1
|
Samavati Z, Goh PS, Fauzi Ismail A, Lau WJ, Samavati A, Ng BC, Sohaimi Abdullah M. Advancements in membrane technology for efficient POME treatment: A comprehensive review and future perspectives. J Environ Sci (China) 2025; 155:730-761. [PMID: 40246505 DOI: 10.1016/j.jes.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 04/19/2025]
Abstract
The treatment of POME related contamination is complicated due to its high organic contents and complex composition. Membrane technology is a prominent method for removing POME contaminants on account of its efficiency in removing suspended particles, organic substances, and contaminants from wastewater, leading to the production of high-quality treated effluent. It is crucial to achieve efficient POME treatment with minimum fouling through membrane advancement to ensure the sustainability for large-scale applications. This article comprehensively analyses the latest advancements in membrane technology for the treatment of POME. A wide range of membrane types including forward osmosis, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane bioreactor, photocatalytic membrane reactor, and their combinations is discussed in terms of the innovative design, treatment efficiencies and antifouling properties. The strategies for antifouling membranes such as self-healing and self-cleaning membranes are discussed. In addition to discussing the obstacles that impede the broad implementation of novel membrane technologies in POME treatment, the article concludes by delineating potential avenues for future research and policy considerations. The understanding and insights are expected to enhance the application of membrane-based methods in order to treat POME more efficiently; this will be instrumental in the reduction of environmental pollution.
Collapse
Affiliation(s)
- Zahra Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| |
Collapse
|
2
|
Chaabane L, Jaafar Z, Chaaben M, Chaaben S, Ghali AE, Msaddek M, Beyou E, Baouab MHV. Dual-function advanced magnetic bacterial cellulose materials: From enhanced adsorption phenomena to an unprecedented circular green catalytic strategy. J Colloid Interface Sci 2025; 686:1215-1229. [PMID: 39951983 DOI: 10.1016/j.jcis.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
With the growing emphasis on circular catalysis principles and green chemistry, addressing the dual challenge of wastewater treatment and sustainable catalysis has become increasingly critical. Although the adsorption of copper ions using magnetic biomaterials has been widely investigated, its full potential is still not fully understood. In particular, the reutilization of Cu(II)-loaded magnetic bacterial cellulose in circular green catalytic reactions remains underexplored. This study presents a novel magnetic bacterial cellulose-based material, designated as (BC-BPEM)@Fe3O4NPs, engineered through advanced chemical modifications to address these challenges. The adsorption kinetics followed a pseudo-second-order model, indicating chemisorption as the predominant mechanism. A key challenge addressed in this study was the efficient reuse of Cu(II)-loaded magnetic bacterial cellulose-based material. The recovered material was successfully employed as a catalyst in the synthesis of novel 1,4-disubstituted bis-1,2,3-triazoles under green conditions. Notably, the reaction achieved an impressive rate of 0.219 ± 0.006 mmol.gcat-1.min-1 and a 99 % yield within 15 min, using green deep eutectic solvents (ChCl/Gly) and glutathione as a reducing agent. Remarkably, the catalyst retained its high catalytic performance over 20 cycles, maintaining yields consistently between 99 % and 97 %. This study not only emphasizes the seamless integration of adsorption and catalytic recycling but also highlights the sustainability of the approach. Environmental metrics revealed an E-factor of 0.442 kg waste/kg product, a PMI of 1.442 kg materials/kg product, and an RME of 99.83 %, reinforcing the potential of catalyst in both sustainable catalysis and environmental remediation.
Collapse
Affiliation(s)
- Laroussi Chaabane
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France.
| | - Zouhour Jaafar
- CSPBAT, CNRS UMR 7244, F-93017, University Paris 13, Sorbonne Paris City, Bobigny, France; Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Marwa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Département de Chimie, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - Safa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Institut National de la Recherche Scientifique-Centre Énergie Matériaux Télécommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Amel El Ghali
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| | - Moncef Msaddek
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Emmanuel Beyou
- Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France
| | - Mohammed Hassen V Baouab
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| |
Collapse
|
3
|
Alzahrani SO, Alisaac A, Alsahag M, Aldosari FM, Alshammari NM, Alhalafi MH, Obaid AO, El-Metwaly NM. Green synthesis, characterization, phytochemical analyses, and antibacterial evaluation of Ag/TiO 2 and Ag/TiO 2-chitosan nanocomposites derived from M. chamomilla. Int J Biol Macromol 2025; 312:144220. [PMID: 40379178 DOI: 10.1016/j.ijbiomac.2025.144220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Research on green synthesis performance has gained prominence because nanotechnology needs eco-friendly sustainable approaches for various applications. This work used Matricaria chamomilla extract as a capping and reducing agent for novel biosynthesis of novel Ag/TiO2 and Chitosan-coated Ag/TiO2 nanocomposites. The characterization of nanocomposites by FTIR, UV-Vis Spectroscopy, HR-TEM, SEM, zeta potential, EDX, and XRD analysis provided important information about the structural, optical, morphological elements, elemental composition, and crystallinity of nanocomposites. An anthrone assay determined the carbohydrate content of the plant extract along with the nanocomposites to study carbohydrate contribution during nanoparticle development as well as the improved contents by the incorporation of chitosan into the nanocomposite. The combination of chitosan with Ag/TiO2 NC enhanced antioxidant behavior until an IC50 value reached 0.769 mg/mL, in which at this point the activity exceeded that of Ag/TiO2 NC. The antibacterial performance of Chitosan-coated Ag/TiO2 nanocomposite surpassed Ag/TiO2 NC since this nanocomplex provided increased inhibition against all investigated Gram-positive bacteria. The highest antibacterial zone of inhibition measured 22 ± 1.17 mm against S. aureus and 15 ± 1.60 mm against B. subtilis. The same zone of inhibition (24 ± 0.88 mm) was developed from Ag/TiO2 NC against S. aureus while S. aureus was the most susceptible bacterial species to both nanomaterials. The incorporation of chitosan into the nanocomposite enhanced its antioxidant capabilities as well as its antibacterial properties owing to the combined effects of Chitosan-coated Ag/TiO2 nanocomposite synergy. Thus, biological applications could benefit from green synthesized nanocomposites that work toward solving contemporary global issues.
Collapse
Affiliation(s)
- Seraj O Alzahrani
- Department of Chemistry, College of Science, Taibah University, P. O. Box 344, Madinah, Saudi Arabia
| | - Ali Alisaac
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Saudi Arabia
| | - Mansoor Alsahag
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Saudi Arabia
| | - F M Aldosari
- Department of Physics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nadiyah M Alshammari
- Department of Chemistry, College of Science, Qassim University, 51452 Buraidah, Saudi Arabia
| | - Mona H Alhalafi
- Department of Chemistry, College of Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Asma O Obaid
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
4
|
Russo A, D'Alessandro A, Di Paola M, Cerasuolo B, Renzi S, Meriggi N, Conti L, Costa J, Pogni R, Martellini T, Cincinelli A, Ugolini A, Cavalieri D. On the role of bacterial gut microbiota from supralittoral amphipod Talitrus saltator (Montagu, 1808) in bioplastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179109. [PMID: 40086306 DOI: 10.1016/j.scitotenv.2025.179109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Despite the promise of a reduced environmental impact, bioplastics are subjected to dispersion and accumulation similarly to traditional plastics, especially in marine and coastal environments. The environmental impact of bioplastics is attracting increasing attention due to the growing market demand. The ability of the supralittoral amphipod Talitrus saltator to ingest and survive on pristine starch-based bioplastic has already been assessed. However, the involvement of the gut microbiota of this key coastal species in making bioplastics a dietary supplement, remains unknown. In this study, we investigated the modification of T. saltator gut microbiota following bioplastic ingestion and the effect of this change on the modification of their chemical composition. Groups of adult amphipods were fed with: 1 - two different kinds of starch-based bioplastic; 2 - a 50 %/50 % chitosan-starch mixture; and 3 - paper and dry-fish-food. Freshly collected, unfed individuals were used as control group. Faecal pellets from the amphipods were collected and characterized using ATR-FTIR spectroscopy. DNA was extracted from gut samples for metagenomic analysis. Spectroscopic investigation suggested a partial digestion of polysaccharide components in the experimental polymeric materials. The analysis of the gut microbiota revealed that bioplastic feeding induced modification of sandhopper's gut microbial communities, shifting the abundance of specific microbial genera already present in the gut, towards bacterial genera associated with plastic/bioplastic degradation, especially in groups fed with starch-based bioplastics. Overall, our results highlight the involvement of T. saltator's gut microbiota in bioplastic modification, providing new insights into the potential role of microbial consortia associated to sandhoppers in bioplastic management.
Collapse
Affiliation(s)
- Alessandro Russo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Aldo D'Alessandro
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Monica Di Paola
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Benedetta Cerasuolo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Renzi
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Luca Conti
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Jessica Costa
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Rebecca Pogni
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Tania Martellini
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandra Cincinelli
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alberto Ugolini
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Duccio Cavalieri
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy; CIB-Interuniversity Consortium for Biotechnologies, Via Flavia 23/1, 34148 Trieste, Italy.
| |
Collapse
|
5
|
Yang J, Liu R, Sun Z, Zhang Y, Ju Y, Li X, Wang J, Gong Y. Synthesis of honeycomb-like citric acid-crosslinked chitosan hydrogel beads (cCHBs): Insight into structural characteristics of Cu(II)-loaded cCHBs (cCHBs-Cu(II)). Int J Biol Macromol 2025; 301:140244. [PMID: 39864697 DOI: 10.1016/j.ijbiomac.2025.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II). The results show that (1) the tricarboxylic groups within citric acid could prompt to construct long-range ordered channels of cCHBs under a freeze-drying process; (2) the maximum adsorption capacity of cCHBs for Cu(II) was 195.3 mg g-1 calculated by a Langmuir model; (3) the adsorption process of Cu(II) onto cCHBs was a spontaneous, endothermic, and entropy-increasing process. Moreover, the structural characteristics for honeycomb-like cCHBs adsorbed with Cu(II) (cCHBs-Cu(II)) as new adsorbents have been revealed with the adsorption of phosphate anions, which were further simulated with density functional theory (DFT). Accordingly, the superior adsorption performance of cCHBs and cCHBs-Cu(II) sheds light on a significant candidate for selective separation of a series of oxyanions.
Collapse
Affiliation(s)
- Jing Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Ru Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Zifei Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Yizhong Zhang
- Seawater Hydrogen Energy and Water Treatment Laboratory, Department of Environmental Technology, The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Tianjin 300192, China; College of Urban and Rural Construction, Hebei Agricultural University, Baoding 071001, China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.
| | - Xiaodong Li
- Shimadzu China Innovation Center, Shimadzu (China) Co. LTD, Beijing 100020, China
| | - Jianguo Wang
- Nanjing Guohuan Science And Technology Co., Ltd, Nanjing 210042, China
| | - Yu Gong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.
| |
Collapse
|
6
|
Li X, Yun Y, Wang Y, Zhu W, Bu Q, Fan Y, Wang H. High-performance delivery capsules co-assembled from lignin and chitosan with avermectin for sustainable pest management. Int J Biol Macromol 2025; 289:138894. [PMID: 39701228 DOI: 10.1016/j.ijbiomac.2024.138894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Inexpensive biomass materials hold great potential for the development of green delivery systems aimed at improving the extremely low utilization efficiency of pesticides. However, current systems face challenges in achieving both high encapsulation rates and drug loading capacities. This study introduces a novel method using chitosan (CS) and sodium lignosulfonate (SL) to co-assemble with avermectin (AVM), a widely used hydrophobic pesticide, forming AVM-CS-SL micro-nano capsules. Engineered under optimized conditions of pH 5 and 40 °C, the capsules exhibit an AVM encapsulation efficiency of 84.27 % and a loading capacity of 90 %. The AVM-CS-SL capsules demonstrate multifunctional attributes that enhance pesticide application. The capsules, with an average diameter of 356 nm, facilitate stable embedding in leaf grooves and enable effective adhesion to leaf surfaces, thereby improving their resistance to wash-off by rain compared to conventional formulations. Their core-shell structure protects AVM from photodegradation, ensuring long-term stability and efficacy. The capsules also exhibit enhanced bioactivity, with higher mortality rates in Plutella xylostella larvae and low genotoxicity to Vicia faba plants. These findings highlight the strategy of developing multifunctional delivery systems by the co-assembled carrier materials with active ingredients, offering an effective solution for the sustainable development of society and environment.
Collapse
Affiliation(s)
- Xuan Li
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yixin Yun
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yitong Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wanbin Zhu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Quan Bu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, and School of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, China.
| | - Hongliang Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
7
|
Lakshmi Priya A, Subhapriya P, Jenisha S, Murali Krishnan M, Dhanapal V. Experimental and theoretical investigation of allylated chitosan and acrylic acid-based smart polymer hydrogel for the removal of brilliant green from aqueous media. Int J Biol Macromol 2025; 289:138814. [PMID: 39694356 DOI: 10.1016/j.ijbiomac.2024.138814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Smart polymer hydrogels with superior dye adsorption (brilliant green) characteristics were synthesized via free-radical polymerization by grafting acrylic acid segments onto allylated chitosan and inducing crosslinking with a trimethylolpropane triacrylate crosslinker. The synthesized adsorbents were characterized for their chemical structure (FT-IR and 1H NMR), thermal stability (TG/DTG), and morphological features (SEM). The adsorption capacity for brilliant green (934 mg/g) and water uptake (712 g/g) were determined using spectrophotometric and gravimetric methods, respectively. The interaction between the synthesized adsorbent and brilliant green, including potential dye orientation on the adsorbent and hydrogen bond formation was analyzed using Density Functional Theory. The maximum adsorption of brilliant green (934 mg/g) and water uptake was achieved by optimizing the monomer feed compositions. Adsorption studies revealed that dye uptake followed Fickian diffusion and the Langmuir isotherm model, with pseudo-second-order kinetics. Thermodynamic analysis demonstrated that the adsorption process was spontaneous and exothermic, as evidenced by changes in free energy, enthalpy, and entropy under varying temperatures. Theoretical investigations confirmed the excellent affinity of the synthesized adsorbent toward brilliant green. Furthermore, reusability studies showed that the adsorbent retained its dye-holding capability over 20 adsorption-desorption cycles, highlighting its potential for sustainable and efficient dye removal applications.
Collapse
Affiliation(s)
- A Lakshmi Priya
- Department of Chemistry, Nehru Institute of Engineering and Technology, Coimbatore 641105, Tamil Nadu, India
| | - P Subhapriya
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Erode Dt., Tamil Nadu, India
| | - S Jenisha
- Department of Chemistry, Nehru Institute of Engineering and Technology, Coimbatore 641105, Tamil Nadu, India
| | - M Murali Krishnan
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Erode Dt., Tamil Nadu, India
| | - V Dhanapal
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India.
| |
Collapse
|
8
|
Castro D, Brovina V, Litvinov M, Podshivalov A. Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes. Polymers (Basel) 2024; 16:3539. [PMID: 39771390 PMCID: PMC11679053 DOI: 10.3390/polym16243539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, three carboxymethyl starches (CMS) were obtained by the two-step reaction process of carboxymethylation with different degrees of substitution (0.16, 0.33, and 0.36). From these samples, (bio)polyelectrolyte complexes ((bio)PECs) were obtained with chitosan (Chit) by the mixing of individual solutions of polymers (0.25 wt.%) at different volume ratios. The effect of the biopolymer and ionized groups of z ratios, pH, and degree of substitution of CMS in the formation of PEC were evaluated by turbidimetry and dynamic light scattering. The results showed that increasing the amount of CMS samples (ratio of z) led to an increase in the efficiency of the formation of (bio)PEC using CMS with a high DS value. Using the turbidimetry method for the chitosan and CMS mixtures, it was observed that the formation of (bio)PEC is divided into four transition zones delimited by pH transition points, and the stoichiometric complexation (z = 1) is achieved at a pH that displayed morphological changes "pHmorph", which is a single point for Chit:CMS 1, and for Chit:CMS 2 and Chit:CMS 3, this is a range of 4.9-6.4 and 4.3-6.4, respectively. Analysis of the structural properties of the structures of (bio)PECs by dynamic light scattering was characterized by monomodal distribution, and the main observed effect was associated with an increase in the value of Davg with an increase in the ratio of Chit:CMS.
Collapse
Affiliation(s)
| | | | | | - Aleksandr Podshivalov
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia; (D.C.); (V.B.); (M.L.)
| |
Collapse
|
9
|
Dey B, Prabhakar MR, Jayaraman S, Gujjala LKS, Venugopal AP, Balasubramanian P. Biopolymer-based solutions for enhanced safety and quality assurance: A review. Food Res Int 2024; 191:114723. [PMID: 39059918 DOI: 10.1016/j.foodres.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.
Collapse
Affiliation(s)
- Baishali Dey
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Muhil Raj Prabhakar
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Sivaraman Jayaraman
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India
| | | | - Arun Prasath Venugopal
- Department of Food Process Engineering, National Institute of Technology Rourkela, 769 008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769 008, India.
| |
Collapse
|
10
|
Prabhu N, Sabour AAA, Rengarajan S, Gajendiran K, Natarajan D. Analysis of the remediation competence of Aspergillus flavus biomass in wastewater of the dyeing industry: An in-vitro study. ENVIRONMENTAL RESEARCH 2024; 252:118705. [PMID: 38548251 DOI: 10.1016/j.envres.2024.118705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
The dyeing industry effluent causes severe environmental pollution and threatens the native flora and fauna. The current study aimed to analyze the physicochemical parameters of dyeing industry wastewater collected in different sites (K1, E2, S3, T4, and V5), as well as the metal tolerance and decolourisation ability of Aspergillus flavus. Furthermore, the optimal biomass quantity and temperatures required for efficient bioremediation were investigated. Approximately five dyeing industry wastewater samples (K1, E2, S3, T4, and V5) were collected from various sampling stations, and the majority of the physical and chemical characteristics were discovered to be above the permissible limits. A. flavus demonstrated outstanding metal resistance to As, Cu, Cr, Zn, Hg, Pb, Ni, and Cd on Potato Dextrose Agar (PDA) plates at concentrations of up to 500 g mL-1. At 4 g L-1 concentrations, A. flavus biomass decolorized up to 11.2-46.5%. Furthermore, 35°C was found to be the optimal temperature for efficient decolourisation of A. flavus biomass. The toxicity of 35°C-treated wastewater on V. mungo and prawn larvae was significantly reduced. These findings indicate that the biomass of A. flavus can be used to decolorize dyeing industry wastewater.
Collapse
Affiliation(s)
- N Prabhu
- Department of Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602 105, Tamil Nadu, India
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sumathy Rengarajan
- Department of Biotechnology, Valliammal College for Women, E-9, Anna Nagar East, Chennai, 600102, India
| | - K Gajendiran
- PG and Research Department of Microbiology, M.G.R. College, Hosur, 635 130, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Lab, Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
11
|
Zanol MB, Lima JPP, Assemany P, Aguiar A. Assessment of characteristics and treatment processes of wastewater from slaughterhouses in the state of Minas Gerais, Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120862. [PMID: 38652984 DOI: 10.1016/j.jenvman.2024.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The state of Minas Gerais is one of Brazil's largest animal protein producers, and its slaughterhouses generate highly polluting wastewater, which needs to be treated for discharge or reuse. As a novelty, this review article focused on assessing the characteristics and methods to treat wastewater from slaughterhouses in the state of Minas Gerais, and verifying its compliance with environmental regulatory agencies. The aim was to present data that helps to better manage this residue in other Brazilian states and countries. By analyzing the literature data, it was found that raw slaughterhouse wastewater (SWW) showed a high concentration of organic matter. For most SWW, the BOD5/COD ratio was above 0.4, which implies that it can be treated biologically. Generally, treated wastewater was in accordance with legal discharge standards, considering COD and BOD5 removals above 70% and 75%, respectively. It was found that wastewater treatment plants (WWTPs) consisted of some type of pretreatment (screens, grease traps) to remove coarse solids and fatty material, eventually followed by a flotation step and finally by biological processes, mostly anaerobic and/or aerated (or facultative) ponds. However, the absence of an aerobic process at the end of the treatment in some WWTPs, in addition to a system allowing better removal of biological flocs, might be the reason for ammoniacal nitrogen and suspended solids values being above the allowed maximum in treated wastewater, respectively. Besides the discharge into water bodies, it was verified that fertigation using treated SWW is very common in the state of Minas Gerais.
Collapse
Affiliation(s)
| | - Juan Pablo Pereira Lima
- Institute of Natural Resources, Federal University of Itajubá, 37500-903, Itajubá-MG, Brazil
| | - Paula Assemany
- Department of Environmental Engineering, Federal University of Lavras, 37203-202, Lavras-MG, Brazil
| | - André Aguiar
- Program in Biotechnology, Federal University of Alfenas, 37130-001, Alfenas-MG, Brazil; Institute of Natural Resources, Federal University of Itajubá, 37500-903, Itajubá-MG, Brazil.
| |
Collapse
|
12
|
Hou Y, Jia A, Qin X, Yang X, Xie J, Li X, Zhao Y. New insights on the preparation of amine covalent organic polymer and its adsorption properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122659. [PMID: 37839682 DOI: 10.1016/j.envpol.2023.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Dye pollution is becoming increasingly severe. This study used the Schiff base reaction to synthesize a polyaromatic ring covalent organic polymer material with amide bonds and high electronegativity named SLEL-9 to adsorb Methylene Blue (MB) and Rhodamine B (RhB). SLEL-9 was characterized by Fourier transform infra-red spectra, X-ray photoelectron spectra, Brunauer-Emmett-Teller (BET), zeta potential analysis, and other techniques. It was found that SLEL-9 material contains C-C, CN, C-N, and CO. SLEL-9 had a zeta potential of about -45 mV under neutral conditions, which proved that the material had been synthesized successfully. The BET and Langmuir surface areas of SLEL-9 were 35.187 m2 g-1 and 56.419 m2 g-1, respectively. The adsorptions of SLEL-9 on low concentration (10 mg L-1) Methylene Blue and Rhodamine B reached equilibrium within 48 h. The results showed that SLEL-9's adsorption of dye molecules are more consistent with pseudo-second-order kinetic and Langmuir isotherm model. The adsorption experiments showed that the adsorption process is a spontaneous endothermic reaction, mainly chemisorption. The maximum adsorption capacity of SLEL-9 for MB and RhB were 132.45 mg g-1 and 101.94 mg g-1. In addition, this study investigated to determine the optimal reaction parameters. The primary mechanisms of SLEL-9 adsorption of two dyes are n→π* interaction, π-π EDA interaction and electrostatic attraction. Selective adsorb ability experiment results showed that SLEL-9 could selectively adsorb MB and RhB to a certain extent. Finally, it was found that SLEL-9 can maintain over 70% adsorption capacity after five reuses and can maintain stability after soaking in different pH water and organic solvents for 120 h. SLEL-9 proved to be a promising organic covalent polymer adsorption material for the removal of Methylene Blue and Rhodamine B in water.
Collapse
Affiliation(s)
- Yutong Hou
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Aiyuan Jia
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xueming Qin
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xinru Yang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Jiayin Xie
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xiaoyu Li
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yongsheng Zhao
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
13
|
Ghiorghita CA, Lazar MM, Ghimici L, Dinu MV. Self-Assembled Chitosan/Dialdehyde Carboxymethyl Cellulose Hydrogels: Preparation and Application in the Removal of Complex Fungicide Formulations from Aqueous Media. Polymers (Basel) 2023; 15:3496. [PMID: 37688121 PMCID: PMC10490195 DOI: 10.3390/polym15173496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Environmental contamination with pesticides occurs at a global scale as a result of prolonged usage and, therefore, their removal by low-cost and environmentally friendly systems is actively demanded. In this context, our study was directed to investigate the feasibility of using some self-assembled hydrogels, comprising chitosan (CS) and carboxymethylcellulose (CMC) or dialdehyde (DA)-CMC, for the removal of four complex fungicide formulations, namely Melody Compact (MC), Dithane (Dt), Curzate Manox (CM), and Cabrio®Top (CT). Porous CS/CMC and CS/DA-CMC hydrogels were prepared as discs by combining the semi-dissolution acidification sol-gel transition method with a freeze-drying approach. The obtained CS/CMC and CS/DA-CMC hydrogels were characterized by gel fraction yield, FTIR, SEM, swelling kinetics, and uniaxial compression tests. The batch-sorption studies indicated that the fungicides' removal efficiency (RE%) by the CS/CMC hydrogels was increased significantly with increasing sorbent doses reaching 94%, 93%, 66% and 48% for MC, Dt, CM and CT, respectively, at 0.2 g sorbent dose. The RE values were higher for the hydrogels prepared using DA-CMC than for those prepared using non-oxidized CMC when initial fungicide concentrations of 300 mg/L or 400 mg/L were used. Our results indicated that CS/DA-CMC hydrogels could be promising biosorbents for mitigating pesticide contamination of aqueous environments.
Collapse
Affiliation(s)
| | | | | | - Maria Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania; (C.-A.G.); (M.M.L.); (L.G.)
| |
Collapse
|
14
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
15
|
Wang X, Karaman C, Zhang Y, Xia C. Graphene oxide/cellulose nanofibril composite: A high-performance catalyst for the fabrication of an electrochemical sensor for quantification of p-nitrophenol, a hazardous water pollutant. CHEMOSPHERE 2023; 331:138813. [PMID: 37127202 DOI: 10.1016/j.chemosphere.2023.138813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The detection and quantification of p-Nitrophenol (p-NP) in environmental samples are important for understanding the extent and impact of environmental pollution, protecting human health, ensuring regulatory compliance, and guiding remediation efforts. The main objective of this work was to investigate the electrochemical performance of a graphene oxide/cellulose nanofibril composite (GO/CNF) modified carbon paste electrode (GO/CNF/CPE) for the sensitive and reliable detection of p-nitrophenol in water samples. The transmission electron microscopy (TEM) technique was employed to enlighten the structure of nanocomposites. The electrochemical behavior of the fabricated electrochemical sensor was characterized via differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). Under optimized analytical conditions, the peak current of the analyte showed a wide linear relationship with its concentration in a range of 3.0 nM-210 μM with a low amount of the limit of detection (LOD) value of 0.8 nM determined by the DPV method. The proposed electrochemical sensor demonstrated excellent sensitivity, selectivity, and accuracy metrics in real sample analysis of p-nitrophenol.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Yaoli Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
16
|
Li Y, Liu Z, Wan X, Xie L, Chen H, Qu G, Zhang H, Zhang YF, Zhao S. Selective adsorption and separation of methylene blue by facily preparable xanthan gum/amantadine composites. Int J Biol Macromol 2023; 241:124640. [PMID: 37121415 DOI: 10.1016/j.ijbiomac.2023.124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
In this work, xanthan gum-based composites were successfully graft-modified by amantadine (XG-Fe3+/AM) with higher adsorption capacity and selectivity on recycling cationic dye (methylene blue, MB) from aqueous solution. The adsorption equilibrium of MB could be achieved approximately within 5 min when the initial concentration was 100 mg/L, and the maximum adsorption capacity was up to 565 mg/g. After 5 desorption-regeneration cycles, the removal rate of XG-Fe3+/AM for MB could still be as high as 95 % with slight decrement. Additionally, the effects of pH, contact time, temperature and initial dye concentration on the adsorption performance of MB were systematically examined. Furthermore, the adsorbent was characterized by FT-IR, BET and XPS analysis. In mixed anionic and cationic dyes, the adsorption selectivity of XG-Fe3+/AM on MB in the mixture of MB and methyl orange (MO) reached up to 99.69 %. Molecular dynamics simulation revealed that the trend of adsorption energy for dyes was in good agreement of the experimental order of adsorption capacities and molecular sizes among seven anionic and cationic dyes based on molecular matching effect and electrostatic interaction. Therefore, XG-Fe3+/AM is an eco-friendly, facile-synthesis and high-selectivity adsorbent, which remove cationic dyes in multi-component systems through electrostatic interaction and molecular matching effect.
Collapse
Affiliation(s)
- Yan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ziqian Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Xin Wan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lingying Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Hui Chen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Guo Qu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Han Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Shicheng Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
17
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
18
|
Palanisamy SB. Biopolymers as a versatile tool with special emphasis on environmental application. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
Water sources are becoming highly unsuited as potable sources due to the presence of impurities and hazardous chemicals. Although there are many conventional methods available, the development of innovative technologies is essential for the treating and recycling of wastewater. Owing to their unique and excellent qualities, polymers have recently seen extensive use across various industries. By joining the monomeric components covalently, biopolymers resemble a more natural alternative to synthetic polymers. The biopolymer and biopolymer composites integrate into many sections of the treatment process easily, making them effective, affordable, and environmentally beneficial. Due to their distinct features, biopolymers can replace traditional adsorbents. The biopolymers and composites discussed in this chapter are ideal adsorbent materials for eliminating contaminants from the environment. Based on their sources, methods of preparation, and uses, biopolymers, and their composites are categorized. This chapter also includes different research perspectives on biopolymers, especially from an ecological and financial standpoint.
Collapse
Affiliation(s)
- Suresh Babu Palanisamy
- Department of Biotechnology, Saveetha School of Engineering , Saveetha Institute of Medical and Technical Sciences (SIMATS) , Thandalam , Chennai , 602105 , Tamil Nadu , India
| |
Collapse
|
19
|
Hari S, Ramaswamy K, Sivalingam U, Ravi A, Dhanraj S, Jagadeesan M. Progress and prospects of biopolymers production strategies. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
In recent decades, biopolymers have garnered significant attention owing to their aptitude as an environmentally approachable precursor for an extensive application. In addition, due to their alluring assets and widespread use, biopolymers have made significant strides in their production based on various sources and forms. This review focuses on the most recent improvements and breakthroughs that have been made in the manufacturing of biopolymers, via sections focusing the most frequented and preferred routes like micro-macro, algae apart from focusing on microbials routes with special attention to bacteria and the synthetic biology avenue of biopolymer production. For ensuring the continued growth of the global polymer industry, promising research trends must be pursued, as well as methods for overcoming obstacles that arise in exploiting the beneficial properties exhibited by a variety of biopolymers.
Collapse
|
20
|
Singh VK, Gunasekaran P, Kumari M, Krishnan D, Ramachandran VK. Animal sourced biopolymer for mitigating xenobiotics and hazardous materials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Abstract
Over the past several decades, xenobiotic chemicals have badly affected the environment including human health, ecosystem and environment. Animal-sourced biopolymers have been employed for the removal of heavy metals and organic dyes from the contaminated soil and waste waters. Animal-sourced biopolymers are biocompatible, cost-effective, eco-friendly, and sustainable in nature which make them a favorable choice for the mitigation of xenobiotic and hazardous compounds. Chitin/chitosan, collagen, gelatin, keratin, and silk fibroin-based biopolymers are the most commonly used biopolymers. This chapter reviews the current challenge faced in applying these animal-based biopolymers in eliminating/neutralizing various recalcitrant chemicals and dyes from the environment. This chapter ends with the discussion on the recent advancements and future development in the employability of these biopolymers in such environmental applications.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering , Indian Institute of Technology Mandi , VPO Kamand , Mandi , Himachal Pradesh , India
| | - Priya Gunasekaran
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , Ramapuram , Chennai , Tamil Nadu , India
| | - Medha Kumari
- Brainology Research Fellow, Neuroscience and Microplastic Lab , Brainology Scientific Academy of Jharkhand , Ranchi , Jharkhand , India
| | - Dolly Krishnan
- Secretary cum Founder Director, Research Wing , Brainology Scientific Academy of Jharkhand , Ranchi , Jharkhand , India
| | - Vinoth Kumar Ramachandran
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , Ramapuram , Chennai , Tamil Nadu , India
| |
Collapse
|
21
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
22
|
Yang F, Zhang J, Lin T, Ke L, Huang L, Deng SP, Zhang J, Tan S, Xiong Y, Lu M. Fabrication of waste paper/graphene oxide three-dimensional aerogel with dual adsorption capacity toward methylene blue and ciprofloxacin. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Mahmoudi R, Razavi F, Rabiei V, Palou L, Gohari G. Postharvest chitosan-arginine nanoparticles application ameliorates chilling injury in plum fruit during cold storage by enhancing ROS scavenging system activity. BMC PLANT BIOLOGY 2022; 22:555. [PMID: 36456938 PMCID: PMC9716680 DOI: 10.1186/s12870-022-03952-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/18/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Plum (Prunus domestica L.) has a short shelf-life period due to its high respiration rate and is sensitive to low storage temperatures, which can lead to the appearance of chilling injury symptoms. In this investigation, we applied new coating treatments based on chitosan (CTS) and arginine (Arg) to plum fruit (cv. 'Stanley'). RESULTS Fruit were treated with distilled water (control), Arg at 0.25 and 0.5 mM, CTS at 1% (w/v) or Arg-coated CTS nanoparticles (CTS-Arg NPs) at 0.5 and 1% (w/v), and then stored at 1 °C for days. The application of CTS-Arg NPs at 0.5% attenuated chilling injury, which was accompanied by accumulation of proline, reduced levels of electrolyte leakage and malondialdehyde, as well as suppressed the activity of polyphenol oxidase. Plums coated with CTS-Arg NPs (0.5%) showed higher accumulation of phenols, flavonoids and anthocyanins, due to the higher activity of phenylalanine ammonia-lyase, which in turn resulted in higher DPPH scavenging capacity. In addition, CTS-Arg NPs (0.5%) treatment delayed plum weight loss and retained fruit firmness and ascorbic acid content in comparison to control fruit. Furthermore, plums treated with CTS-Arg NPs exhibited lower H2O2 accumulation than control fruit due to higher activity of antioxidant enzymes, including CAT, POD, APX and SOD. CONCLUSIONS The present findings show that CTS-Arg NPs (0.5%) were the most effective treatment in delaying chilling injury and prolonging the shelf life of plum fruit.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Vali Rabiei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Lluís Palou
- Postharvest Technology Center (CTP), Valencian Institute of Agrarian Research (IVIA), 46113, Montcada, Valencia, Spain
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
24
|
Li Y, Liu Y, Liu Z, Wan X, Chen H, Zhong J, Zhang YF. Efficient selective recycle of acid blue 93 by NaOH activated acrolein/chitosan adsorbent via size-matching effect. Carbohydr Polym 2022; 301:120314. [DOI: 10.1016/j.carbpol.2022.120314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
25
|
Sequential modifications of chitosan biopolymer for enhanced confiscation of Cr(VI). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Vasudevan M, Perumal V, Karuppanan S, Ovinis M, Bothi Raja P, Gopinath SCB, Immanuel Edison TNJ. A Comprehensive Review on Biopolymer Mediated Nanomaterial Composites and Their Applications in Electrochemical Sensors. Crit Rev Anal Chem 2022; 54:1871-1894. [PMID: 36288094 DOI: 10.1080/10408347.2022.2135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Biopolymers are an attractive green alternative to conventional polymers, owing to their excellent biocompatibility and biodegradability. However, their amorphous and nonconductive nature limits their potential as active biosensor material/substrate. To enhance their bio-analytical performance, biopolymers are combined with conductive materials to improve their physical and chemical characteristics. We review the main advances in the field of electrochemical biosensors, specifically the structure, approach, and application of biopolymers, as well as their conjugation with conductive nanoparticles, polymers and metal oxides in green-based noninvasive analytical biosensors. In addition, we reviewed signal measurement, substrate bio-functionality, biochemical reaction, sensitivity, and limit of detection (LOD) of different biopolymers on various transducers. To date, pectin biopolymer, when conjugated with either gold nanoparticles, polypyrrole, reduced graphene oxide, or multiwall carbon nanotubes forming nanocomposites on glass carbon electrode transducer, tends to give the best LOD, highest sensitivity and can detect multiple analytes/targets. This review will spur new possibilities for the use of biosensors for medical diagnostic tests.
Collapse
Affiliation(s)
- Mugashini Vasudevan
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Saravanan Karuppanan
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Mark Ovinis
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, UK
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Kangar 01000 & Faculty of Chemical Engineering & Technology, Arau 02600, Universiti Malaysia Perlis, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau 02600, Pauh Campus, Perlis, Malaysia
| | | |
Collapse
|
27
|
Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Dziuba R, Bednarowicz A. Biopolymer Composites with Sensors for Environmental and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7493. [PMID: 36363084 PMCID: PMC9659006 DOI: 10.3390/ma15217493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
One of the biggest economic and environmental sustainability problems is the over-reliance on petroleum chemicals in polymer production. This paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a focus on medical and environmental aspects. Therefore, this article is devoted to environmentally friendly polymer materials. The paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a special focus on medical and environmental aspects. The paper presents the current state of knowledge, as well as prospects. The article shows that biopolymers made from renewable raw materials are of great interest in various fields of science and industry. These materials not only replace existing polymers in many applications, but also provide new combinations of properties for new applications. Composite materials based on biopolymers are considered superior to traditional non-biodegradable materials due to their ability to degrade when exposed to environmental factors. The paper highlights the combination of polymers with nanomaterials which allows the preparation of chemical sensors, thus enabling their use in environmental or medical applications due to their biocompatibility and sensitivity. This review focuses on analyzing the state of research in the field of biopolymer-sensor composites.
Collapse
Affiliation(s)
- Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Radosław Dziuba
- Department of World Economy and European Integration, University of Lodz, 41/43 Rewolucji 1905 Str., 90-214 Lodz, Poland
| | - Anna Bednarowicz
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
28
|
Gohari G, Farhadi H, Panahirad S, Zareei E, Labib P, Jafari H, Mahdavinia G, Hassanpouraghdam MB, Ioannou A, Kulak M, Fotopoulos V. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int J Biol Macromol 2022; 224:893-907. [DOI: 10.1016/j.ijbiomac.2022.10.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
29
|
Borgohain X, Rashid H. Rapid and enhanced adsorptive mitigation of groundwater fluoride by Mg(OH) 2 nanoflakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70056-70069. [PMID: 35583754 DOI: 10.1007/s11356-022-20749-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is one of the most abundant anions in groundwater, posing a significant threat to the safe drinking water supply worldwide. Fluoride contamination in drinking water at levels greater than 1.5 mg L-1 causes a variety of serious health problems. To address this problem, the current study deals with the synthesis of Mg(OH)2 nanoflakes by a facile and simple hydrothermal method in the absence of any added template. The sizes of these nanoflakes are in the range of 90 to 200 nm. These nanoflakes are pure and crystalline, possessing hexagonal phase structures. The surface areas of Mg(OH)2 nanoflakes are varying from 75.8 to 108.1 m2 g-1. These Mg(OH)2 nanoflakes exhibit excellent adsorption performance for fluoride over a pH range of 2.0 to 9.0 with a maximum Langmuir adsorption capacity of 3129 mg g-1 at pH 7.0 at 313 K which is the highest for such kind of adsorbent reported so far. The adsorption process is spontaneous and endothermic which primarily follows pseudo-second-order kinetics. The adsorbent is effective in the presence of co-existing anions and is reusable up to the fifth cycle with a minimal loss of adsorption performance. The nanoflakes can effectively remove highly concentrated groundwater fluoride to a permissible limit within a short time which increases the versatility of using these nanoflakes for practical applications.
Collapse
Affiliation(s)
- Xavy Borgohain
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh, 791 112, India
| | - Harunar Rashid
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh, 791 112, India.
| |
Collapse
|
30
|
Allouche F. Synergistic Effects on the Mercury Sorption Behaviors Using Hybrid Cellulose Fiber/Chitosan Foam. ChemistrySelect 2022. [DOI: 10.1002/slct.202202600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fella‐Naouel Allouche
- Division Bioénergie et Environnement Centre de Développement des Energies Renouvelables (CDER) BP. 62 Route de l'Observatoire Bouzaréah 16340 Algiers Algeria
| |
Collapse
|
31
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Shahzad GIR, Passera A, Maldera G, Casati P, Marcello I, Bianco PA. Biocontrol Potential of Endophytic Plant-Growth-Promoting Bacteria against Phytopathogenic Viruses: Molecular Interaction with the Host Plant and Comparison with Chitosan. Int J Mol Sci 2022; 23:6990. [PMID: 35805989 PMCID: PMC9266900 DOI: 10.3390/ijms23136990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Endophytic plant-growth-promoting bacteria (ePGPB) are interesting tools for pest management strategies. However, the molecular interactions underlying specific biocontrol effects, particularly against phytopathogenic viruses, remain unexplored. Herein, we investigated the antiviral effects and triggers of induced systemic resistance mediated by four ePGPB (Paraburkholderia fungorum strain R8, Paenibacillus pasadenensis strain R16, Pantoea agglomerans strain 255-7, and Pseudomonas syringae strain 260-02) against four viruses (Cymbidium Ring Spot Virus-CymRSV; Cucumber Mosaic Virus-CMV; Potato Virus X-PVX; and Potato Virus Y-PVY) on Nicotiana benthamiana plants under controlled conditions and compared them with a chitosan-based resistance inducer product. Our studies indicated that ePGPB- and chitosan-treated plants presented well-defined biocontrol efficacy against CymRSV and CMV, unlike PVX and PVY. They exhibited significant reductions in symptom severity while promoting plant height compared to nontreated, virus-infected controls. However, these phenotypic traits showed no association with relative virus quantification. Moreover, the tested defense-related genes (Enhanced Disease Susceptibility-1 (EDS1), Non-expressor of Pathogenesis-related genes-1 (NPR1), and Pathogenesis-related protein-2B (PR2B)) implied the involvement of a salicylic-acid-related defense pathway triggered by EDS1 gene upregulation.
Collapse
Affiliation(s)
| | | | | | | | - Iriti Marcello
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroecology, University of Milan, 20133 Milan, Italy; (G.-i.-R.S.); (A.P.); (G.M.); (P.C.); (P.A.B.)
| | | |
Collapse
|
33
|
Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. MATERIALS 2022; 15:ma15124312. [PMID: 35744371 PMCID: PMC9228835 DOI: 10.3390/ma15124312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.
Collapse
|
34
|
Dalgic MS, Palantöken S, Bethke K, Rademann K. Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Kapok fibers (Ceiba pentandra) were modified for the removal of copper ions from aqueous solutions through adsorption. In this fast and facile method, the polysaccharide-like groups of kapok were oxidized with potassium periodate. The novel modification is the loading of the fibers with adipic dihydrazide (ADH) which contain nitrogen and oxygen atoms for heavy metal ion binding. Adsorption experiments have been carried out and analyzed via atom absorption spectroscopy and ultraviolet/visible spectroscopy. In preliminary adsorption experiments, different kapok-based materials have been analyzed on their adsorption capacity and removal efficiency via atom absorption spectroscopy. ADH-modified fibers showed the best results and an increase of copper removal efficiency by 30% in comparison to untreated kapok fibers and superior adsorption capacity compared to kapok fibers loaded with oxalic dihydrazide (ODH). Moreover, the impact of initial concentration and contact time on the adsorption capacity and on the removal efficiency values of the ADH-modified kapok fibers has been studied. Another comparison of the ADH-modified fibers with raw kapok which was cleaned with Milli-Q water, dichloromethane and ethylene glycol showed that the new adsorbents are best suited for copper solutions with concentration values of under 10 mg/L. The heavy metal adsorption experiments were analyzed through both isotherm models Langmuir and Freundlich. The Langmuir model is found to be a suitable model for copper ions. The value of the maximum adsorption capacity is 4.120 mg/g. The ADH-modified kapok fibers were characterized with attenuated total reflection infrared (ATR-IR) spectroscopy, magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy and scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Mete Sungur Dalgic
- Institut für Chemie, Humboldt Universität zu Berlin , Brook-Taylor-Str. 2, 12489 Berlin , Germany
| | - Sinem Palantöken
- Institut für Chemie, Humboldt Universität zu Berlin , Brook-Taylor-Str. 2, 12489 Berlin , Germany
| | - Kevin Bethke
- Institut für Chemie, Humboldt Universität zu Berlin , Brook-Taylor-Str. 2, 12489 Berlin , Germany
| | - Klaus Rademann
- Institut für Chemie, Humboldt Universität zu Berlin , Brook-Taylor-Str. 2, 12489 Berlin , Germany
| |
Collapse
|
35
|
Machine learning for the prediction of heavy metal removal by chitosan-based flocculants. Carbohydr Polym 2022; 285:119240. [DOI: 10.1016/j.carbpol.2022.119240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
|
36
|
Recent advances in chitosan-polyaniline based nanocomposites for environmental applications: A review. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Adamczuk A, Jozefaciuk G. Impact of Chitosan on the Mechanical Stability of Soils. Molecules 2022; 27:molecules27072273. [PMID: 35408671 PMCID: PMC9000621 DOI: 10.3390/molecules27072273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan is becoming increasingly applied in agriculture, mostly as a powder, however little is known about its effect on soil mechanical properties. Uniaxial compression test was performed for cylindrical soil aggregates prepared from four soils of various properties (very acidic Podzol, acidic Arenosol, neutral Fluvisol and alkaline Umbrisol) containing different proportions of two kinds of chitosan (CS1 of higher molecular mass and lower deacetylation degree, and CS2 of lower molecular mass and higher deacetylation degree), pretreated with 1 and 10 wetting–drying cycles. In most cases increasing chitosan rates successively decreased the mechanical stability of soils that was accompanied by a tendential increase in soil porosity. In one case (Fluvisol treated with CS2) the porosity decreased and mechanical stability increased with increasing chitosan dose. The behavior of acidic soils (Podzol and Arenosol) treated with CS2, differed from the other soils: after an initial decrease, the strength of aggregates increased with increasing chitosan amendment, despite the porosity consequently decreasing. After 10 wetting–drying cycles, the strength of the aggregates of acidic soils appeared to increase while it decreased for neutral and alkaline soils. Possible mechanisms of soil–chitosan interactions affecting mechanical strength are discussed and linked with soil water stability and wettability.
Collapse
|
38
|
Shan X, Yang L, Zhao Y, Yang H, Xiao Z, An Q, Zhai S. Biochar/Mg-Al spinel carboxymethyl cellulose-La hydrogels with cationic polymeric layers for selective phosphate capture. J Colloid Interface Sci 2022; 606:736-747. [PMID: 34419814 DOI: 10.1016/j.jcis.2021.08.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
Recently, biochar-related phosphate sorbents have been extensively investigated and achieved significant progress; however, there is still much room for enhancement on capturing performance and recovery of powdery ones after sorption. Herein, a new kind of adsorbent, in which biochar/Mg-Al spinel encapsulated in carboxymethyl cellulose-La hydrogels with cationic polymeric layers, was fabricated, aiming for integrating multi-advantages of each component for enhanced phosphate capture. Batch static experiments were correlated to the phosphate adsorption performance of the adsorbent. The maximum phosphate adsorption capacity of the adsorbent was 89.65 mg P/g at pH = 3. The Langmuir isotherm model and the pseudo-second-order kinetic model fitted well with the adsorption behavior of the adsorbent. More importantly, this composite adsorbent that integrated with biochar, Mg-Al spinel, cationic polymeric components exhibited favorable selectivity over coexisting anions (Cl-, SO42-, HCO3- and NO3-) and performed good reusability after five consecutive cycles. By virtue of the bead-like feature, fixed-bed column experiments demonstrated that the Thomas model fitted the breakthrough curves well under varied experimental conditions. The adsorption mechanism of phosphate on the designed composite adsorbent with multi-components could be described as the electrostatic attraction, ligand exchange and inner-sphere complexation, which might account for the efficient phosphate capturing performance.
Collapse
Affiliation(s)
- Xiangcheng Shan
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Liyu Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yumeng Zhao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huarong Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
39
|
Araújo LDCB, de Matos HK, Facchi DP, de Almeida DA, Gonçalves BMG, Monteiro JP, Martins AF, Bonafé EG. Natural carbohydrate-based thermosensitive chitosan/pectin adsorbent for removal of Pb(II) from aqueous solutions. Int J Biol Macromol 2021; 193:1813-1822. [PMID: 34774866 DOI: 10.1016/j.ijbiomac.2021.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
Biodegradable and eco-friendly adsorbents composed of natural carbohydrates have been used to replace carbon-based materials. This study presents a natural carbohydrate-based chitosan/pectin (CS/Pec) hydrogel adsorbent to remove Pb(II) from aqueous solutions. The physical CS/Pec hydrogel was prepared by blending aqueous CS and Pec solutions at 65 °C, preventing the use of toxic chemistries (crosslinking agents). The thermosensitive CS/Pec hydrogel was quickly created by cooling CS/Pec blend at room temperature. The used strategy created stable CS/Pec hydrogel against disintegration and water dissolution. The as-prepared hydrogel was characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The adsorbent had 1.688 mmol -COO- for each gram. These ionized sites bind Pb(II) ions, promoting their adsorption. The adsorption kinetic and equilibrium studies indicated that the Elovich and pseudo-second-order models adjusted well to the experimental data, respectively. The maximum removal capacities (qm) predicted by the Langmuir and Sips isotherms achieved 108.2 and 97.55 mg/g at 0.83 g/L adsorbent dosage (pH 4.0). The hydrogel/Pb(II) pair was characterized by scanning electron microscopy (SEM), X-ray dispersive energy (EDS), and differential scanning calorimetry (DSC). The chemisorption seems to play an essential role in the Pb(II) adsorption. Therefore, the adsorbent was not recovered, showing low potential for reusability.
Collapse
Affiliation(s)
- Lucas Del Coli B Araújo
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Henrique K de Matos
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Débora P Facchi
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Débora A de Almeida
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruna M G Gonçalves
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
40
|
Implementation of response surface methodology in physi-chemisorption of Indigo carmine dye using modified chitosan composite. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Biswas S, Pal A. Application of biopolymers as a new age sustainable material for surfactant adsorption: A brief review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Efficacy of quaternary ammonium groups based polyelectrolytes for the reduction of various pesticide formulations content from synthetic wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Stephen DP, Palanisamy SB. Advances in biopolymer composites and biomaterials for the removal of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Domestic, agriculture, and industrial activities contaminate the waterbodies by releasing toxic substances and pathogens. Removal of pollutants from wastewater is critical to ensuring the quality of accessible water resources. Several wastewater treatments are often used. Researchers are increasingly focusing on adsorption, ion exchange, electrostatic interactions, biodegradation, flocculation, and membrane filtration for the efficient reduction of pollutants. Biopolymers are a combination of two or more products produced by the living organisms used to give the desired finished product with a unique attribute. Biomaterials are also similar to traditional polymers by having higher flexibility, biodegradability, low toxicity, and nontoxic secondary byproducts producing ability. Grafting, functionalization, and crosslinking will be used to enhance the characteristics of biopolymers. The present chapter will illustrate some of the important biopolymers and its compos that will impact wastewater treatment in the future. Most commonly used biopolymers including chitosan (CS), activated carbon (AC), carbon-nanotubes (CNTs), and graphene oxide (GO) are discussed. Finally, the opportunities and difficulties for applying adsorbents to water pollution treatment are discussed.
Collapse
Affiliation(s)
| | - Suresh Babu Palanisamy
- Department of Biotechnology, Saveetha School of Engineering , Saveetha Institute of Medical and Technical Sciences (SIMATS) , Saveetha Nagar, Thandalam , Chennai 602 105 , Tamil Nadu , India
- Faculty of Pharmaceutical Sciences , UCSI University , 56000 Cheras , Kuala Lumpur , Malaysia
| |
Collapse
|
44
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
45
|
Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1986700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nilay Kahya
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - F. Bedia Erim
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
46
|
A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics. Polymers (Basel) 2021; 13:polym13173009. [PMID: 34503049 PMCID: PMC8433961 DOI: 10.3390/polym13173009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/04/2023] Open
Abstract
Chitosan is a second-most abundant biopolymer on earth after cellulose. Its unique properties have recently received particular attention from researchers to be used as a potential biosorbent for the removal of organic dyes. However, pure chitosan has some limitations that exhibit lower biosorption capacity, surface area and thermal stability than chitosan composites. The reinforcement materials used for the synthesis of chitosan composites were carbon-based materials, metal oxides and other biopolymers. This paper reviews the effects of several factors such as pH, biosorbent dosage, initial dye concentration, contact time and temperature when utilizing chitosan-based materials as biosorbent for removing of organic dyes from contaminated water. The behaviour of the biosorption process for various chitosan composites was compared and analysed through the kinetic models, isotherm models and thermodynamic parameters. The findings revealed that pseudo-second-order (PSO) and Langmuir isotherm models were best suited for describing most of the biosorption processes or organic dyes. This indicated that monolayer chemisorption of organic dyes occurred on the surface of chitosan composites. Most of the biosorption processes were endothermic, feasible and spontaneous at the low temperature range between 288 K and 320 K. Therefore, chitosan composites were proven to be a promising biosorbent for the removal of organic dyes.
Collapse
|
47
|
Gohari G, Zareei E, Kulak M, Labib P, Mahmoudi R, Panahirad S, Jafari H, Mahdavinia G, Juárez-Maldonado A, Lorenzo JM. Improving the Berry Quality and Antioxidant Potential of Flame Seedless Grapes by Foliar Application of Chitosan-Phenylalanine Nanocomposites (CS-Phe NCs). NANOMATERIALS 2021; 11:nano11092287. [PMID: 34578605 PMCID: PMC8468444 DOI: 10.3390/nano11092287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022]
Abstract
The production and sustainability of grape berries with high quality and health-promoting properties is a major goal. In this regard, nano-engineered materials are being used for improving the quality and marketability of berries. In this study, we investigated the potential role of chitosan–phenylalanine nanocomposites (CS–Phe NCs) in improving the quality of Flame Seedless (Vitis vinifera L.) grape berries, such as titratable acidity (TA), pH, total soluble solids (TSS), ascorbic acid, total phenolics, total flavonoids, anthocyanin, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity, and phenylalanine ammonia-lyase (PAL) activity. In this context, grape berries collected in two growing seasons (2018–2019) were screened. Regarding the experimental design, the treatments included chitosan at a 0.5% concentration (CS 0.5%), phenylalanine at 5 mM and 10 mM concentrations (Phe 5 mM and Phe 10 mM), and chitosan–phenylalanine nanocomposites (CS–Phe NCs) at 5 mM and 10 mM concentrations. The lowest TA was recorded in grape berries treated with CS–Phe NCs with a 10 mM concentration. However, treatments enhanced with TSS, which reached the highest value with 10 mM of CS–Phe NCs, were reflected as the highest ratio of TSS/TA with 10 mM of CS–Phe NC treatment. Nanocomposites (NCs) also increased pH values in both study years compared to the control. Similarly, the ascorbic acid and total phenolic content increased in response to NP treatment, reaching the highest value with 5 mM and 10 mM of CS–Phe NCs in 2018 and 2019, respectively. The highest flavonoid content was observed with 5 mM of CS–Phe NCs in both study years. In addition, the anthocyanin content increased with 5 and 10 mM of CS–Phe NCs. PAL activity was found to be the highest with 5 mM of CS–Phe NCs in both study years. In addition, in accordance with the increase in PAL activity, increased total phenolics and anthocyanin, and higher DPPH radical scavenging activity of the grapes were recorded with the treatments compared to the control. As deduced from the findings, the coating substantially influenced the metabolic pathway, and the subsequent alterations induced by the treatments were notably appreciated due to there being no adverse impacts perceived.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran
- Correspondence: (G.G.); (A.J.-M.); (J.M.L.)
| | - Elnaz Zareei
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-10175, Iran;
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir 18900, Turkey;
| | - Parisa Labib
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran; (P.L.); (G.M.)
| | - Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Hessam Jafari
- Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Gholamreza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran; (P.L.); (G.M.)
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
- Correspondence: (G.G.); (A.J.-M.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (G.G.); (A.J.-M.); (J.M.L.)
| |
Collapse
|
48
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Urbano BF, Bustamante S, Palacio DA, Vera M, Rivas BL. Polymer‐based chromogenic sensors for the detection of compounds of environmental interest. POLYM INT 2021. [DOI: 10.1002/pi.6223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bruno F Urbano
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Saúl Bustamante
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Daniel A Palacio
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Myleidi Vera
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| | - Bernabé L Rivas
- Polymer Department, Faculty of Chemistry University of Concepción Concepción Chile
| |
Collapse
|
50
|
Ma X, Qian M, Yang Z, Xu T, Han X. Effects of Zinc Sources and Levels on Growth Performance, Zinc Status, Expressions of Zinc Transporters, and Zinc Bioavailability in Weaned Piglets. Animals (Basel) 2021; 11:ani11092515. [PMID: 34573481 PMCID: PMC8470440 DOI: 10.3390/ani11092515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Bioavailability of inorganic zinc in animals is low, and large amounts of zinc are excreted into feces, resulting in potential negative impacts on the environment and waste of zinc resources. To reduce zinc supplementation in animal feed, prepared and characterized chitosan–zinc (CS–Zn) chelate was studied to investigate its bioavailability. Dietary CS–Zn improved the weight gain of weaned piglets as compared to ZnSO4. The Zn source had a significant influence on the liver, pancreas Zn contents, and the protein expression of ZnT1 and ZIP5 in duodenal mucosa. The Zn contents in the liver and pancreas and the protein expressions of ZnT1 and ZIP5 increased linearly with increases in the added Zn level. Multiple linear regression and the slope-ratio methodology showed that the bioavailability of CS–Zn was 110.9% or 149.0% relative to ZnSO4, respectively, using zinc content in the liver or pancreas as the response parameter. These results indicate that CS–Zn shows enhanced bioavailability, suggesting a good potential substitute for inorganic zinc in animal nutrition. Abstract The present study was conducted to explore the bioavailability of chitosan–zinc chelate (CS–Zn) in weaned piglets, and its characteristics of prepared and oral safety were also involved. A total of 210 crossbred weaned piglets (Duroc × Landrace × Large White) with a mean body weight of 6.30 kg were randomly assigned into seven dietary treatments involving a 2 × 3 factorial arrangement with two Zn sources (CS–Zn and ZnSO4) and three levels of added Zn (50, 100, 150 mg Zn/kg) plus a Zn-unsupplemented control diet. The feeding trial lasted 42 days. The AFM image of CS–Zn showed a rougher appearance and smaller size particles. The changes in spectrum peaks evidenced the successful chelating of Zn2+ with chitosan. The XRD patterns revealed the formation of a new crystalline phase. Moreover, the oral acute toxicity test of CS–Zn showed no lethal effects on mice. Weaned piglets fed dietary CS–Zn showed improved weight gain and decreased diarrhea incidence. Additionally, the bioavailability of CS–Zn was higher than that of ZnSO4 in piglets. Taken together, these results indicate that the prepared CS–Zn chelate, with rough surface and crystalline phase, is non-toxic and show enhanced bioavailability.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (X.M.); (M.Q.); (Z.Y.); (T.X.)
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (X.M.); (M.Q.); (Z.Y.); (T.X.)
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (X.M.); (M.Q.); (Z.Y.); (T.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (X.M.); (M.Q.); (Z.Y.); (T.X.)
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; (X.M.); (M.Q.); (Z.Y.); (T.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Correspondence: ; Tel.: +86-571-88982446; Fax: +86-571-88982650
| |
Collapse
|