1
|
Zhou S, Li Y, Yang S, Lin L, Deng T, Gan C, An W, Xu M. The role of electroactive biofilms in enhanced para-chlorophenol transformation collaborated with biosynthetic palladium nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126312. [PMID: 40288628 DOI: 10.1016/j.envpol.2025.126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Bioremediation is a cost-effective strategy for decomposition of chlorinated organic contaminants, but its application is often hindered by the generation of toxic chlorinated byproducts. Though the design of functional biofilms, incorporating microbially-inspired catalytic materials, has emerged as a promising solution for tackling the byproducts issues, the microbial mechanisms driving these processes remain inadequately understood. This study demonstrates a hybrid electroactive biofilm (EAB)-palladium nanoparticles (Pd NPs) system that effectively separates the dechlorination and mineralization of para-chlorophenol (4-CP), and most importantly, it provides new insights into the microbial and genetic roles of EABs in this process. Under an applied potential of -0.6 V, Pd NPs via palladate reduction were biogenically synthesized and deposited on the cytomembranes within the biofilm, achieving an 82 % decrease in 4-CP concentration within 48 h. The ultra-performance liquid chromatogram and mass spectrum confirmed that 4-CP was initially dechlorinated to phenol by the biogenic Pd NPs before undergoing further degradation by the biofilm, effectively preventing toxic chlorinated byproducts. The Dechloromonas, Pseudomonas, and Geobacter were identified as predominant genera in the system and the metagenomics analysis noted increased relative abundance of ring-cleavage genes like pcaG, dmpB/xylE, and catA. Importantly, the abundance of dmpB/xylE was primarily associated with Dechloromonas and Pseudomonas, further highlighted that the dmpB/xylE-pathway was important for rapid 4-CP decomposition in the system. This study advances the understanding of EAB-Pd NPs synergy, showcasing an innovative and sustainable approach for the efficient removal of halogenated pollutants.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanjing Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tongchu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Cuifen Gan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Wenwen An
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
2
|
Jaiswal A, Pandey AK, Tripathi A, Dubey SK. Omics-centric evidences of fipronil biodegradation by Rhodococcus sp. FIP_B3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125320. [PMID: 39549993 DOI: 10.1016/j.envpol.2024.125320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The widespread use of the pesticide fipronil in domestic and agriculture sectors has resulted in its accumulation across the environment. Its use to assure food security has inadvertently affected soil microbiome composition, fertility and, ultimately, human health. Degradation of residual fipronil present in the environment using specific microbial species is a promising strategy for its removal. The present study delves into the omics approach for fipronil biodegradation using the native bacterium Rhodococcus sp. FIP_B3. It has been observed that within 40 days, nearly 84% of the insecticide gets degraded. The biodegradation follows a pseudo-first-order kinetics (k = 0.0197/d with a half-life of ∼11 days). Whole genome analysis revealed Cytochrome P450 monooxygenase, peroxidase-related enzyme, haloalkane dehalogenase, 2-nitropropane dioxygenase, and aconitate hydratase are involved in the degradation process. Fipronil-sulfone, 5-amino-1-(2-chloro-4-(trifluoromethyl)phenyl)-4- ((trifluoromethyl)sulfonyl)-1H-pyrazole-3-carbonitrile, (E)-5-chloro-2-oxo-3- (trifluoromethyl)pent-4-enoic acid, 4,4,4-trifluoro-2-oxobutanoic acid, and 3,3,3- trifluoropropanoic acid were identified as the major metabolites that support the bacterial degradation of fipronil. In-silico molecular docking and molecular dynamic simulation-based analyses of degradation pathway intermediates with their respective enzymes have indicated stable interactions with significant binding energies (-5.9 to -9.7 kcal/mol). These results have provided the mechanistic cause of the elevated potential of Rhodococcus sp. FIP_B3 for fipronil degradation and will be advantageous in framing appropriate strategies for the bioremediation of fipronil-contaminated environment.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
3
|
Jaiswal A, Pandey AK, Mishra Y, Dubey SK. Insights into the biodegradation of fipronil through soil microcosm-omics analyses of Pseudomonas sp. FIP_ A4. CHEMOSPHERE 2024; 363:142944. [PMID: 39067829 DOI: 10.1016/j.chemosphere.2024.142944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Fipronil, a phenylpyrazole insecticide, is used to kill insects resistant to conventional insecticides. Though its regular and widespread use has substantially reduced agricultural losses, it has also caused its accumulation in various environmental niches. The biodegradation is an effective natural process that helps in reducing the amount of residual insecticides. This study deals with an in-depth investigation of fipronil degradation kinetics and pathways in Pseudomonas sp. FIP_A4 using multi-omics approaches. Soil-microcosm results revealed ∼87% degradation within 40 days. The whole genome of strain FIP_A4 comprises 4.09 Mbp with 64.6% GC content. Cytochrome P450 monooxygenase and enoyl-CoA hydratase-related protein, having 30% identity with dehalogenase detected in the genome, can mediate the initial degradation process. Proteome analysis revealed differential enzyme expression of dioxygenases, decarboxylase, and hydratase responsible for subsequent degradation. Metabolome analysis displayed fipronil metabolites in the presence of the bacterium, supporting the proposed degradation pathway. Molecular docking and dynamic simulation of each identified enzyme in complex with the specific metabolite disclosed adequate binding and high stability in the enzyme-metabolite complex. This study provides in-depth insight into genes and their encoded enzymes involved in the fipronil degradation and formation of different metabolites during pollutant degradation. The outcome of this study can contribute immensely to developing efficient technologies for the bioremediation of fipronil-contaminated soils.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128, India
| | - Yogesh Mishra
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi- 221005, India.
| |
Collapse
|
4
|
Tuan TQ, Mawarda PC, Ali N, Curias A, Nguyen TPO, Khoa ND, Springael D. Niche-specification of aerobic 2,4-dichlorophenoxyacetic acid biodegradation by tfd-carrying bacteria in the rice paddy ecosystem. Front Microbiol 2024; 15:1425193. [PMID: 39247702 PMCID: PMC11377324 DOI: 10.3389/fmicb.2024.1425193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed for a better understanding of the niche specification of bacteria carrying the tfd-genes for aerobic 2,4-dichlorphenoxyacetic acid (2,4-D) degradation in the rice paddy ecosystem. To achieve this, a dedicated microcosm experiment was set up to mimic the rice paddy system, with and without 2,4-D addition, allowing spatial sampling of the different rice paddy compartments and niches, i.e., the main anaerobic bulk soil and the aerobic surface water, surface soil, root surface and rhizosphere compartments. No effect of 2,4-D on the growth and morphology of the rice plant was noted. 2,4-D removal was faster in the upper soil layers compared to the deeper layers and was more rapid after the second 2,4-D addition compared to the first. Moreover, higher relative abundances of the 2,4-D catabolic gene tfdA and of the mobile genetic elements IncP-1 and IS1071 reported to carry the tfd-genes, were observed in surface water and surface soil when 2,4-D was added. tfdA was also detected in the root surface and rhizosphere compartment but without response to 2,4-D addition. While analysis of the bacterial community composition using high-throughput 16S rRNA gene amplicon sequencing did not reveal expected tfd-carrying taxa, subtle community changes linked with 2,4-D treatment and the presence of the plant were observed. These findings suggest (i) that the surface soil and surface water are the primary and most favorable compartements/niches for tfd-mediated aerobic 2,4-D biodegradation and (ii) that the community structure in the 2,4-D treated rice paddy ecosystem is determined by a niche-dependent complex interplay between the effects of the plant and of 2,4-D.
Collapse
Affiliation(s)
- Tran Quoc Tuan
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), KST Samaun Sadikun, Bogor, Indonesia
| | - Norhan Ali
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Arne Curias
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Thi Phi Oanh Nguyen
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Nguyen Dac Khoa
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Fang S, Geng Y, Wang L, Zeng J, Zhang S, Wu Y, Lin X. Coupling between 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) debromination and methanogenesis in anaerobic soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169831. [PMID: 38185166 DOI: 10.1016/j.scitotenv.2023.169831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent pollutants that may undergo microbial-mediated debromination in anoxic environments, where diverse anaerobic microbes such as methanogenic archaea co-exist. However, current understanding of the relations between PBDE pollution and methanogenic process is far from complete. To address this knowledge gap, a series of anaerobic soil microcosms were established. BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) was selected as a model pollutant, and electron donors were supplied to stimulate the activity of anaerobes. Debromination and methane production were monitored during the 12 weeks incubation, while obligate organohalide-respiring bacteria (OHRBs), methanogenic, and the total bacterial communities were examined at week 7 and 12. The results demonstrated slow debromination of BDE-47 in all microcosms, with considerable growth of Dehalococcoides and Dehalogenimonas over the incubation observed in most BDE-47 spiked treatments. In addition, the accumulation of intermediate metabolites positively correlated with the abundance of Dehalogenimonas at week 7, suggesting potential role of these OHRBs in debromination. Methanosarcinaceae were identified as the primary methanogenic archaea, and their abundance were correlated with the production of debrominated metabolites at week 7. Furthermore, it was observed for the first time that BDE-47 considerably enhanced methane production and increased the abundance of mcrA genes, highlighting the potential effects of PBDE pollution on climate change. This might be related to the inhibition of reductive N- and S-transforming microbes, as revealed by the quantitative microbial element cycling (QMEC) analysis. Overall, our findings shed light on the intricate interactions between PBDE and methanogenic processes, and contribute to a better understanding of the environmental fate and ecological implication of PBDE under anaerobic settings.
Collapse
Affiliation(s)
- Shasha Fang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jun Zeng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shimin Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yucheng Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
6
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
7
|
Stevenson Z, Tong H, Swanner ED. Insights on biotic and abiotic 2,4-dichlorophenoxyacetic acid degradation by anaerobic iron-cycling bacteria. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1092-1101. [PMID: 37689985 DOI: 10.1002/jeq2.20513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
The use of the phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been steadily increasing in recent years due to its selectivity against broad-leafed weeds and use on genetically modified crops resistant to 2,4-D. This increases the likelihood of 2,4-D persisting in agriculturally impacted soils, sediments, and aquatic systems. Aerobic microorganisms are capable of degrading 2,4-D enzymatically. Anaerobic degradation also occurs, though the enzymatic pathway is unclear. Iron-reducing bacteria (FeRB) have been hypothesized to augment anaerobic degradation through the production of a chemically reactive Fe(II) adsorbed to Fe(III) oxyhydroxides. To test whether this iron species can catalyze abiotic degradation of 2,4-D, an enrichment culture (BLA1) containing a photosynthetic Fe(II)-oxidizing bacterium (FeOB) "Candidatus Chlorobium masyuteum" and the FeRB "Candidatus Pseudopelobacter ferreus", both of which lacked known 2,4-D degradation genes was investigated. BLA1 produces Fe(II)-adsorbed to Fe(III) oxyhydroxides during alternating photoautotrophic iron oxidation and dark iron reduction (amended with acetate) cycles. No 2,4-D degradation occurred during iron oxidation by FeOB Ca. C. masyuteum or during iron reduction by FeRB Ca. P. ferreus under any incubation conditions tested (i.e., +/-Fe(II), +/-cells, and +/-light), or due to the presence of Fe(II) adsorbed to Fe(III) oxyhydroxides. Our results cast doubt on the hypothesis that the mineral-bound Fe(II) species augments the anaerobic degradation of 2,4-D in anoxic soils and waters by iron-cycling bacteria, and further justify the need to identify the genetic underpinnings of anaerobic 2,4-D degradation.
Collapse
Affiliation(s)
- Zackry Stevenson
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
8
|
de Oliveira EP, Rovida AFDS, Martins JG, Pileggi SAV, Schemczssen-Graeff Z, Pileggi M. Tolerance of Pseudomonas strain to the 2,4-D herbicide through a peroxidase system. PLoS One 2021; 16:e0257263. [PMID: 34855750 PMCID: PMC8638965 DOI: 10.1371/journal.pone.0257263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herbicides are widely used in agricultural practices for preventing the proliferation of weeds. Upon reaching soil and water, herbicides can harm nontarget organisms, such as bacteria, which need an efficient defense mechanism to tolerate stress induced by herbicides. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that exerts increased oxidative stress among bacterial communities. Bacterial isolates were obtained from the biofilm of tanks containing washing water from the packaging of different pesticides, including 2,4-D. The Pseudomonas sp. CMA-7.3 was selected because of its tolerance against 2,4-D toxicity, among several sensitive isolates from the biofilm collection. This study aimed to evaluate the antioxidative response system of the selected strain to 2,4-D. It was analyzed the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase GPX enzymes, that are poorly known in the literature for bacterial systems. The Pseudomonas sp. CMA-7.3 presented an efficient response system in balancing the production of hydrogen peroxide, even at 25x the dose of 2,4-D used in agriculture. The antioxidative system was composed of Fe–SOD enzymes, less common than Mn–SOD in bacteria, and through the activities of KatA and KatB isoforms, working together with APX and GPX, having their activities coordinated possibly by quorum sensing molecules. The peroxide control is poorly documented for bacteria, and this work is unprecedented for Pseudomonas and 2,4-D. Not all bacteria harbor efficient response system to herbicides, therefore they could affect the diversity and functionality of microbiome in contaminated soils, thereby impacting agricultural production, environment sustainability and human health.
Collapse
Affiliation(s)
- Elizangela Paz de Oliveira
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Juliane Gabriele Martins
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Sônia Alvim Veiga Pileggi
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | - Marcos Pileggi
- Departamento de Biologia Estrutural e Molecular e Genética, Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
- * E-mail:
| |
Collapse
|
9
|
Combined biostimulation and bioaugmentation for chlorpyrifos degradation in laboratory microcosms. 3 Biotech 2021; 11:439. [PMID: 34603916 DOI: 10.1007/s13205-021-02980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/01/2021] [Indexed: 10/20/2022] Open
Abstract
Chlorpyrifos (CP) is a persistent organophosphorus pesticide (OP) used in soil ecosystem for insect control. Bioremediation process has been proven promising in degrading these toxic molecules and restoring the physio-chemical properties of soil. This work reports a laboratory microcosm study in both non-sterile & sterile conditions, conducted over a period of 56 days to examine the combined effect of additional supplements like biostimulants (BSs) such as N, P, and K in the presence of suitable carrier materials (compost, wheat straw, and corncob) along with bioaugmentation by a Ochrobactrum sp. CPD-03 on CP degradation from the contaminated soil. CP degradation was thoroughly monitored at an interval of 7 days over a period of 56 days. Results showed biostimulation and bioaugmentation along with compost as carrier material had shown higher CP degradation efficiency of 76 ± 2.8 and 74 ± 1.6% in non-sterile and sterile microcosms over a period of 56 days. Moreover, bacterial community profiling (16s rRNA and opd gene) demonstrated increased microbial counts, corroborating the efficiency of the bioremediation process. The survival of CPD-03 at the end of the assay validated its ability of colonizing modified soils. By this integrated method with compost as carrier material, bioremediation process could be enhanced for restoration CP-contaminated soils. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02980-9.
Collapse
|
10
|
Brucha G, Aldas-Vargas A, Ross Z, Peng P, Atashgahi S, Smidt H, Langenhoff A, Sutton NB. 2,4-Dichlorophenoxyacetic acid degradation in methanogenic mixed cultures obtained from Brazilian Amazonian soil samples. Biodegradation 2021; 32:419-433. [PMID: 33877512 PMCID: PMC8260542 DOI: 10.1007/s10532-021-09940-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/31/2021] [Indexed: 01/23/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D's high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0-40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.
Collapse
Affiliation(s)
- Gunther Brucha
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
- Institute of Science and Technology, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Zacchariah Ross
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Peng Peng
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, PO BOX 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Yuan J, Shentu J, Feng J, Lu Z, Xu J, He Y. Methane-associated micro-ecological processes crucially improve the self-purification of lindane-polluted paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124839. [PMID: 33352426 DOI: 10.1016/j.jhazmat.2020.124839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Reductive dechlorination, an efficient pathway for complete removal of organic chlorinated pollutants (OCPs), is commonly reported to be coupled to oxidation of methane (CH4) or methanogenesis in anaerobic environments. However, the relationship between dechlorination and CH4-associated bioprocesses is unclear. Based on the hypothesis that CH4 supplementation could facilitate OCP dechlorination, we investigated the role of CH4-associated bioprocesses in the self-purification of flooded lindane-spiked paddy soils. Four treatments were conducted for up to 28 days: sterilized soil (S), sterilized soil + CH4 (SC), non-sterilized soil (NS), and non-sterilized soil + CH4 (NSC). Results indicated that both sterilization and addition of CH4 promoted lindane degradation and CH4 emissions in the flooded paddy soils. In the NS treatment, lindane had the lowest degradation rate when CH4 emissions were barely detected; while in the SC treatment, lindane had the highest degradation rate when CH4 achieved its highest emissions from anaerobic soil. Also, sterilization led to microbial diversity loss and functional recession, but increased ferrous ion [Fe(II)] concentrations compared to non-sterilized soils. Methanogenic communities and mcrA gene recovered faster than the majority of microorganisms (e.g., Fe bacteria, Bdellovibrionaceae, Rhizobiaceae, Dehalogenimonas) or functional genes (e.g., Dhc, Geo, narG, nirS). Collectively, we assume the enhanced removal of lindane may partly be due to both abiotic dechlorination promoted by chemical Fe redox processes and methanogenesis-derived biotic dechlorination. Revealing the coupling between dechlorination and CH4-associated bioprocesses is helpful to resolve both pollution remediation and mitigation of CH4 emissions in anaerobic contaminated sites.
Collapse
Affiliation(s)
- Jing Yuan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jue Shentu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
12
|
Karimipour Z, Jalilzadeh Yengejeh R, Haghighatzadeh A, Mohammadi MK, Mohammadi Rouzbehani M. UV-Induced Photodegradation of 2,4,6-Trichlorophenol Using Ag–Fe2O3–CeO2 Photocatalysts. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01859-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Kamarudin N, Jusoh R, Sukor N, Jalil A, Setiabudi H. Intensified photocatalytic degradation of 2, 4–dicholorophenoxyacetic acid using size-controlled silver nanoparticles: Effect of pre-synthesis extraction. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Serbent MP, Rebelo AM, Pinheiro A, Giongo A, Tavares LBB. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation. Appl Microbiol Biotechnol 2019; 103:5065-5078. [DOI: 10.1007/s00253-019-09838-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
15
|
Lou Z, Li Y, Zhou J, Yang K, Liu Y, Baig SA, Xu X. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2,4-DCBA: Enhanced electrical conductivity and reactive activity. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:148-159. [PMID: 30236935 DOI: 10.1016/j.jhazmat.2018.08.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium carbide (TiC) with excellent electrical conductivity, chemical and thermal stabilities has been recognized as one of the most promising electrocatalysts. A novel cathode, titanium carbide doped palladium/nickel foam (TiC-Pd/Ni foam), was synthesized via electroless deposition to improve the performance of Pd/Ni foam in electrocatlytic hydrodechlorination (ECH). TiC can be co-precipitated onto the surface of cathode during galvanic replacement reaction between Pd(II) solution and Ni foam. Both constant potential and constant current tests proved that TiC-Pd/Ni foam cathode performed remarkably higher activity for 2,4-dichlorobenzoic acid (2,4-DCBA) than Pd/Ni foam cathode, owing to the excellent conductivity of TiC and enhanced water dissociation over TiC-Pd/Ni foam cathode. Under the optimized reaction conditions of -0.85 V (vs Ag/AgCl), electrolyte of 10 mM and initial pH of 4, 99.8% of aqueous 2,4-DCBA (0.2 mM) was removed within 90 min. The removal process of the aqueous 2,4-DCBA obeyed first-order decay kinetic model. Over 86.3% of 2,4-DCBA can still be removed by TiC-Pd/Ni foam cathode in the fifth consecutive run within 120 min, which was much higher than that of Pd/Ni foam cathode (37.5%). Consequently, TiC-Pd/Ni foam cathode was a promising design for enhanced ECH activity and reduced operation cost.
Collapse
Affiliation(s)
- Zimo Lou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yizhou Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiasheng Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Kunlun Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yuanli Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
16
|
Xie Y, Chen L, Liu R, Tian J. Reduction of AOX in pharmaceutical wastewater in the cathode chamber of bio-electrochemical reactor. BIORESOURCE TECHNOLOGY 2018; 265:437-442. [PMID: 29935452 DOI: 10.1016/j.biortech.2018.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
A bio-electrochemical reactor (BER) operating at different cathode potentials ranging from -300 to -1000 mV (vs standard hydrogen electrode, SHE) was used to reduce adsorbable organic halogens (AOX) in pharmaceutical wastewater. Cathode polarization enriched the electron donor of the biological system. Thus, the AOX removal efficiency in the BER improved from 59.9% to 70.2%, and the AOX removal rate increased from 0.87 to 1.17 mg AOX/h when the cathode potential was reduced from -300 to -1000 mV with the addition of methyl viologen, a known redox mediator. The decrease of the cathode potential was also beneficial for methane production, and the inhibition of the methanogenic process enhanced the AOX removal. Additionally, cathode coulombic efficiency analysis demonstrated that the proportion of electrons used for AOX reduction decreases with decreasing potential, from 37.6% at -300 mV to 17.3% at -1000 mV, although the AOX removal efficiency improves.
Collapse
Affiliation(s)
- Yawei Xie
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Zhejiang 314006, China.
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Zhejiang 314006, China
| | - Jinping Tian
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Ha DD. Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation 2018; 29:499-510. [PMID: 30105582 DOI: 10.1007/s10532-018-9848-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Thauera sp. strain DKT isolated from sediment utilized 2,4-dichlorophenoxyacetic acid (2,4D) and its relative compounds as sole carbon and energy sources under anaerobic conditions and used nitrate as an electron acceptor. The determination of 2,4D utilization at different concentrations showed that the utilization curve fitted well with the Edward model with the maximum degradation rate as 0.017 ± 0.002 mM/day. The supplementation of cosubstrates (glucose, acetate, sucrose, humate and succinate) increased the degradation rates of all tested chemical substrates in both liquid and sediment slurry media. Thauera sp. strain DKT transformed 2,4D to 2,4-dichlorophenol (2,4DCP) through reductive side-chain removal then dechlorinated 2,4DCP to 2-chlorophenol (2CP), 4-chlorophenol (4CP) and phenol before complete degradation. The relative degradation rates by the isolate in liquid media were: phenol > 2,4DCP > 2CP > 4CP > 2,4D ≈ 3CP. DKT augmentation in sediment slurry enhanced the degradation rates of 2,4D and chlorophenols. The anaerobic degradation rates in the slurry were significantly slower compared to the rates in liquid media.
Collapse
Affiliation(s)
- Duc Danh Ha
- Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam.
| |
Collapse
|
18
|
Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:490-495. [PMID: 29705662 DOI: 10.1016/j.jhazmat.2018.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The batch and fed-batch tests were performed to evaluate the efficiency of bioaugmentation in combination with biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D degrading enrichments were used for bioaugmentation, and effluents prepared through biological hydrogen production process were used as substrate for biostimulation. The batch tests indicated that 2,4-D degradation depended on the enrichment/substrate ratio (E/S), where E/S of 0.03 showed an excellent performance. The fed-batch tests showed that biostimulation only led to an improvement in 2,4-D degradation, while the pattern of repeated augmentation of enrichments (FRA) together with biostimulation obviously improved degradation of 2,4-D, 2-chlorophenol (2-CP) and phenol. DNA-sequencing approach showed that the FRA pattern altered the bacterial community composition, and high removal of 2,4-D, 2-CP and phenol may be attributed to the acclimation and persistence of Thauera. The findings demonstrated the importance of the FRA pattern on remediation of paddy soil contaminated with 2,4-D.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
| |
Collapse
|
19
|
Li X, Zhou M, Pan Y. Enhanced degradation of 2,4-dichlorophenoxyacetic acid by pre-magnetization Fe-C activated persulfate: Influential factors, mechanism and degradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:454-465. [PMID: 29704797 DOI: 10.1016/j.jhazmat.2018.04.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world, its residue in aquatic environment threatens the human health and ecosystems. In this study, for the first time, inexpensive Fe-C after pre-magnetization (Pre-Fe-C) was used as the heterogeneous catalyst to activate persulfate (PS) for 2,4-D degradation, proving that Pre-Fe-C could significantly improve the degradation and dechlorination. The results indicated the stability and reusability of Pre-Fe-C were much better than pre-magnetization Fe0 (Pre-Fe0), while the leaching iron ion was lower, indicating that using Pre-Fe-C not only reduced the post-treatment cost, but also enhanced the removal and dechlorination efficiency of 2,4-D. Several important parameters including initial pH, Fe-C dosage, PS concentration affecting 2,4-D degradation and dechlorination by Pre-Fe-C/PS were investigated and compared with that of Fe-C/PS, observing a 1.2-2.7 fold enhancement in the degradation rate of 2,4-D. The Fe-C and Pre-Fe-C were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and SEM-EDX-mapping, suggesting that the content of Fe and O changed more obviously after magnetization. The degradation intermediates, such as chloroquinol, 2-chlorophenol, were identified by a gas chromatography mass spectrometry (GC/MS) and an ion chromatography (IC), and a possible degradation pathway was proposed.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Normal University, Xinxiang 453000, China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453000, China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453000, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuwei Pan
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Yang Z, Shi X, Dai M, Wang L, Xu X, Guo R. Promoting degradation of 2,4-dichlorophenoxyacetic acid with fermentative effluents from hydrogen-producing reactor. CHEMOSPHERE 2018; 201:859-863. [PMID: 29567469 DOI: 10.1016/j.chemosphere.2018.03.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
This research aims to identifying the potential effect of using a hydrogen-producing reactor's effluent as an enrichment amendment for enhancing the degradation rates of 2,4-dichlorophenoxyacetic acid (2,4-D) during the bioremediation of contaminated paddy soils. The results showed that addition of the effluents to 2,4-D- degrading enrichment culture enhanced (up to 1.3-fold) the degradation rate constant of 2,4-D. The enhancement effect most probably resulted from the co-metabolic degradation of 2,4-D facilitated by volatile fatty acids (e.g., acetate, propionate, and butyrate) in the effluents which served as the beneficial substrates. Results from DNA sequencing analysis showed that the effluent additions shifted the bacterial community composition in the enrichment culture. Dechloromonas and Clostridium were two dominant bacterial genera involved in 2,4-D degradation. The findings will make a substantial contribution to remediation of soils contaminated with 2,4-D.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China.
| |
Collapse
|