1
|
Greige S, Abdallah M, Webster CF, Harb M, Beyenal H, Wazne M. Microbial community analysis of the biofilms of both working and counter electrodes in single-chamber microbial electrolysis cells. Enzyme Microb Technol 2025; 188:110650. [PMID: 40209635 PMCID: PMC12103991 DOI: 10.1016/j.enzmictec.2025.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study was conducted to delineate microbial community development and composition on both working and counter electrodes in single-chamber microbial electrolysis cells (MECs) using synthetic wastewater. Two separate bioelectrochemical reactors were inoculated with anaerobic sludge. The first was operated at an anodic potential poised at + 0.4 V and the second one at a cathodic potential poised at -0.7 V, both vs. an Ag/AgCl reference electrode. The performance of the MECs, including current generation, bioelectrochemical activity of the biofilms on both the working and counter electrodes, and chemical oxygen demand (COD) depletion were monitored over the last 45 days of operation. Scanning electron microscopy (SEM) and 16S rRNA gene sequencing were performed to delineate the development and morphology of the microbial communities on both the working and the counter electrodes. The current generated at the anodic working electrode provided evidence of the growth of anode-respiring exoelectrogens (Clostridium sensu stricto). Similarly, the Faradaic current data at the cathodic working electrode confirmed the formation of an electroactive biofilm dominated by acetoclastic and hydrogenotrophic methanogens (Methanothrix and Methanobacterium). Microbial communities on the counter electrodes were found to be richer but less diverse compared to those on the working electrodes. These communities were likely influenced by the fluctuating potentials at the counter electrodes. SEM observations were consistent with the microbial analysis. These findings demonstrate the ability of a mixed inoculum to shift towards anode-reducing and cathode methanogenic communities using a complex substrate on a constant working electrode and varying counter electrode potentials.
Collapse
Affiliation(s)
- Stephanie Greige
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Mohamad Abdallah
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Christina F Webster
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Moustapha Harb
- Department of Civil and Environmental Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Mahmoud Wazne
- Department of Civil and Environmental Engineering, Lebanese American University, 309 Bassil Building, Byblos, Lebanon.
| |
Collapse
|
2
|
Shi X, Huang Z, Liu L, Feng H, Lan R, Hong J. Electrocatalytic coupled biofilter for treating cyclohexanone-containing wastewater: Degradation, mechanism and optimization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124533. [PMID: 38996994 DOI: 10.1016/j.envpol.2024.124533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Electrocatalytic coupled biofilter (EBF) technology organically integrates the characteristics of electrochemistry and microbial redox, providing ideas for effectively improving biological treatment performance. In this study, an EBF system was developed for enhanced degradation of cyclohexanone in contaminated water. Experimental results show that the system can effectively remove cyclohexanone in contaminated water. Under the optimal parameters, the removal rates of cyclohexanone, TP, NH4+-N and TN were 97.61 ± 1.31%, 76.31 ± 1.67%, 94.14 ± 2.13% and 95.87 ± 1.01% respectively. Degradation kinetics studies found that electrolysis, adsorption, and biodegradation pathways play a major role in the degradation of cyclohexanone. Microbial community analysis indicates that voltage can affect the structure of the microbial community, with the dominant genera shifting from Acidovorax (0 V) to Brevundimonas (0.7 V). Additionally, Acidovorax, Cupriavidus, Ralstonia, and Hydrogenophaga have high abundance in the biofilm and can effectively metabolize cyclohexanone and its intermediates, facilitating the removal of cyclohexanone. In summary, this research can guide the development and construction of highly stable EBF systems and is expected to be used for advanced treatment of industrial wastewater containing cyclohexanone.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Zhi Huang
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361102, China
| | - Han Feng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Ruisong Lan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
3
|
Noori MT, Rossi R, Logan BE, Min B. Hydrogen production in microbial electrolysis cells with biocathodes. Trends Biotechnol 2024; 42:815-828. [PMID: 38360421 DOI: 10.1016/j.tibtech.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Electroautotrophic microbes at biocathodes in microbial electrolysis cells (MECs) can catalyze the hydrogen evolution reaction with low energy demand, facilitating long-term stable performance through specific and renewable biocatalysts. However, MECs have not yet reached commercialization due to a lack of understanding of the optimal microbial strains and reactor configurations for achieving high performance. Here, we critically analyze the criteria for the inocula selection, with a focus on the effect of hydrogenase activity and microbe-electrode interactions. We also evaluate the impact of the reactor design and key parameters, such as membrane type, composition, and electrode surface area on internal resistance, mass transport, and pH imbalances within MECs. This analysis paves the way for advancements that could propel biocathode-assisted MECs toward scalable hydrogen gas production.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, South Korea
| | - Ruggero Rossi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, Penn State University, Pennsylvania, PA 16801, USA
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, South Korea.
| |
Collapse
|
4
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
5
|
Spisni G, Massaglia G, Pirri FC, Bianco S, Quaglio M. Ultrasonic Spray Coating to Optimize Performance of Bio-Electrochemical Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2926. [PMID: 37999281 PMCID: PMC10675038 DOI: 10.3390/nano13222926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
This work investigates the optimization of carbon-based electrodes employed in bio-electrochemical systems (BES) through the deposition of nanostructured layers of poly(3,4-ethylene-dioxy-thiophene) poly(styrene-sulfonate) (PEDOT:PSS) on commercial carbon paper electrodes via ultrasonic spray coating (USC). This innovative application of USC demonstrated that uniform and controlled depositions of PEDOT:PSS can be successfully performed on carbon-based electrodes. To this end, the morphology and spatial uniformity of depositions were verified via scanning electron microscopy and Raman spectroscopy. Electrochemical characterizations of fabricated electrodes demonstrated a more than two-fold increase in the electrochemical active surface area with respect to bare carbon paper. A lab-scale experiment on BES was performed, selecting microbial fuel cells (MFCs) as the reference devices. Devices featuring USC-deposited PEDOT:PSS electrodes showed a three-fold-higher energy recovery with respect to control cells, reaching a maximum value of (13 ± 2) J·m-3. Furthermore, the amount of PEDOT:PSS required to optimize MFCs' performance is in line with values reported in the literature for other deposition methods. In conclusion, this work demonstrates that USC is a promising technique for application in BES.
Collapse
Affiliation(s)
- Giacomo Spisni
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (G.S.); (F.C.P.); (S.B.)
- Centre for Sustainable Future Technologies @ PoliTo, Istituto Italiano di Tecnologia, 10146 Turin, Italy
| | - Giulia Massaglia
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (G.S.); (F.C.P.); (S.B.)
- Centre for Sustainable Future Technologies @ PoliTo, Istituto Italiano di Tecnologia, 10146 Turin, Italy
| | - Fabrizio C. Pirri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (G.S.); (F.C.P.); (S.B.)
- Centre for Sustainable Future Technologies @ PoliTo, Istituto Italiano di Tecnologia, 10146 Turin, Italy
| | - Stefano Bianco
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (G.S.); (F.C.P.); (S.B.)
| | - Marzia Quaglio
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (G.S.); (F.C.P.); (S.B.)
- Centre for Sustainable Future Technologies @ PoliTo, Istituto Italiano di Tecnologia, 10146 Turin, Italy
| |
Collapse
|
6
|
Shi X, Duan Z, Zhou W, Jiang M, Li T, Ma H, Zhu X. Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment. CHEMOSPHERE 2023; 318:137982. [PMID: 36716938 DOI: 10.1016/j.chemosphere.2023.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The simultaneous and efficient removal of various heavy metals from wastewater to satisfy the requirements of zero discharge has been a research hotspot and difficult point. In the laboratory scale (0.5 L), the biocathode microbial electrolytic cells (BCMECs) were constructed with the pre-screened heavy metal-tolerant electroactive bacterial, mainly of the Sphingomonas, Azospira and Cupriavidus. The BCMECs system showed a more satisfactory removal effect for multiple heavy metals and organic pollutants. At the auxiliary voltage of 0.9 V and initial concentration of 20 mg L-1, the removal efficiency of Cu, Pb, Zn, Cd and COD were 98.76 ± 0.32%, 98.01 ± 0.76%, 73.58 ± 4.83%, 84.39 ± 5.95%, 77.55 ± 1.51%, respectively. It was found by various characterization techniques (CV, EIS, XPS et al.) that the constructed biocathode has the function of electrocatalytic reduction of heavy metal ions in a micro-aerobic, film-free environment. The positive shift (0.030-0.229 V) of the initial potential for heavy metal reduction and the absence of a significant increase (< 10 Ω) in the interfacial resistance indicated a reduction in the total free energy of the reduction reaction, which promotes the reaction and improves the efficiency of heavy metal removal. Bacterial community analysis revealed that the Proteobacteria has been dominant in different heavy metal environments. With the increase of heavy metal concentration, Sphingomonas, Azospira and Cupriavidus showed stronger tolerance and became the dominant genus. This study emphasized the important performance of biocathodes and the effective treatment of heavy metal wastewaters by BCMECs and provided a reasonable way for industrial and mining enterprises to innovate the water treatment process.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming 650201, PR China
| | - Zhengyang Duan
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Wenyi Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Hongyan Ma
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Xuan Zhu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| |
Collapse
|
7
|
Salehmin MNI, Hil Me MF, Daud WRW, Mohd Yasin NH, Abu Bakar MH, Sulong AB, Lim SS. Construction of microbial electrodialysis cells equipped with internal proton migration pathways: Enhancement of wastewater treatment, desalination, and hydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158527. [PMID: 36096221 DOI: 10.1016/j.scitotenv.2022.158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.
Collapse
Affiliation(s)
| | | | - Wan Ramli Wan Daud
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mimi Hani Abu Bakar
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Abu Bakar Sulong
- Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
8
|
Lee HS, Xin W, Katakojwala R, Venkata Mohan S, Tabish NMD. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127934. [PMID: 36100184 DOI: 10.1016/j.biortech.2022.127934] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
To assess biohydrogen for future green energy, this review revisited dark fermentation and microbial electrolysis cells (MECs). Hydrogen evolution rate in mesophilic dark fermentation is as high as 192 m3 H2/m3-d, however hydrogen yield is limited. MECs are ideal for improving hydrogen yield from carboxylate accumulated from dark fermentation, whereas hydrogen production rate is too slow in MECs. Hence, improving anode kinetic is very important for realizing MEC biohydrogen. Intracellular electron transfer (IET) and extracellular electron transfer (EET) can limit current density in MECs, which is proportional to hydrogen evolution rate. EET does not limit current density once electrically conductive biofilms are formed on anodes, potentially producing 300 A/m2. Hence, IET kinetics mainly govern current density in MECs. Among parameters associated with IET kinetic, population of anode-respiring bacteria in anode biofilms, biofilm density of active microorganisms, biofilm thickness, and alkalinity are critical for current density.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH) 200 Hyeoksin-ro, Naju-si, Jeollanam-do, Republic of Korea.
| | - Wang Xin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ranaprathap Katakojwala
- Bioengineering and Environmental Engineering Lab, Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Engineering Lab, Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Noori M D Tabish
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala De Henares, Madrid 28801, Spain
| |
Collapse
|
9
|
Rafieenia R, Sulonen M, Mahmoud M, El-Gohary F, Rossa CA. Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances, and present prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153923. [PMID: 35182645 DOI: 10.1016/j.scitotenv.2022.153923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
In recent years, microbial electrochemical systems (MESs) have demonstrated to be an environmentally friendly technology for wastewater treatment and simultaneous production of value-added products or energy. However, practical applications of MESs for the treatment of recalcitrant wastewater are limited by their low power output and slow rates of pollutant biodegradation. As a novel technology, hybrid MESs integrating biodegradation and photocatalysis have shown great potential to accelerate the degradation of bio-recalcitrant pollutants and increase the system output. In this review, we summarize recent advances of photo-assisted MESs for enhanced removal of recalcitrant pollutants, and present further discussion about the synergistic effect of biodegradation and photocatalysis. In addition, we analyse in detail different set-up configurations, discuss mechanisms of photo-enhanced extracellular electron transfer, and briefly present ongoing research cases. Finally, we highlight the current limitations and corresponding research gaps, and propose insights for future research.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Mira Sulonen
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - Claudio Avignone Rossa
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
10
|
Gharbi R, Gomez Vidales A, Omanovic S, Tartakovsky B. Mathematical model of a microbial electrosynthesis cell for the conversion of carbon dioxide into methane and acetate. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Alismaeel ZT, Abbar AH, Saeed OF. Application of central composite design approach for optimisation of zinc removal from aqueous solution using a Flow-by fixed bed bioelectrochemical reactor. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang S, Deng S, An D, Hoang NB. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2022; 346:126588. [PMID: 34929329 DOI: 10.1016/j.biortech.2021.126588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cell (MEC) system is an environmentally friendly method for clean biohydrogen production from a wide range of biowastes owing to low greenhouse gas emissions. This approach has relatively higher yields and lower energy costs for biohydrogen production compared to conventional biological technologies and direct water electrolysis, respectively. However, biohydrogen production efficiency and operating costs of MEC still need further optimization to realize its large-scale application.This paper provides a unique review of impact factors influencing biohydrogen production in MECs, such as microorganisms and electrodes. Novel strategies, including inhibition of methanogens, development of novel cathode catalyst, advanced reactor design and integrated systems, to enhance low-cost biohydrogen production, are discussed based on recent publications in terms of their opportunities, bottlenecks and future directions. In addition, the current challenges, and effective future perspectives towards the practical application of MECs are described in this review.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shihai Deng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ding An
- School of Environment, Harbin Institute of Technology, Harbin Institute of Technology, Nangang District, Harbin, 150090, China
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
13
|
Lim SS, Fontmorin JM, Ikhmal Salehmin MN, Feng Y, Scott K, Yu EH. Enhancing hydrogen production through anode fed-batch mode and controlled cell voltage in a microbial electrolysis cell fully catalysed by microorganisms. CHEMOSPHERE 2022; 288:132548. [PMID: 34653487 DOI: 10.1016/j.chemosphere.2021.132548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/26/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
A microbial electrolysis cell (MEC) fully catalysed by microorganisms is an attractive technology because it incorporates the state-of-the-art concept of converting organic waste to hydrogen with less external energy input than conventional electrolysers. In this work, the impact of the anode feed mode on the production of hydrogen by the biocathode was studied. In the first part, three feed modes and MEC performance in terms of hydrogen production were evaluated. The results showed the highest hydrogen production under the continuous mode (14.6 ± 0.4), followed by the fed-batch (12.7 ± 0.4) and batch (0 L m-2 cathode day-1) modes. On one hand, the continuous mode only increased by 15% even though the hydraulic retention time (HRT) (2.78 h) was lower than the fed-batch mode (HRT 5 h). A total replacement (fed-batch) rather than a constant mix of existing anolyte and fresh medium (continuous) was preferable. On the other hand, no hydrogen was produced in batch mode due to the extensive HRT (24 h) and bioanode starvation. In the second part, the fed-batch mode was further evaluated using a chronoamperometry method under a range of applied cell voltages of 0.3-1.6 V. Based on the potential evolution at the electrodes, three main regions were identified depending on the applied cell voltages: the cathode activation (<0.8 V), transition (0.8-1.1 V), and anode limitation (>1.1 V) regions. The maximum hydrogen production recorded was 12.1 ± 2.1 L m-2 cathode day-1 at 1.0 V applied voltage when the oxidation and reduction reactions at the anode and cathode were optimal (2.38 ± 0.61 A m-2). Microbial community analysis of the biocathode revealed that Alpha-, and Deltaproteobacteria were dominant in the samples with >70% abundance. At the genus level, Desulfovibrio sp. was the most abundant in the samples, showing that these microbes may be responsible for hydrogen evolution.
Collapse
Affiliation(s)
- Swee Su Lim
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Malaysia
| | - Jean-Marie Fontmorin
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | | | - Yujie Feng
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Keith Scott
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Eileen Hao Yu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom.
| |
Collapse
|
14
|
Wang XT, Zhang YF, Wang B, Wang S, Xing X, Xu XJ, Liu WZ, Ren NQ, Lee DJ, Chen C. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process - A review. BIORESOURCE TECHNOLOGY 2022; 346:126641. [PMID: 34973405 DOI: 10.1016/j.biortech.2021.126641] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) was proved to increase methane productivity and methane yield of waste activated sludge (WAS) by establishing direct interspecies electron transfer method and enriching functional microorganisms. This review first summarized the pretreatment methods of WAS for MEC-AD and then reviewed the reactor configurations, operation parameters, and the economic benefit of MEC-AD. Furthermore, the enhancement mechanisms of MEC-AD were reviewed based on the analysis of thermodynamics and microbial community. It was found that the decrease of hydrogen partial pressure due to the hydrogenotrophic methanogens enriched in cathodic biofilm and direct interspecies electron transfer between exoelectrogens and anode were the core mechanisms for improving acidogenesis, acetogenesis, and methanogenesis. Finally, the potentially technological issues that need to be addressed to increase energy efficiency in large-scale MEC-AD processes were discussed.
Collapse
Affiliation(s)
- Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yi-Feng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Bo Wang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Song Wang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Xue Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
15
|
Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. SUSTAINABILITY 2021. [DOI: 10.3390/su13168796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon constraints, as well as the growing hazard of greenhouse gas emissions, have accelerated research into all possible renewable energy and fuel sources. Microbial electrolysis cells (MECs), a novel technology able to convert soluble organic matter into energy such as hydrogen gas, represent the most recent breakthrough. While research into energy recovery from wastewater using microbial electrolysis cells is fascinating and a carbon-neutral technology that is still mostly limited to lab-scale applications, much more work on improving the function of microbial electrolysis cells would be required to expand their use in many of these applications. The present limiting issues for effective scaling up of the manufacturing process include the high manufacturing costs of microbial electrolysis cells, their high internal resistance and methanogenesis, and membrane/cathode biofouling. This paper examines the evolution of microbial electrolysis cell technology in terms of hydrogen yield, operational aspects that impact total hydrogen output in optimization studies, and important information on the efficiency of the processes. Moreover, life-cycle assessment of MEC technology in comparison to other technologies has been discussed. According to the results, MEC is at technology readiness level (TRL) 5, which means that it is ready for industrial development, and, according to the techno-economics, it may be commercialized soon due to its carbon-neutral qualities.
Collapse
|
16
|
Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, Scott K, Head I, Yu EH. Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145934. [PMID: 33647656 DOI: 10.1016/j.scitotenv.2021.145934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microbial fuel cells (MFCs) that simultaneously remove organic contaminants and recovering metals provide a potential route for industry to adopt clean technologies. In this work, two goals were set: to study the feasibility of zinc removal from industrial effluents using MFCs and to understand the removal process by using reaction rate models. The removal of Zn2+ in MFC was over 96% for synthetic and industrial samples with initial Zn2+ concentrations less than 2.0 mM after 22 h of operation. However, only 83 and 42% of the zinc recovered from synthetic and industrial samples, respectively, was attached on the cathode surface of the MFCs. The results marked the domination of electroprecipitation rather than the electrodeposition process in the industrial samples. Energy dispersive X-ray (EDX) analysis showed that the recovered compound contained not only Zn but also O, evidence that Zn(OH)2 could be formed. The removal of Zn2+ in the MFC followed a mechanism where oxygen was reduced to hydroxide before reacting with Zn2+. Nernst equations and rate law expressions were derived to understand the mechanism and used to estimate the Zn2+ concentration and removal efficiency. The zero-, first- and second-order rate equations successfully fitted the data, predicted the final Zn2+ removal efficiency, and suggested that possible mechanistic reactions occurred in the electrolysis cell (direct reduction), MFC (O2 reduction), and control (chemisorption) modes. The half-life, t1/2, of the Zn2+ removal reaction using synthetic and industrial samples was estimated to be 7.0 and 2.7 h, respectively. The t1/2 values of the controls (without the power input from the MFC bioanode) were much slower and were recorded as 21.5 and 7.3 h for synthetic and industrial samples, respectively. The study suggests that MFCs can act as a sustainable and environmentally friendly technology for heavy metal removal without electrical energy input or the addition of chemicals.
Collapse
Affiliation(s)
- Swee Su Lim
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Malaysia
| | - Jean-Marie Fontmorin
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Hai The Pham
- Department of Microbiology and Center for Life Science Research (CELIFE), Faculty of Biology, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Edward Milner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Keith Scott
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Ian Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Eileen Hao Yu
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
17
|
Arulmani SRB, Dai J, Li H, Chen Z, Zhang H, Yan J, Xiao T, Sun W. Efficient reduction of antimony by sulfate-reducer enriched bio-cathode with hydrogen production in a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145733. [PMID: 33609841 DOI: 10.1016/j.scitotenv.2021.145733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Bio-cathode Microbial electrolysis cell (MEC) is a promising and eco-friendly technology for concurrent hydrogen production and heavy metal reduction. However, the bioreduction of Antimony (Sb) in a bio-electrochemical system with H2 production is not explored. In this study, two efficient sulfate-reducing bacterial (SRB) strains were used to investigate the enhanced bioreduction of sulfate and Sb with H2 production in the MEC. SRB Bio-cathode MEC was developed from the microbial fuel cell (MFC) and operated with an applied voltage of 0.8 V. The performance of the SRB bio-cathode was confirmed by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. SRB strains of BY7 and SR10 supported the synergy reduction of sulfate and Sb by sulfide metal precipitation reaction. Hydrogen gas was the main product of SRB bio-cathode, with 86.9%, and 83.6% of H2 is produced by SR10 and BY7, respectively. Sb removal efficiency reached up to 88.2% in BY7 and 96.3% in SR10 with a sulfate reduction rate of 92.3 ± 2.6 and 98.4 ± 1.6 gm-3d-1 in BY7 and SR10, respectively. The conversion efficiency of Sb (V) to Sb (III) reached up to 70.1% in BY7 and 89.2% in SR10. It was concluded that the total removal efficiency of Sb relies on the amount of sulfide concentration produced by the sulfate reduction reaction. The hydrogen production rate was increased up to 1.25 ± 0.06 (BY7) and 1.36 ± 0.02 m3 H2/(m3·d) (SR10) before addition of Sb and produced up to 0.893 ± 0.03 and 0.981 ± 0.02 m3H2/(m3·d) after addition of Sb. The precipitates were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, which confirmed Sb (V) was reduced to Sb2S3.
Collapse
Affiliation(s)
- Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Junxi Dai
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Han Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhenxin Chen
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China.
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|
18
|
Santoro C, Babanova S, Cristiani P, Artyushkova K, Atanassov P, Bergel A, Bretschger O, Brown RK, Carpenter K, Colombo A, Cortese R, Erable B, Harnisch F, Kodali M, Phadke S, Riedl S, Rosa LFM, Schröder U. How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross-Laboratory Study. CHEMSUSCHEM 2021; 14:2313-2330. [PMID: 33755321 PMCID: PMC8252665 DOI: 10.1002/cssc.202100294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Indexed: 05/05/2023]
Abstract
A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 μW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Material ScienceUniversity of Milan BicoccaU5 Via Cozzi 55Milan20125Italy
| | - Sofia Babanova
- Aquacycl LLC2180 Chablis Court, Suite 102EscondidoCA 92029USA
| | - Pierangela Cristiani
- Department of Sustainable Development and Energy ResourcesRicerca sul Sistema Energetico S.p.A.Via Rubattino 54Milan20134Italy
| | | | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Alain Bergel
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | | | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Kayla Carpenter
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Alessandra Colombo
- Department of ChemistryUniversità degli Studi di MilanoVia Golgi 19Milan20133Italy
| | - Rachel Cortese
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Benjamin Erable
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Mounika Kodali
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Sujal Phadke
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Sebastian Riedl
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
19
|
Long-distance electron transfer in a filamentous Gram-positive bacterium. Nat Commun 2021; 12:1709. [PMID: 33731718 PMCID: PMC7969598 DOI: 10.1038/s41467-021-21709-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.
Collapse
|
20
|
Wang Y, Xi B, Jia X, Li M, Qi X, Xu P, Zhao Y, Ye M, Hao Y. Characterization of hydrogen production and microbial community shifts in microbial electrolysis cells with L-cysteine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143353. [PMID: 33162129 DOI: 10.1016/j.scitotenv.2020.143353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
L-cysteine is used to improve efficiency in anaerobic biological systems as an oxygen scavenger, electron shuttle and substrate source. The performance of MEC by addition of L-cysteine was investigated during start-up and operation phases, respectively. Results showed that the maximum current density of 6.36 ± 0.14 A/m2, hydrogen yield of 1.08 ± 0.05 m3/m3 and energy efficiency of 130% were achieved with L-cysteine adding during operation phase. By contrast, the addition of L-cysteine during the start-up phase reduced the energy efficiency by more than 30%. The microbial community analysis revealed that a higher microbial community richness and diversity were achieved, the enrichment of Sulfuricurvum, Sulfurospirillum, Desulfovibrio and other electroactive microorganisms indicated their relative abundance could be regulated by L-cysteine during start-up phase when L-cysteine was added. This study provided an alternative method to enhanced hydrogen production and a better understanding of the mechanism of L-cysteine action in MEC performance.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuan Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecological Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Qi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pei Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Zhao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecological Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Hao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
21
|
Abstract
Goal of sustainable carbon neutral economy can be achieved by designing an efficient CO2 reduction system to generate biofuels, in particular, by mimicking the mechanism of natural photosynthesis using semiconducting nanomaterials interfaced with electroactive bacteria (EAB) in a photosynthetic microbial electrosynthesis (PMES) system. This review paper presents an overview of the recent advancements in the biohybrid photoanode and photocathode materials. We discuss the reaction mechanism observed at photoanode and photocathode to enhance our understanding on the solar driven MES. We extend the discussion by showcasing the potential activity of EABs toward high selectivity and production rates for desirable products by manipulating their genomic sequence. Additionally, the critical challenges associated in scaling up the PMES system including the strategies for diminution of reactive oxygen species, low solubility of CO2 in the typical electrolytes, low selectivity of product species are presented along with the suggestions of alternative strategies to achieve economically viable generation of (bio)commodities.
Collapse
|
22
|
Liu H, Ouyang F, Chen Z, Chen Z, Lichtfouse E. Weak electricity stimulates biological nitrate removal of wastewater: Hypothesis and first evidences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143764. [PMID: 33248788 DOI: 10.1016/j.scitotenv.2020.143764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Nitrate pollution in water is a worldwide health and environmental concern. Biological nitrate removal of wastewater is widely used countering eutrophication of water bodies; however it could be troublesome and expensive when influent carbon source is insufficient. Here we present a novel process, the microbial fuel cell (MFC)-resistance-type electrical stimulation denitrification process (RtESD) using microbial weak electricity originated from the wastewater, to enhance nitrate removal. Results show that the optimal nitrate dependent denitrification rate (0.027 mg N/L·h) and nitrate removal efficiency (98.1%) can be achieved; partial autotrophic denitrification was enhanced in RtESD under stimulation of 0.2 V of microbial weak electricity (MWE). Aromatic proteins also increased in the presence of 0.2 V MWE stimulation according to three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy profiles, indicating that electron transfer could be improved in the case of MWE stimulation. Furthermore, the microbial community structure and diversity analysis results demonstrated that MWE stimulation inhibited the heterotrophic denitrifying bacteria and activated the autotrophic denitrifying bacteria in RtESD. Two hypotheses, enhancement of electron transfer and improvement of microorganism activity, were proposed regarding to the MWE stimulated pathways. This study provided a promising method utilizing MWE derived from wastewater to improve the denitrification rate and removal efficiency of nitrate-containing wastewater treatment processes.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, China.
| | - Feiyu Ouyang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, China
| | - Zihua Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093, Shanghai, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France
| |
Collapse
|
23
|
Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps. WATER 2021. [DOI: 10.3390/w13040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional wastewater treatment methods have become aged and inefficient, meaning alternative methods are essential to protect the environment and ensure water and energy security worldwide. The use of microbial electrolysis cells (MEC) for wastewater treatment provides an innovative alternative, working towards circular wastewater treatment for energy production. This study evaluates the factors hindering industrial adoption of this technology and proposes the next steps for further research and development. Existing pilot-scale investigations are studied to critically assess the main limitations, focusing on the electrode material, feedstock, system design and inoculation and what steps need to be taken for industrial adoption of the technology. It was found that high strength influents lead to an increase in energy production, improving economic viability; however, large variations in waste streams indicated that a homogenous solution to wastewater treatment is unlikely with changes to the MEC system specific to different waste streams. The current capital cost of implementing MECs is high and reducing the cost of the electrodes should be a priority. Previous pilot-scale studies have predominantly used carbon-based materials. Significant reductions in relative performance are observed when electrodes increase in size. Inoculation time was found to be a significant barrier to quick operational performance. Economic analysis of the technology indicated that MECs offer an attractive option for wastewater treatment, namely greater energy production and improved treatment efficiency. However, a significant reduction in capital cost is necessary to make this economically viable. MEC based systems should offer improvements in system reliability, reduced downtime, improved treatment rates and improved energy return. Discussion of the merits of H2 or CH4 production indicates that an initial focus on methane production could provide a stepping-stone in the adoption of this technology while the hydrogen market matures.
Collapse
|
24
|
Li H, Wang B, Deng S, Dai J, Shao S. Oxygen-containing functional groups on bioelectrode surface enhance expression of c-type cytochromes in biofilm and boost extracellular electron transfer. BIORESOURCE TECHNOLOGY 2019; 292:121995. [PMID: 31430670 DOI: 10.1016/j.biortech.2019.121995] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Introducing oxygen-containing functional groups is a common and convenient method to increase the hydrophilicity of bioelectrodes. In this study, the effect of oxygen-containing functional groups on biofilm was systematically studied to understand how the electron transfer between electrochemically active bacteria (EAB) and bioelectrode was boosted. After electrolysis pretreatment in sulfuric and nitric acid mixture, the oxygen content of the carbon fiber brushes increased from 4.6% to 30.9%. Comparing with the control, the maximum power density increased by 27.7%, while the anode resistance decreased by 21.8%, because charge transfer resistance significantly reduced. The analysis results showed that the content of c-type cytochromes (c-Cyts) in the EAB biofilm was four times higher than that in the control, while the biomass just slightly increased and the bacteria community was similar with that of the control. These findings suggested that the fundamental reason for the enhanced extracellular electron transfer between EAB and electrode was the increased c-Cyts.
Collapse
Affiliation(s)
- Hui Li
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Songping Deng
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
25
|
Contribution of Yeast Extract, Activated Carbon, and an Electrostatic Field to Interspecies Electron Transfer for the Bioelectrochemical Conversion of Coal to Methane. ENERGIES 2019. [DOI: 10.3390/en12214051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bioelectrochemical conversion of coal to methane was investigated in an anaerobic batch reactor containing yeast extract and activated carbon. In anaerobic degradation of coal, yeast extract was a good stimulant for the growth of anaerobic microorganisms, and activated carbon played a positive role. An electrostatic field of 0.67 V/cm significantly improved methane production from coal by promoting direct and mediated interspecies electron transfers between exoelectrogenic bacteria and electrotrophic methanogenic archaea. However, the accumulation of coal degradation intermediates gradually repressed the conversion of coal to methane, and the methane yield of coal was only 31.2 mL/g lignite, indicating that the intermediates were not completely converted to methane. By supplementing yeast extract and seed sludge into the anaerobic reactor, the intermediate residue could be further converted to methane under an electrostatic field of 0.67 V/cm, and the total methane yield of coal increased to 98.0 mL/g lignite. The repression of the intermediates to the conversion of coal to methane was a kind of irreversible substrate inhibition. The irreversible substrate inhibition in the conversion of coal to methane could be attenuated under the electrostatic field of 0.67 V/cm by ensuring sufficient biomass through biostimulation or bioaugmentation.
Collapse
|
26
|
Chen J, Hu Y, Huang W, Liu Y, Tang M, Zhang L, Sun J. Biodegradation of oxytetracycline and electricity generation in microbial fuel cell with in situ dual graphene modified bioelectrode. BIORESOURCE TECHNOLOGY 2018; 270:482-488. [PMID: 30245318 DOI: 10.1016/j.biortech.2018.09.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
A three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) in microbial fuel cell (MFC) in previous studies. This study explored the biodegradation of oxytetracycline (OTC) and electricity generation in O-D-GM-BE MFC. The OTC removal efficiency of graphene modified biocathode and bioanode (O-GM-BC, O-GM-BA) was 95.0% and 91.8% in eight days. The maximum power density generated by O-D-GM-BE MFC was 86.6 ± 5.1 mW m-2, which was 2.1 times of that in OTC control bioelectrode (O-C-BE) MFC. The Rct of O-GM-BA and O-GM-BC were decreased significantly by 78.3% and 76.3%. OTC was biodegraded to monocyclic benzene compounds by bacteria. O-GM-BA was affected strongly by OTC, and Salmonella and Trabulsiella were accounted for 83.0%, while typical exoelectrogens (Geobacter) were still enriched after the maturity of biofilm. In O-GM-BC, bacteria related with OTC biodegradation (Comamonas, Ensifer, Sphingopyxis, Pseudomonas, Dechloromonas, etc.) were enriched, which contributed to the high removal efficiency of OTC.
Collapse
Affiliation(s)
- Junfeng Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Wantang Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Lihua Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jian Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
27
|
Abstract
This study demonstrated the enhancement of biogenic coal conversion to methane in a bioelectrochemical anaerobic reactor with polarized electrodes. The electrode with 1.0 V polarization increased the methane yield of coal to 52.5 mL/g lignite, which is the highest value reported to the best of our knowledge. The electrode with 2.0 V polarization shortened the adaptation time for methane production from coal, although the methane yield was slightly less than that of the 1.0 V electrode. After the methane production from coal in the bioelectrochemical reactor, the hydrolysis product, soluble organic residue, was still above 3600 mg chemical oxygen demand (COD)/L. The hydrolysis product has a substrate inhibition effect and inhibited further conversion of coal to methane. The dilution of the hydrolysis product mitigates the substrate inhibition to methane production, and a 5.7-fold dilution inhibited the methane conversion rate by 50%. An additional methane yield of 55.3 mL/g lignite was obtained when the hydrolysis product was diluted 10-fold in the anaerobic toxicity test. The biogenic conversion of coal to methane was significantly improved by the polarization of the electrode in the bioelectrochemical anaerobic reactor, and the dilution of the hydrolysis product further improved the methane yield.
Collapse
|
28
|
Lim SS, Kim BH, Li D, Feng Y, Daud WRW, Scott K, Yu EH. Effects of Applied Potential and Reactants to Hydrogen-Producing Biocathode in a Microbial Electrolysis Cell. Front Chem 2018; 6:318. [PMID: 30159306 PMCID: PMC6103483 DOI: 10.3389/fchem.2018.00318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanism of electron transfer between the cathode and microorganisms in cathode biofilms in microbial electrolysis cells (MECs) for hydrogen production is important. In this study, biocathodes of MECs were successfully re-enriched and subjected to different operating parameters: applied potential, sulfate use and inorganic carbon consumption. It was hypothesized that biocathode catalytic activity would be affected by the applied potentials that initiate electron transfer. While inorganic carbon, in the form of bicarbonate, could be a main carbon source for biocathode growth, sulfate could be a terminal electron acceptor and thus reduced to elemental sulfurs. It was found that potentials more negative than -0.8 V (vs. standard hydrogen electrode) were required for hydrogen production by the biocathode. In additional, a maximum hydrogen production was observed at sulfate and bicarbonate concentrations of 288 and 610 mg/L respectively. Organic carbons were found in the cathode effluents, suggesting that microbial interactions probably happen between acetogens and sulfate reducing bacteria (SRB). The hydrogen-producing biocathode was sulfate-dependent and hydrogen production could be inhibited by excessive sulfate because more energy was directed to reduce sulfate (E° SO 4 2 - /H2S = -0.35 V) than proton (E° H+/H2 = -0.41 V). This resulted in a restriction to the hydrogen production when sulfate concentration was high. Domestic wastewaters contain low amounts of organic compounds and sulfate would be a better medium to enrich and maintain a hydrogen-producing biocathode dominated by SRB. Besides the risks of limited mass transport and precipitation caused by low potential, methane contamination in the hydrogen-rich environment was inevitable in the biocathode after long term operation due to methanogenic activities.
Collapse
Affiliation(s)
- Swee Su Lim
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Byung Hong Kim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Bioelectrochemistry Laboratory, Water Environment and Remediation Research Centre, Korea Institute of Science and Technology, Bongdong-eup, South Korea
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | | | - Keith Scott
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Eileen Hao Yu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|