1
|
Gutiérrez MC, Cáceres A, Herruzo-Ruiz AM, Siles JA, Vázquez F, Alhama J, Michán C, Martín MA. Assessment of nitrification process in a sequencing batch reactor: Modelling and genomic approach. ENVIRONMENTAL RESEARCH 2024; 246:118035. [PMID: 38199477 DOI: 10.1016/j.envres.2023.118035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Nitrification of ammoniacal nitrogen (N-NH4+) to nitrate (N-NO3-) was investigated in a lab-scale sequencing batch reactor (SBR) to evaluate its efficiency. During the nitrification process the removal of N-NH4+ reached 96%, resulting in 73% formation of N-NO3-. A lineal correlation (r2 = 0.9978) was obtained between the concentration of volatile suspended solids (VSS) and the maximal N-NO3- concentration at the end of each batch cycle under stationary state. The bacterial taxons in the initial inoculum were identified, revealing a complex diverse community mainly in the two major bacterial phyla Proteobacteria and Actinobacteria. The FAPROTAX algorithm predicted the presence in the inoculum of taxa involved in relevant processes of the nitrogen metabolism, highlighting the bacterial genera Nitrospira and Nitrosomonas that are both involved in the nitrification process. A kinetic model was formulated for predicting and validating the transformation of N-NH4+, N-NO2- and N-NO3- and the removal of organic and inorganic carbon (TOC and IC, respectively). The results showed how the increase in biomass concentration slowed down the transformation to oxidised forms of nitrogen and increased denitrification in the settling and filling stages under free aeration conditions.
Collapse
Affiliation(s)
- M C Gutiérrez
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain
| | - A Cáceres
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain
| | - A M Herruzo-Ruiz
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, edificio Severo Ochoa, 14071, Córdoba, Spain
| | - J A Siles
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain
| | - F Vázquez
- Department of Electrical Engineering and Automation, University of Cordoba, Cordoba, 14071, Spain
| | - J Alhama
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, edificio Severo Ochoa, 14071, Córdoba, Spain
| | - C Michán
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, edificio Severo Ochoa, 14071, Córdoba, Spain
| | - M A Martín
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain.
| |
Collapse
|
2
|
Abstract
METHs are drugs that enter wastewater through the feces and urine of users. Conventional wastewater treatment plants are not capable of removing this type of emerging contaminant, but, in recent years, techniques have been developed to abate drugs of abuse. The present investigation focused on obtaining the technique that keeps the best balance between the comparison criteria considered: efficiency; costs; development stage; and waste generation. That is why a bibliographic review was carried out in the scientific databases of the last eight years, concluding that the six most popular techniques are: SBR, Fenton reaction, mixed-flow bioreactor, ozonation, photocatalysis, and UV disinfection. Subsequently, the Saaty and Modified Saaty methods were applied, obtaining a polynomial equation containing the four comparison criteria for the evaluation of the techniques. It is concluded that the UV disinfection method is the one with the best relationship between the analyzed criteria, reaching a score of 0.8591/1, followed by the Fenton method with a score of 0.6925/1. This research work constitutes a practical and easy-to-use tool for decision-makers, since it allows finding an optimal treatment for the abatement of METHs.
Collapse
|
3
|
Izadi P, Izadi P, Eldyasti A. Development of long-term dynamic BioWin® model simulation for ANAMMOX UASB micro-granular process. CHEMOSPHERE 2022; 286:131859. [PMID: 34416583 DOI: 10.1016/j.chemosphere.2021.131859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Three different innovative mathematical models were established to assess the volumetric nitrogen conversion rates of a lab-scale ANAMMOX upflow anaerobic sludge blanket reactor. Despite the vast technological and economical advantages of ANAMMOX, major challenges in process implementation call for mathematic simulations of the process, optimization of operating conditions, and kinetic/statistical analysis of the entire process. In this study, all developed mathematical models implemented via BioWin®, were calibrated and validated, with adequate representations of a bench-scale micro-granular ANAMMOX process, to understand the potential setbacks of ANAMMOX process start-up and stabilization. Fundamental calculations of the kinetic and stoichiometric constants were integrated in the BioWin® software, and the adjusted parameters based on experimental analysis were applied for the assessments. Based on the results from the statistical approach, one of the models (Model III) exhibited a precise prognosis of the effluent data for the entire operational phases with a mean relative error (MRE) of approximately 1.96, 4.36 and 2.54% for nitrogen removal efficiency, removal rate and loading rate, respectively. Evaluating alkalinity and pH during the operation, led to identifying an acceptable fit between the experiment and Model III results, with a MRE of -7.19 and -0.35%, correspondingly. This study confirms the reliability of ANAMMOX-based process modeling and high predictive ability with BioWin®. The presented simulation constants and modeling outline, can be further employed in full-scale applications design and development.
Collapse
Affiliation(s)
- Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada
| | - Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada
| | - Ahmed Eldyasti
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
4
|
Li H, Wu S, Yang C. Performance and Biomass Characteristics of SB Rs Treating High-Salinity Wastewater at Presence of Anionic Surfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082689. [PMID: 32295163 PMCID: PMC7216276 DOI: 10.3390/ijerph17082689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS), as two anionic surfactants, have diffused into environments such as surface water and ground water due to extensive and improper use. The effects on the removal performance and microbial community of sequencing batch reactors (SBRs) need to be investigated in the treatment of saline wastewater containing 20 g/L NaCl. The presence of SDS and SDBS could decrease the removal efficiencies of ammonia nitrogen and total phosphorus, and the effect of SDS was more significant. The effect of surfactants on the removal mainly occurred during the aeration phase. Adding SDS and SDBS can reduce the content of extracellular polymeric substances (EPS). In addition, SDS and SDBS also can reduce the inhibition of high salinity on sludge activity. A total of 16 s of rRNA sequencing analysis showed that the addition of surfactants reduced the diversity of microbial communities; besides, the relative abundance value of the dominant population Proteobacteria increased from 91.66% to 97.12% and 93.48% when SDS and SDBS were added into the system, respectively.
Collapse
Affiliation(s)
- Huiru Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; (H.L.); (S.W.)
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China
- Correspondence:
| |
Collapse
|
5
|
Jiang Y, Wang H, Zhao C, Huang F, Deng L, Wang W. Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation. BIORESOURCE TECHNOLOGY 2018; 268:300-307. [PMID: 30092483 DOI: 10.1016/j.biortech.2018.07.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, a microalgal-bacterial consortium (MBC) was established in liquid digestate (LD) by optimizing sequencing batch reactor (SBR) operating parameters and microalgae inoculation to address the abovementioned challenges. The bacteria from LD SBR-Activated Sludge System effluent under the optimum conditions of 25 °C, 7.0 g/L MLSS, 5 mg/L DO concentration, and 6 h hydraulic retention time with 0.5 mg/L DW Chlorella sp. BWY-1 could form stable MBCs outdoors in an airlift photoreactor. The stable MBC facilitates the continuous removal of nitrogen and phosphorus, promotes the accumulation of biomass and lipids, and contributes to the improvement of the sedimentation. The results from this study provided a new technique for the purification and utilization of LD, more importantly decreasing the environmental threat caused by improperly processed LD.
Collapse
Affiliation(s)
- Yiqi Jiang
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, PR China
| | - Hong Wang
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, PR China
| | - Caifang Zhao
- Sichuan Agriculture University, Chengdu 611130, PR China
| | - Fangyu Huang
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu 610041, PR China.
| |
Collapse
|
6
|
Jaramillo F, Orchard M, Muñoz C, Zamorano M, Antileo C. Advanced strategies to improve nitrification process in sequencing batch reactors - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:154-164. [PMID: 29679822 DOI: 10.1016/j.jenvman.2018.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The optimization of biological nitrogen removal (BNR) in sequencing batch reactors has become the aim of researchers worldwide in order to increase efficiency and reduce energy and operating costs. This research has focused on the nitrification phase as the limiting reaction rate of BNR. This paper analyzes different strategies and discusses different tools such as: factors for achieving partial nitrification, real-time control and monitoring for detecting characteristic patterns of nitrification/denitrification as end-points, use of modeling based on activated sludge models, and the use of data-driven modeling for estimating variables that cannot be easily measured experimentally or online. The discussion of this paper highlight the properties and scope of each of these strategies, as well as their advantages and disadvantages, which can be integrated into future works using these strategies according to legal and economic restrictions for a more stable and efficient BNR process in the long-term.
Collapse
Affiliation(s)
- Francisco Jaramillo
- Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile.
| | - Marcos Orchard
- Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile.
| | - Carlos Muñoz
- Department of Electrical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Mauricio Zamorano
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| | - Christian Antileo
- Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile.
| |
Collapse
|