to elucidate the mechanisms of P release and capture. The H2O2 assisted HT treatment significantly enhanced the release of inorganic P (251.4 mg/L) as compared to the untreated manure (57.2 mg/L). The 3D-EEM analysis indicated that the labile or organic P was transformed and solubilized efficiently along with the deconstruction of manure components after the H2O2 assisted HT pretreatment. Application of Ca/Al LDH@HC improved the removal efficiency of P from the derived P-rich HT liquid. This sorption process was conformed to the pseudo-second-order model, suggesting that chemisorption was the primary mechanism. The results of SEM and P k-edge XANES exhibited that Ca, as the dominated metal component, could act as a reaction site for the formation of phosphate precipitation. These results provide critical findings about recovering P from manure waste, which is useful for biowastes management and nutrients utilization, and mitigating unintended P loss and potential environmental risks.
Collapse
Affiliation(s)
- Xinyue He
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yingqi Niu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Xue
- Institute for Agricultural Engineering, Conversion Technologies of Biobased Resources, University of Hohenheim, Garbenstrasse 9, 70599, Stuttgart, Germany
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul, 05006, Republic of Korea
| |
Collapse
|
8
|
|
9
|
Yuan Q, Liu S, Ma MG, Ji XX, Choi SE, Si C. The Kinetics Studies on Hydrolysis of Hemicellulose. Front Chem 2021; 9:781291. [PMID: 34869229 PMCID: PMC8637159 DOI: 10.3389/fchem.2021.781291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The kinetics studies is of great importance for the understanding of the mechanism of hemicellulose pyrolysis and expanding the applications of hemicellulose. In the past years, rapid progress has been paid on the kinetics studies of hemicellulose hydrolysis. In this article, we first introduced the hydrolysis of hemicelluloses via various strategies such as autohydrolysis, dilute acid hydrolysis, catalytic hydrolysis, and enzymatic hydrolysis. Then, the history of kinetic models during hemicellulose hydrolysis was summarized. Special attention was paid to the oligosaccharides as intermediates or substrates, acid as catalyst, and thermogravimetric as analyzer method during the hemicellulose hydrolysis. Furthermore, the problems and suggestions of kinetic models during hemicellulose hydrolysis was provided. It expected that this article will favor the understanding of the mechanism of hemicellulose pyrolysis.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Shan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Xing-Xiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Gangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
10
|
Del Río PG, Gullón B, Romaní A, Garrote G. Fast-growing Paulownia wood fractionation by microwave-assisted hydrothermal treatment: A kinetic assessment. BIORESOURCE TECHNOLOGY 2021; 338:125535. [PMID: 34293622 DOI: 10.1016/j.biortech.2021.125535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Microwave hydrothermal treatment (MHT), a novel advanced technology, was proposed for the fractionation of Paulownia wood (PW) at temperatures ranging 200-230 °C and residence times of 0-50 min, corresponding to severities of 2.93-4.70. This procedure allowed 80% of xylan recovery as xylooligosaccharides and an average of 95% cellulose recovery in the pretreated PW biomass, showing the selectivity of the treatment, that was also compared to conduction-convection heating autohydrolysis. Finally, a kinetic model was proposed for the prediction of PW fractionation using MHT, with the ultimate goal of being applied to a wide range of feedstocks and minimizing the number of parameters used. For that, two strategies were approached, allowing the reduction of 80 to 34 parameters, without significant influence in the kinetic fitting. To the best of our knowledge, this is the first kinetic modelization of MHT of PW, taking into account all the lignocellulosic fractions.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain.
| |
Collapse
|
11
|
Miao G, Peng L, Liu E, He L, Guan Q, Zhang J, Peng L. Solid–liquid mass transfer characteristics and mechanism of alkali‐soluble heteropolysaccharides from hemp stalk. AIChE J 2021. [DOI: 10.1002/aic.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guohua Miao
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
| | - Lijuan Peng
- Yunnan Tobacco Quality Supervision and Test Station Kunming China
| | - Enfen Liu
- China Tobacco Yunnan Reconstituted Tobacco Co, Ltd Yuxi China
| | - Liang He
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics Kunming University of Science and Technology Kunming China
| | - Junhua Zhang
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
| | - Lincai Peng
- Faculty of Chemical Engineering Kunming University of Science and Technology Kunming China
| |
Collapse
|
12
|
Ashraf C, Pfaendtner J. Assessing the Performance of Various Stochastic Optimization Methods on Chemical Kinetic Modeling of Combustion. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chowdhury Ashraf
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Abdeshahian P, Ascencio JJ, Philippini RR, Antunes FAF, Dos Santos JC, da Silva SS. Utilization of sugarcane straw for production of β-glucan biopolymer by Lasiodiplodia theobromae CCT 3966 in batch fermentation process. BIORESOURCE TECHNOLOGY 2020; 314:123716. [PMID: 32650262 DOI: 10.1016/j.biortech.2020.123716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
β-Glucans as emerging biopolymer are widely produced by microorganisms in fermentation processes using commercial sugars which make process non-economic. Lignocellulosic substances are inexpensive carbon sources, which could be exploited for sustainable production of β-glucans. In this study, a lignocellulosic material, namely sugarcane straw (SCS) was utilized for the production of extracellular β-glucan by Lasiodiplodia theobromae CCT3966. SCS was subjected to acid and subsequent alkaline pretreatment, followed by enzymatic saccharification using cellulase enzyme. Quantity of 48.65 g/L glucose was released after enzymatic hydrolysis. β-Glucan production was performed by cultivation of fungal strain in SCS hydrolysate at 28 °C and initial culture pH 7. Highest β-glucan yield and productivity of 0.047 gg-1 and 0.014 gL-1h-1, respectively was obtained at 72 h fermentation time. Kinetic study of β-glucan production revealed experimental biosynthesis of β-glucan from SCS hydrolysate followed the trend generated by Logistic and Luedeking-Piret models. Chemical structure of biopolymer produced showed β-glucan constitution.
Collapse
Affiliation(s)
- Peyman Abdeshahian
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil.
| | - Jesús Jiménez Ascencio
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil
| | - Rafael R Philippini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil
| | | | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil
| | | |
Collapse
|
14
|
Pratto B, Dos Santos-Rocha MSR, Longati AA, de Sousa Júnior R, Cruz AJG. Experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw. BIORESOURCE TECHNOLOGY 2020; 297:122494. [PMID: 31813817 DOI: 10.1016/j.biortech.2019.122494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The present work aims to determine a suitable yield-productivity balance in bioethanol production from hydrothermally pretreated sugarcane straw via pre-saccharification (PS) and simultaneous saccharification and fermentation (SSF). PS experiments were carried out evaluating effects of enzymatic dosage, biomass loading, and PS time. The performance of the whole process (PSSSF) was evaluated based on overall ethanol yield and productivity considering a simultaneous optimization (desirability function) of both variables. The multi-criteria optimization enabled to reach 5.7% w/w ethanol concentration yielding 290 L of ethanol per ton of pretreated sugarcane straw within 45 h of total processing time. Furthermore, a techno-economic analysis was performed under optimized conditions (14.5 FPU/gcellulose, 19.3% w/v biomass loading and 33 h PS time). This process was integrated into a first-generation plant. Although the economic evaluation exhibited a negative performance, a sensitivity analysis indicated that a decrease of 23.3% in operational expenditure would be enough to achieve feasibility.
Collapse
Affiliation(s)
- Bruna Pratto
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil.
| | | | - Andreza Aparecida Longati
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, SP, Brazil; Fundação Educacional de Ituverava, Rua Cel. Flauzino Barbosa Sandoval, 1259, CEP: 14500-000 Ituverava, SP, Brazil
| | - Ruy de Sousa Júnior
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil
| | - Antonio José Gonçalves Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil; Chemical Engineering Department, Federal University of São Carlos, Rod. Washington Luís-Km 235, CEP: 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
15
|
Lyu H, Zhang J, Zhou J, Lv C, Geng Z. The byproduct-organic acids strengthened pretreatment of cassava straw: Optimization and kinetic study. BIORESOURCE TECHNOLOGY 2019; 290:121756. [PMID: 31295573 DOI: 10.1016/j.biortech.2019.121756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The subcritical liquid hot water (SLHW) pretreatment could be strengthened by its byproduct-organic acids, such as acetic acid (AA), lactic acid (LA) and formic acid (FA). The effects of these three acids on the pretreatment were investigated by the yield of fermentable sugars. The results showed that the addition of acids could effectively catalyze the hydrolysis of hemicellulose to C5 sugars and contribute to the subsequent enzymatic hydrolysis of cellulose. It was found that all three organic acids promote xylose production, and the copresence of AA + LA could limit the content of the fermentation inhibitor. The optimum proportion of three organic acids were 0.33 wt%AA + 0.45 wt%LA + 0.20 wt%FA, and the yield of C5 sugars after pretreatment and C6 sugar after enzymatic hydrolysis were 89.06% and 78.56%, respectively. The kinetic studies proved that byproduct-organic acids could promote xylose production and inhibit its further degradation and explained that xylose would accumulate at lower temperatures.
Collapse
Affiliation(s)
- Huisheng Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jia Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinyi Zhou
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Chunliu Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhongfeng Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
16
|
Li M, Si B, Zhang Y, Watson J, Aierzhati A. Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment. BIORESOURCE TECHNOLOGY 2019; 279:57-66. [PMID: 30711753 DOI: 10.1016/j.biortech.2019.01.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal pretreatment (HTP) using an acidic catalyst is known to be effective for reducing lignocellulosic biomass recalcitrance. Post-hydrothermal liquefaction wastewater (PHW) from hydrothermal liquefaction of swine manure contains a large fraction of organic acids and thus was introduced to improve the HTP of cornstalk in this study. The response surface methodology was performed to optimize operating parameters of HTP for preserving structural polysaccharides while removing the barrier substances. A remarkable co-extraction of cell wall polymers was observed during PHW-catalyzed HTP at 172 °C for 88 min. The analysis of particle size, crystalline cellulose, the degree of polymerization (DP), mole number (MN) and SEM suggested that the co-extraction effect could distinctively alter lignocellulosic structures associated with recalcitrance and thus accelerate biomass saccharification. Additionally, the biodegradability of PHW was improved after HTP as a result of balanced nutrients and increased acids and sugars suitable for biogas production via anaerobic fermentation.
Collapse
Affiliation(s)
- Meng Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; National Energy R&D Center for Non-Food Biomass, China Agricultural University, Beijing 100193, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Buchun Si
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100193, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jamison Watson
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aersi Aierzhati
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Batista G, Souza RBA, Pratto B, Dos Santos-Rocha MSR, Cruz AJG. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. BIORESOURCE TECHNOLOGY 2019; 275:321-327. [PMID: 30594843 DOI: 10.1016/j.biortech.2018.12.073] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 05/15/2023]
Abstract
The recalcitrant structures of sugarcane straw and related lignocellulosic biomasses require a pretreatment step to enable a better enzymatic attack during the hydrolysis. Factors like the energy consumption and the formation of inhibitors require the optimization of the pretreatment step. Thus, the influence of different severity factors (SF) on hydrothermal (also called liquid hot water, LHW) pretreatment was evaluated using a factorial design 22 with central point. The obtained results showed that low values of SF (<3.39) did not promote reasonable alteration in the sugarcane straw structures, whereas high SF values (>4.70) resulted in loss of hydrolyzed sugars, generation of inhibitors such as furfural, and formation of pseudo-lignin structures, despite high hemicellulose removal (∼97%). The residence time exhibited low influence on LHW. An optimum condition was found for the process (10 min and 195 °C) with low cellulose solubilization (9.80%) and a reasonable hemicellulose removal (85.45%).
Collapse
Affiliation(s)
- Gustavo Batista
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Renata B A Souza
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Bruna Pratto
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil
| | - Martha S R Dos Santos-Rocha
- Chemical Engineering Graduate Program, Federal University of Alagoas, Avenida Lourival de Melo Mota, s/n, Cidade Universitária, CEP: 57072-970, Maceió, AL, Brazil
| | - Antonio J G Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14463-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Longati AA, Lino ARA, Giordano RC, Furlan FF, Cruz AJG. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case. BIORESOURCE TECHNOLOGY 2018; 263:1-9. [PMID: 29723843 DOI: 10.1016/j.biortech.2018.04.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
A new approach is reported for techno-economic analysis of lignocellulosic ethanol production. With this methodology, general targets for key process variables can be draw, a valuable feedback for Research & Development teams. An integrated first- and second-generation ethanol from sugarcane biorefinery is presented as a case study for the methodology, with the biomass pretreated by liquid hot water, followed by enzymatic hydrolysis of the cellulose fraction. The hemicellulose fraction may be either fermented or biodigested. The methodology was able to identify the main variables that affect the process global economic performance: enzyme load in the cellulose hydrolysis reactor, cellulose-to-glucose, and xylose-to-ethanol yields. Windows of feasible operation are the graphical output of the methodology, outlining regions to be further explored experimentally. One example of quantitative result is that the maximum feasible enzyme load was 11.3 FPU/gcellulose when xylose is fermented to ethanol and 7.7 FPU/gcellulose when xylose is biodigested.
Collapse
Affiliation(s)
- Andreza A Longati
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Anderson R A Lino
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Roberto C Giordano
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Felipe F Furlan
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Antonio J G Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
20
|
Lyu H, Zhou J, Lyu C, Meng F, Geng Z, Zhang M. Exploration and optimization of mixed acid synergistic catalysis pretreatment for maximum C5 sugars. BIORESOURCE TECHNOLOGY 2018; 260:53-60. [PMID: 29614451 DOI: 10.1016/j.biortech.2018.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The liquid hot water (LHW) pretreatment could be strengthened by acetic and lactic acids produced from the process. The synergistic effect of the mixed acid catalyst of lactic acid and acetic acid was investigated for the purpose of maximization of the overall C5 sugars yield. Individual acids (acetic and lactic acid) and mixed acid were used to strengthen the LHW pretreatment at different conditions. The results showed that the suitable conditions of mixed acid synergistic catalysis was at 180 °C for 60 min and 3 wt% mixed acid where the ratio of 40% (i.e. 0.40 in mass fraction of lactic acid in mixed acid). Response surface methodology (RSM) was applied to further optimize this process. The highest yield of C5 sugars of 93.83% according to theoretical predicted model, was close to the experiment value of 92.53% at 177 °C for 67 min and with the ratio of mixed acid of 40%.
Collapse
Affiliation(s)
- Huisheng Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinyi Zhou
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Chunliu Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Fanmei Meng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhongfeng Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Minhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
21
|
|
22
|
Gallina G, Alfageme ER, Biasi P, García-Serna J. Hydrothermal extraction of hemicellulose: from lab to pilot scale. BIORESOURCE TECHNOLOGY 2018; 247:980-991. [PMID: 30060438 DOI: 10.1016/j.biortech.2017.09.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 06/08/2023]
Abstract
A flow-through reactor for hemicelluloses extraction with hot pressurized water was scaled with a factor of 73. System performance was evaluated by comparing the temperature profile, extraction yield and kinetics of the two systems, performing experiments at 160 and 170°C, 11barg for 90min, using catalpa wood as raw material. Hemicellulose yields were 33.9% and 38.8% (lab scale 160°C and 170°C) and 35.7% and 41.7% (pilot scale 160°C and 170°C). The pilot reactor was upgraded by designing a manifold system capable to provide samples with different liquid residence time during the same experiment. Tests at 140, 150, 160 and 170°C were carried for 90min. Increasing yields (9.3-40.6%) and decreasing molecular weights (4078-1417Da) were obtained at increasing the temperature. Biomass/water ratio of 1/27 gave total average concentration of xylose of 0.4g/L (140°C) to 1.8g/L (170°C).
Collapse
Affiliation(s)
- Gianluca Gallina
- Department of Chemical Engineering and Environmental Technology, High Pressure Processes Group, University of Valladolid, Valladolid ES-47011, Spain
| | - Enrique Regidor Alfageme
- Department of Chemical Engineering and Environmental Technology, High Pressure Processes Group, University of Valladolid, Valladolid ES-47011, Spain
| | - Pierdomenico Biasi
- Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi, Biskopsgatan 8, Turku/Åbo FI-20500, Finland
| | - Juan García-Serna
- Department of Chemical Engineering and Environmental Technology, High Pressure Processes Group, University of Valladolid, Valladolid ES-47011, Spain.
| |
Collapse
|
23
|
Nair RB, Kalif M, Ferreira JA, Taherzadeh MJ, Lennartsson PR. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. BIORESOURCE TECHNOLOGY 2017; 245:145-151. [PMID: 28892684 DOI: 10.1016/j.biortech.2017.08.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol.
Collapse
Affiliation(s)
- Ramkumar B Nair
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mahdi Kalif
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | | | |
Collapse
|
24
|
Gullón B, Eibes G, Dávila I, Vila C, Labidi J, Gullón P. Valorization of Vine Shoots Based on the Autohydrolysis Fractionation Optimized by a Kinetic Approach. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Beatriz Gullón
- Department
of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Eibes
- Department
of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Izaskun Dávila
- BioRP
Group, Department of Chemical and Environmental Engineering, University of Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| | - Carlos Vila
- Department
of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Jalel Labidi
- BioRP
Group, Department of Chemical and Environmental Engineering, University of Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| | - Patricia Gullón
- BioRP
Group, Department of Chemical and Environmental Engineering, University of Basque Country, UPV/EHU, 20018 San Sebastián, Spain
| |
Collapse
|
25
|
Makarova EI, Budaeva VV, Kukhlenko AA, Orlov SE. Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls. 3 Biotech 2017; 7:317. [PMID: 28955614 DOI: 10.1007/s13205-017-0964-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 11/25/2022] Open
Abstract
Experiments were done to model enzymatic hydrolysis of Miscanthus and oat hulls treated with dilute solutions of nitric acid and sodium hydroxide in direct and reverse sequences. The enzymatic hydrolysis kinetics of the substrates was studied at an initial solid loading from 30 to 120 g/L. The effects of feedstock type and its pretreatment method on the initial hydrolysis rate and reducing sugar yield were evaluated. The fitting results by the developed models showed good agreement with the experimental data. These models designed for developing the production technology of concentrated glucose solutions can also be applied for glucose fermentation into ethanol. The initial solid loading of 60-90 g/L provides the reducing sugar concentration of 40-80 g/L necessary for ethanol synthesis. The kinetic model can also be applied to investigate enzymatic hydrolysis of other substrates (feedstock type, pretreatment method) under the similar conditions used herein, with adjusted empirical coefficient values.
Collapse
Affiliation(s)
- Ekaterina I Makarova
- Laboratory of Bioconversion, Laboratory of Chemical Engineering Processes and Apparatuses, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai Russia 659322
| | - Vera V Budaeva
- Laboratory of Bioconversion, Laboratory of Chemical Engineering Processes and Apparatuses, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai Russia 659322
| | - Aleksey A Kukhlenko
- Laboratory of Bioconversion, Laboratory of Chemical Engineering Processes and Apparatuses, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai Russia 659322
| | - Sergey E Orlov
- Laboratory of Bioconversion, Laboratory of Chemical Engineering Processes and Apparatuses, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai Russia 659322
| |
Collapse
|
26
|
Dilute acid hydrolysis of microalgal biomass for bioethanol production: an accurate kinetic model of biomass solubilization, sugars hydrolysis and nitrogen/ash balance. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1271-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|