1
|
Kedves A, Kónya Z. Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review. Biofilm 2024; 8:100234. [PMID: 39524692 PMCID: PMC11550140 DOI: 10.1016/j.bioflm.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO2 and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO2 NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of Fe3O4 NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- HUN-REN Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Mu H, Zhao Y, Zhao C. Alleviation of ZnO nanoparticles-induced methanogenic inhibition by granular activated carbon. ENVIRONMENTAL TECHNOLOGY 2023; 44:4352-4362. [PMID: 35722663 DOI: 10.1080/09593330.2022.2091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
A great deal of attention has been paid to the toxicology of ZnO nanoparticles (NPs) to wastewater anaerobic digestion, but few studies have assessed how to reduce their toxic effects. In this study, different dosages of granular activated carbon (GAC) were added into ZnO NPs-bearing wastewater anaerobic digestion system. It was found that although the extracellular polymeric substances resistance, which had been impaired by ZnO NPs, could not be recovered by GAC, the suppressed methane yield was greatly enhanced by promoting the conversions of butyrate and acetate into methane. GAC of 10, 20 and 30 g/L enhanced the methane yield to 69%, 79% and 97% from 42% of the control inhibited by 100 mg/L ZnO NPs. This was mainly because the adsorption of GAC could weaken the effective contact between ZnO NPs and microbes, and also adsorb some released Zn2+ that has contributed primarily to ZnO NPs toxicology. The reduced toxicity of ZnO NPs was attributed to the enrichment of the tolerant hydrogenotrophic methanogens and the direct interspecies electron transfer-linking partners of Methanosarcina with Geobacter/Syntrophomonas. These syntrophic partners potentially used GAC as a conduit to transfer electrons for methane production.
Collapse
Affiliation(s)
- Hui Mu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Youheng Zhao
- Shandong Academy of Environmental Science Co., Ltd., Jinan, People's Republic of China
| | - Chunhui Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
3
|
Zhao J, Zhang H, Guan D, Wang Y, Fu Z, Sun Y, Wang D, Zhang H. New insights into mechanism of emerging pollutant polybrominated diphenyl ether inhibiting sludge dark fermentation. BIORESOURCE TECHNOLOGY 2023; 368:128358. [PMID: 36414141 DOI: 10.1016/j.biortech.2022.128358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), derived from electronics, furniture, etc., are detected with high level in excess sludge (ES). In this work, the influence of PBDEs on ES dark fermentation (ESDF) hydrogen production and the related key mechanisms were explored. The result shows PBDEs exposure reduced hydrogen production, and hydrogen accumulation decreased from 17.6 mL/g in blank to 12.3 mL/g with 12.0 mg/Kg PBDEs. PBDEs induced the reactive oxygen species production, which directly led to cell inactivation and reduced hydrogen production. Furthermore, PBDEs decreased ES disintegration, hydrolysis, acidification and homoacetogenic processes and inhibited the activities of enzymes related to hydrogen production. PBDEs also affected the diversity and richness of microbial communities in dark fermentation systems, especially high doses of PBDEs reduced the relative abundance of microorganisms associated with hydrogen production. In conclusion, PBDEs reduce hydrogen generation from ES.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Hongying Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
4
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Jiao Y, Chen H. Polydimethyldiallylammonium chloride induces oxidative stress in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 356:127331. [PMID: 35580788 DOI: 10.1016/j.biortech.2022.127331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The effects and key mechanisms of polydimethyldiallylammonium chloride on anaerobic digestion of waste activated sludge were investigated. Polydimethyldiallylammonium chloride at 38.1 g/kg total solids substantially reduced cumulative methane production from 138.2 ± 5.5 to 49.4 ± 5.0 L CH4/kg volatile solids added, a reduction of 64.3 ± 0.2%. The quaternary ammonium groups on polydimethyldiallylammonium chloride agglomerated sludge flocs by neutralizing negatively charged amino groups in in extracellular polymeric substances, which hindered the release of organic matter. Quaternary ammonium groups induce oxidative stress by inducing the production of reactive oxygen species, thereby inhibiting the activity of anaerobic digestive enzymes. In addition, quaternary amine groups reduced the abundance of hydrolyzing bacteria, acidifying bacteria, and acetylotrophic methanogens. Oxidative stress could be an underappreciated mechanism that quaternary ammonium groups deteriorate anaerobic digestion, which could be transformative for understanding the potential risks of quaternary ammonium cationic flocculants in biological sludge treatment.
Collapse
Affiliation(s)
- Yimeng Jiao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
6
|
Li H, Chang F, Li Z, Cui F. The Role of Extracellular Polymeric Substances in the Toxicity Response of Anaerobic Granule Sludge to Different Metal Oxide Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095371. [PMID: 35564766 PMCID: PMC9100327 DOI: 10.3390/ijerph19095371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Wastewater treatment plants (WWTP) are regarded as the last barriers for the release of incompletely separated and recycled nanoparticles (NPs) into the environment. Despite the importance and ubiquity of microbial extracellular polymeric substances (EPSs) in the complex wastewater matrix, the interaction between NPs and EPSs of anaerobic microflora involved in wastewater treatment and the resultant impact on the biomass metabolomics are unclear. Thus, the impacts of different metal oxide (TiO2, ZnO, and CuO) NPs on functional bacteria in anaerobic granular sludge (AGS) and the possible toxicity mechanisms were investigated. In particular, the binding quality, enhanced resistance mechanism, and chemical fractional contribution of EPSs from AGS against the nanotoxicity of different NPs was assessed. The results showed that CuO NPs caused the most severe inhibition towards acetoclastic and hydrogenotrophic methanogens, followed by ZnO NPs, whereas TiO2 NPs caused no inhibition to methanogenesis. Excessive EPS production, especially the protein-like substances, was an effective strategy for reducing certain NPs’ toxicity by immobilizing NPs away from AGS cells, whereas the metabolism restriction on inner microorganisms of AGS induced by CuO NPs can deteriorate the protective role of EPS, indicating that the roles of EPS may not be amenable to generalizations. Further investigations with lactate dehydrogenase (LDH) and reactive oxygen species (ROS) assays indicated that there are greatly essential differences between the toxicity mechanisms of metal NPs to AGS, which varied depending on the NPs’ type and dosage. In addition, dynamic changes in the responses of EPS content to different NPs can result in a significant shift in methanogenic and acidogenic microbial communities. Thus, the production and composition of EPSs will be a key factor in determining the fate and potential effect of NPs in the complex biological matrix. In conclusion, this study broadens the understanding of the inhibition mechanisms of metal oxide NPs on the AGS process, and the influence of EPSs on the fate, behavior, and toxicity of NPs.
Collapse
Affiliation(s)
- Huiting Li
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin 300000, China; (H.L.); (F.C.); (Z.L.)
| | - Fang Chang
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin 300000, China; (H.L.); (F.C.); (Z.L.)
| | - Zhendong Li
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin 300000, China; (H.L.); (F.C.); (Z.L.)
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Correspondence:
| |
Collapse
|
7
|
Chen Y, Wu Y, Bian Y, Dong L, Zheng X, Chen Y. Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. BIORESOURCE TECHNOLOGY 2022; 348:126789. [PMID: 35104652 DOI: 10.1016/j.biortech.2022.126789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The long-term effects of copper nanoparticles (Cu NPs) on volatile fatty acids (VFAs) production during the waste activated sludge (WAS) fermentation, and the underlying mechanisms regarding copper species distribution and bacterial community evolution were explored. The yield of VFAs in the control was 1086 mg COD/L, whereas those were inhibited by 11.1%, 56.0% and 83.1%, with 25, 50, and 100 mg/g-TSS Cu NPs, respectively. Further investigation indicated that Cu NPs severely affected hydrolysis and acidification of WAS in a dose-dependent manner, while had little impact on solubilization. Besides, Cu NPs enriched the acid-consuming anaerobe while reducing the acid-forming bacteria. The metabolic pathways, microbial function, and enzymatic activities involved were inhibited at all tested dosages. Moreover, soluble and acid-extractable fractions dominated the copper speciation, which were also the main factors inhibiting the VFA production. This study provides a new perspective to interpret the long-term impacts of Cu NPs on WAS fermentation.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Wang X, Han T, Sun Y, Geng H, Li B, Dai H. Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117408. [PMID: 34049134 DOI: 10.1016/j.envpol.2021.117408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO2, CuO, CeO2, MgO, and MnO2 in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Zhu X, Blanco E, Bhatti M, Borrion A. Impact of metallic nanoparticles on anaerobic digestion: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143747. [PMID: 33257063 DOI: 10.1016/j.scitotenv.2020.143747] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is one of the most energy-efficient waste treatment technologies for biodegradable wastes. Owing to the increasing trend of metallic nanoparticle applications in industry, they are ubiquitous to the waste streams, which may lead to remarkable impacts on the performance of the AD process. This review addresses the knowledge gaps and summarises the findings from the academic articles published from 2010 to 2019 focusing on the influences on both AD processes of biochemical hydrogen-generation and methane-production from selected metallic nano-materials. Both qualitative and quantitative analyses were conducted with selected indicators to evaluate the metallic nanoparticles' influences on the AD process. The selected metallic nanoparticles were grouped in the view of their chemical formulations aiming to point out the possible mechanisms behind their effects on AD processes. In summary, most metallic nanoparticles with trace-element-base (e.g. iron, cobalt, nickel) have positive effects on both AD hydrogen-generation and methane-production processes in terms of gas production, effluent quality, as well as process optimisation. Within an optimum concentration, they serve as key nutrients providers, aid key enzymes and co-enzymes synthesis, and thus stimulate anaerobic microorganism activities. As for the nano-additives without trace-element base, their positive influences are relied on providing active sites for the microorganism, as well as absorbing inhibitory factors. Moreover, comparisons of these nano-additives' impacts on the two gas-production phases were conducted, while methane-production phases are found to be more sensitive to additions of these nanoparticles then hydrogen-production phase. Research perspectives and research gaps in this area are discussed.
Collapse
Affiliation(s)
- Xiaowen Zhu
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Manni Bhatti
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
10
|
Cervantes-Avilés P, Durán Vargas JB, Akizuki S, Kodera T, Ida J, Cuevas-Rodríguez G. Cumulative effects of titanium dioxide nanoparticles in UASB process during wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111428. [PMID: 33035936 DOI: 10.1016/j.jenvman.2020.111428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products and one of their major fate is the wastewater treatment plants. However, NPs eventually arrive to aquatic and terrestrial ecosystems via treated water and biosolids, respectively. Since low concentration of NPs is accumulating in the upflow anaerobic sludge blanket (UASB) reactors that treat wastewater and reclaim water quality, the accumulation of TiO2 NPs in these reactors may impact in their performance. In this work, the long-term effects of TiO2 NPs on the main benefits of treating wastewater by UASB reactors such as, biogas production, methane fraction in biogas and organic matter removal were evaluated. Evaluation consisted of monitoring such parameters in two identical UASB reactors, one UASB-Control (without NPs) and the experimental one (UASB-TiO2 NPs) that received wastewater with TiO2 NPs. The fate of NPs in the UASB reactor was also determined. Results indicated that biogas production increased by 8.8% due to the chronic exposure of UASB reactor to TiO2 NPs during the first 44 days of experiment. However, the methane content in the biogas had no significant differences between both UASB, ranging between 78% and 90% of methane during the experiment. The removal of organic matter in both UASB was similar and ranged 92-98% along the experimental time. This means that accumulation of TiO2 NPs did not altered the biogas production and organic matter removal. However, the content of total volatile solids (TVS) in UASB-TiO2 NPs dropped off from 137.8 g to 64.2 g in 84 days, while for control reactor that decreased from 141.6 g to 92.4 g in the same period. Hence, the increased biogas production in the UASB exposed to TiO2 was attributed to hydrolysis of the TVS in this reactor. The main fate of TiO2 NPs was the granular sludge, which accumulated up to 8.56 mg Ti/g, which represent around 99% of the Ti spiked to the reactor and the possible cause of the biomass hydrolyzation in the UASB. Disposal of UASB sludge containing NPs from may raise ecotoxicological concerns due to the use of biosolids in agricultural activities.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Reserva Territorial Atlixcáyotl, Puebla, Pue, CP 72453, Mexico; Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico
| | - J Beatriz Durán Vargas
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico
| | - Shinichi Akizuki
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico; Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Toshimitsu Kodera
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato, Gto, 36000, Mexico.
| |
Collapse
|
11
|
Zhang YT, Wei W, Sun J, Xu Q, Ni BJ. Long-Term Effects of Polyvinyl Chloride Microplastics on Anaerobic Granular Sludge for Recovering Methane from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9662-9671. [PMID: 32658461 DOI: 10.1021/acs.est.0c02433] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyvinyl chloride microplastics (PVC-MPs) are emerging contaminants affecting biological wastewater treatment processes. However, most of the previous studies mainly focused on their short-term impacts on floc sludge, with little work being conducted to explore their potential effects on more complex anaerobic granular sludge (AGS), which has been widely used for high-strength organic wastewater treatment. In this paper, the long-term effects of PVC-MPs on AGS were investigated via continuous feeding tests that are representative of real wastewater treatment processes. The results of a continuous 264 days test showed that the prolonged exposure of PVC-MPs at 15-150 MPs·L-1 significantly (p = 7.86 × 10-37, 3.44 × 10-43, and 5.29 × 10-46) inhibited the COD removal efficiency of AGS by 13.2%-35.5%, accompanied by a 11.0%-32.3% decreased production of methane and 40.3%-272.7% increased accumulation of short-chain fatty acids (SCFAs). In addition, the PVC-MPs exposure suppressed the secretion of extracellular polymeric substances (EPS), causing AGS and the inside microorganisms to lose the protection of EPS, thereby resulting in granule breakage and decreased cells viability. Aligning with the deteriorated performance, the long-term exposure of PVC-MPs reduced the total microbial populations and the relative abundances of key methanogens and acidogens. A toxicity mechanism assessment revealed that the negative impacts induced by PVC-MPs are mainly attributed to the toxic leachate and excess oxidative stress.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
12
|
Hassaneen FY, Abdallah MS, Ahmed N, Taha MM, Abd ElAziz SMM, El-Mokhtar MA, Badary MS, Allam NK. Innovative nanocomposite formulations for enhancing biogas and biofertilizers production from anaerobic digestion of organic waste. BIORESOURCE TECHNOLOGY 2020; 309:123350. [PMID: 32289660 DOI: 10.1016/j.biortech.2020.123350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Herein, the design of nanocomposite (NC) formulations that consist of metal enzyme cofactors, highly conductive carbon materials, DIET activators, to boost AD biogas production from anaerobically incubated cattle manure are investigated and discussed. Three different NC formulations were designed and synthesized: zinc ferrite (ZnFe), ZnFe with 10% carbon nanotubes (ZFCNTs), and zinc ferrite with 10% C76 fullerene (ZFC76). The structure and morphology of the nano-additives were investigated via x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM). NCs were supplemented to lab-scale biodigesters containing organic slurry. Biogas production was monitored daily and compared to blank biodigesters for 50 days. The maximum methane enhancement was obtained for ZnFe, which promoted methane production to 185.3%. ZFCNTs and ZFC76 showed a positive impact on the hydraulic retention time and enhanced methane production to 162% and 145.9%, respectively compared to the blank reactors.
Collapse
Affiliation(s)
- Fatma Y Hassaneen
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; Department of Microbiology and Immunology, Assiut University, Assuit 71515, Egypt
| | - Muhammed S Abdallah
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nashaat Ahmed
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Manar M Taha
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | | | - Mohamed A El-Mokhtar
- Department of Microbiology and Immunology, Assiut University, Assuit 71515, Egypt
| | - Mohamed S Badary
- Department of Microbiology and Immunology, Assiut University, Assuit 71515, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
13
|
Zhang YT, Wei W, Huang QS, Wang C, Wang Y, Ni BJ. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. WATER RESEARCH 2020; 179:115898. [PMID: 32388051 DOI: 10.1016/j.watres.2020.115898] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The negative effects of ubiquitous microplastics on wastewater treatment have attracted increasing attention. However, the potential impacts of microplastics on anaerobic granular sludge (AGS) remain unknown. To fill this knowledge gap, this paper investigated the response of AGS to the exposure of model microplastics (polyethylene terephthalate (PET-MPs)) and provided insights into the mechanisms involved. The 84 days' long-term exposure experiments demonstrated that PET-MPs, at relatively low level (15 MP L-1) did not affect AGS performance during anaerobic wastewater treatment, while 75-300 MP L-1 of PET-MPs caused the decreases of COD removal efficiency and methane yields by 17.4-30.4% and 17.2-28.4%, accompanied with the 119.4-227.8% increase in short-chain fatty acid (SCFA) accumulation and particle breakage. Extracellular polymeric substances (EPS) analysis showed that dosage-dependent tolerance of AGS to PET-MPs was attributed to the induced EPS producing protection role, but PET-MPs at higher concentrations (75-300 MP L-1) suppressed EPS generation. Correspondingly, microbial community analysis revealed that the populations of key acidogens (e.g., Levilinea sp.) and methanogens (e.g., Methanosaeta sp.) decreased after long-term exposure to PET-MPs. Assessment of the toxicity of PET-MPs revealed that the leached di-n-butyl phthalate (DBP) and the induced reactive oxygen species (ROS) by PET-MPs were causing toxicity towards AGS, confirmed by the increases in cell mortality and lactate dehydrogenase (LDH) release. These results provide novel insights into the ecological risk assessment of microplastics in anaerobic wastewater treatment system.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Qi-Su Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
14
|
Bemowsky S, Rother A, Willmann W, Köser J, Markiewicz M, Dringen R, Stolte S. Quantification and biodegradability assessment of meso-2,3-dimercaptosuccinic acid adsorbed on iron oxide nanoparticles. NANOSCALE ADVANCES 2019; 1:3670-3679. [PMID: 36133553 PMCID: PMC9419269 DOI: 10.1039/c9na00236g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 06/12/2023]
Abstract
Many interesting applications of magnetic iron oxide nanoparticles (IONPs) have recently been developed based on their magnetic properties and promising catalytic activity. Depending on their intended use, such nanoparticles (NPs) are frequently functionalized with proteins, polymers, or other organic molecules such as meso-2,3-dimercaptosuccinic acid (DMSA) to improve their colloidal stability or biocompatibility. Although the coating strongly affects the colloidal properties and environmental behaviour of NPs, quantitative analysis of the coating is often neglected. To address this issue, we established an ion chromatographic method for the quantitative analysis of surface-bound sulfur-containing molecules such as DMSA. The method determines the amount of sulfate generated by complete oxidation of sulfur present in the molecule. Quantification of the DMSA content of DMSA-coated IONPs showed that reproducibly approximately 38% of the DMSA used in the synthesis was adsorbed on the IONPs. Tests for the biodegradability of free and NP-bound DMSA using a microbial community from a wastewater treatment plant showed that both free and NP-bound DMSA was degraded to negligible extent, suggesting long-term environmental stability of DMSA-coated IONPs.
Collapse
Affiliation(s)
- S Bemowsky
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - A Rother
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - W Willmann
- CBIB - Centre for Biomolecular Interactions Bremen, Neurobiochemistry, Faculty 2 (Biology/Chemistry), University of Bremen Leobener Straße 5/NW2 D-28359 Bremen Germany
- UFT - Centre for Environmental Research and Sustainable Technology, Department Neurobiochemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - J Köser
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - M Markiewicz
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry Bergstraße 66 01069 Dresden Germany
| | - R Dringen
- CBIB - Centre for Biomolecular Interactions Bremen, Neurobiochemistry, Faculty 2 (Biology/Chemistry), University of Bremen Leobener Straße 5/NW2 D-28359 Bremen Germany
- UFT - Centre for Environmental Research and Sustainable Technology, Department Neurobiochemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
| | - S Stolte
- UFT - Centre for Environmental Research and Sustainable Technology, Department Sustainable Chemistry, University of Bremen Leobener Straße 6 D-28359 Bremen Germany
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
15
|
Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamashiro T, Iwasaki M, Umetsu K. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:160-167. [PMID: 30933820 DOI: 10.1016/j.jenvman.2019.03.089] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 05/18/2023]
Abstract
Anaerobic digestion for biogas production is one of the most used technology for bioenergy. However, the adoption of nanoparticles still needs further studies. Therefore, this study was designed to examine the effect of metal oxide nanoparticles (MONPs) at four different concentrations in two different combinations, 20 (R1) and 100 (R2) mg/L for Fe2O3, 100 (R3) and 500 (R4) mg/L for TiO2, and a mixture of Fe2O3 and TiO2 at rates of 20, 500 (R5) and 100, and 500 (R6), on hydrogen sulfide (H2S) mitigation, biogas, and methane (CH4) yield during the anaerobic digestion of cattle manure (CM) using an anaerobic batch system. The results showed that H2S production was 2.13, 2.38, 2.37, 2.51, 2.64, and 2.17 times lower than that of the control (R0), respectively, when the CM was treated by the aforementioned MONPs. Additionally, biogas and CH4 production were 1.09 and 1.105, 1.15 and 1.191, 1.07 and 1.097, 1.17 and 1.213, 1.10 and 1.133, and 1.13 and 1.15 times higher than those of R0 when R1, R2, R3, R4, R5, and R6 were supplemented with MONPs, respectively. The highest specific production of biogas and CH4 was 336.25 and 192.31 mL/gVS, respectively, which was achieved by R4 supplemented with 500 mg/L TiO2 NPs, while the corresponding values in the case of R0 were 286.38 and 158.55 mL/gVS.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan; Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Fetra J Andriamanohiarisoamanana
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Moustafa M Ahmed
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Saber Kotb
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Takaki Yamashiro
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Masahiro Iwasaki
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kazutaka Umetsu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
16
|
Shi LD, Du JJ, Wang LB, Han YL, Cao KF, Lai CY, Zhao HP. Formation of nanoscale Te 0 and its effect on TeO 32- reduction in CH 4-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1232-1239. [PMID: 30577115 DOI: 10.1016/j.scitotenv.2018.11.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Formation and recovery of elemental tellurium (Te0) from wastewaters are required by increasing demands and scarce resources. Membrane biofilm reactor (MBfR) using gaseous electron donor has been reported as a low-cost and benign technique to reduce and recover metal (loids). In this study, we demonstrate the feasibility of nanoscale Te0 formation by tellurite (TeO32-) reduction in a CH4-based MBfR. Biogenic Te0 intensively attached on cell surface, within diameters ranging from 10 nm to 30 nm and the hexagonal nanostructure. Along with the Te0 formation, the TeO32- reduction was inhibited. After flushing, biofilm resumed the TeO32- reduction ability, suggesting that the formed nanoscale Te0 might inhibit the reduction by hindering substrate transfer of TeO32- to microbes. The 16S rRNA gene amplicon sequencing revealed that Thermomonas and Hyphomicrobium were possibly responsible for TeO32- reduction since they increased consecutively along with the experiment operation. The PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis showed that the sulfite reductases were positively correlated with the TeO32- flux, indicating they were potential enzymes involved in reduction process. This study confirms the capability of CH4-based MBfR in tellurium reduction and formation, and provides more techniques for resources recovery and recycles.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Jie Du
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Lu-Bin Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yu-Lin Han
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Ke-Fan Cao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Zhao L, Ji Y, Sun P, Deng J, Wang H, Yang Y. Effects of individual and combined zinc oxide nanoparticle, norfloxacin, and sulfamethazine contamination on sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 273:454-461. [PMID: 30469135 DOI: 10.1016/j.biortech.2018.11.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
This work investigated the individual and combined effects of zinc oxide, norfloxacin, and sulfamethazine on sludge anaerobic digestion-associated methane production, protein and carbohydrate metabolism, and microbial diversity. Norfloxacin and sulfamethazine (500 mg/kg) did not inhibit methane production, but inhibited its production rate. Zinc oxide nanoparticles with antibiotics inhibited hydrolysis, fermentation, and methanogenesis over varying digestion periods. Complex pollution had a greater impact on methane production than zinc oxide alone, with acute, synergistic toxicity to methanogenesis over short periods. Complex pollution also had varying effects on bacterial and archaeal communities during digestion. These results aid understanding of the toxicity of emerging contaminants in sludge digestion, with the potential to improve pollution removal and reduce associated risks.
Collapse
Affiliation(s)
- Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yi Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinghui Deng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
18
|
Simelane S, Dlamini LN. An investigation of the fate and behaviour of a mixture of WO 3 and TiO 2 nanoparticles in a wastewater treatment plant. J Environ Sci (China) 2019; 76:37-47. [PMID: 30528029 DOI: 10.1016/j.jes.2018.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 05/24/2023]
Abstract
The fate and behaviour of WO3 and TiO2 mixture were investigated following the Organisation for Economic Co-operation and Development 303A guidelines. The nanoparticles were found not to influence the chemical oxygen demand removal efficiency which was maintained >80% hence the activated sludge process was on affected. The nanoparticles were eliminated from the wastewater with a greater percentage of 99.8% for TiO2 and 95.5% for WO3 found in the sludge. The activated sludge process also had no effect of the polymorphs of the nanoparticles as X-ray diffraction revealed presence of monoclinic WO3 and anatase TiO2 which were spiked into the influent. The nanoparticles were mainly removed by bio-adsorption on the activated sludge surface. The total plate count revealed that the bacterial colonies present in the control and the test units were comparable during the gradual introduction of nanoparticles in the chambers. The biomass was >0.75 MLVSS/MLSS (mixed liquor volatile suspended solids/mixed liquor suspended solids) in both the aeration vessels thus a greater proportion of the sludge were the microorganisms. A greater percentage of the Ti and W found in the effluent was mainly due to the nanoparticles adsorbed on the suspended solids with only 3.6% Ti and 28.6% W due to dissolution of nanoparticles.
Collapse
Affiliation(s)
- Sandile Simelane
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg 2028, South Africa
| | - Langelihle Nsikayezwe Dlamini
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
19
|
Cervantes-Avilés P, Ida J, Toda T, Cuevas-Rodríguez G. Effects and fate of TiO 2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:227-233. [PMID: 29857315 DOI: 10.1016/j.jenvman.2018.05.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/05/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of TiO2 nanoparticles (NPs) in customer products has also increased the concerns about their effects in the environment. Anaerobic digestion is a process probably exposed to high concentrations of TiO2 NPs due to its application for wastewater and waste sludge treatment. In this work, it was studied the anaerobic digestion performance and the extracellular polymeric substances (EPS) production in presence of TiO2 NPs, as well as the fate of TiO2 NPs in anaerobic reactors. Results showed that methane production enhanced an average of 14.9% in presence TiO2 NPs, which is considered a positive effect. A strong affinity between TiO2 NPs and EPS was found, especially for proteins (PRO) and polysaccharides (PS) in the loosely and tightly bound EPS layers of microorganisms (LB-EPS and TB-EPS). Ti quantification indicated that 92% of the TiO2 NPs are removed by anaerobic sludge, while 8% remain in the treated effluent.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, 2336 Bren Hall, University of California, Santa Barbara, CA, 93106, USA.
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University. 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Tatsuki Toda
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University. 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato. Av. Juárez 77, Zona Centro, Guanajuato, Gto. 36000, Mexico
| |
Collapse
|
20
|
State of the art on granular sludge by using bibliometric analysis. Appl Microbiol Biotechnol 2018; 102:3453-3473. [PMID: 29497798 DOI: 10.1007/s00253-018-8844-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
With rapid industrialization and urbanization in the nineteenth century, the activated sludge process (ASP) has experienced significant steps forward in the face of greater awareness of and sensitivity toward water-related environmental problems. Compared with conventional flocculent ASP, the major advantages of granular sludge are characterized by space saving and resource recovery, where the methane and hydrogen recovery in anaerobic granular and 50% more space saving, 30-50% of energy consumption reduction, 75% of footprint cutting, and even alginate recovery in aerobic granular. Numerous engineers and scientists have made great efforts to explore the superiority over the last 40 years. Therefore, a bibliometric analysis was desired to trace the global trends of granular sludge research from 1992 to 2016 indexed in the SCI-EXPANDED. Articles were published in 276 journals across 44 subject categories spanning 1420 institutes across 68 countries. Bioresource Technology (293, 11.9%), Water Research (235, 9.6%), and Applied Microbiology and Biotechnology (127, 5.2%) dominated in top three journals. The Engineering (991, 40.3%), China (906, 36.9%), and Harbin Inst Technol, China (114, 4.6%) were the most productive subject category, country, and institution, respectively. The hotspot is the emerging techniques depended on granular reactors in response to the desired removal requirements and bio-energy production (primarily in anaerobic granular sludge). In view of advanced and novel bio-analytical methods, the characteristics, functions, and mechanisms for microbial granular were further revealed in improving and innovating the granulation techniques. Therefore, a promising technique armed with strengthened treatment efficiency and efficient resource and bio-energy recovery can be achieved.
Collapse
|
21
|
Tang J, Zhu N, Zhu Y, Zamir SM, Wu Y. Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of CeO 2 nanoparticles. BIORESOURCE TECHNOLOGY 2018; 248:75-81. [PMID: 28743614 DOI: 10.1016/j.biortech.2017.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
The responses of periphytic biofilm to CeO2 nanoparticle (CNP) exposure were explored by investigating community shifts and pollutant removal. Results showed that CNPs entered the sensitive microbial cells in the periphytic biofilm, leading to cytomembrane damage and intracellular reactive oxygen species (ROS) generation. The periphytic biofilm communities were, however, able to adapt to the prolonged exposure and maintain their pollutant removal (i.e., phosphorus, nitrogen and copper, organic matter) performance. Observations under synchrotron radiation scanning transmission X-ray microscopy revealed that fewer CNPs were distributed in algal cells compared to bacterial cells, wherein the transformation between Ce(IV) and Ce(III) occurred. High-throughput sequencing further showed that the proportion of algae, such as Leptolyngbya and Nostoc, significantly increased in the periphytic biofilm exposed to CNPs while the proportion of bacteria, such as Bacilli and Gemmatimonadetes, decreased. This change in community composition might be the primary reason for the sustained pollutant removal performance of the periphytic biofilm.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seyed Morteza Zamir
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|