1
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
2
|
Roberge H, Moreau P, Couallier E, Abellan P. Lipids and Proteins Differentiation in Membrane Fouling Using Heavy Metal Staining and Electron Microscopy at Cryogenic Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2090-2098. [PMID: 37966971 DOI: 10.1093/micmic/ozad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023]
Abstract
The detailed characterization of fouling in membranes is essential to understand any observed improvement or reduction on filtration performance. Electron microscopy allows detailed structural characterization, and its combination with labeling techniques, using electron-dense probes, typically allows for the differentiation of biomolecules. Developing specific protocols that allow for differentiation of biomolecules in membrane fouling by electron microscopy is a major challenge due to both as follows: the necessity to preserve the native state of fouled membranes upon real filtration conditions as well as the inability of the electron-dense probes to penetrate the membranes once they have been fouled. In this study, we present the development of a heavy metal staining technique for identification and differentiation of biomolecules in membrane fouling, which is compatible with cryofixation methods. A general contrast enhancement of biomolecules and fouling is achieved. Our observations indicate a strong interaction between biomolecules: A tendency of proteins, both in solution as well as in the fouling, to surround the lipids is observed. Using transmission electron microscopy and scanning electron microscopy at cryogenic conditions, cryo-SEM, in combination with energy-dispersive X-ray spectroscopy, the spatial distribution of proteins and lipids within fouling is shown and the role of proteins in fouling discussed.
Collapse
Affiliation(s)
- Hélène Roberge
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Philippe Moreau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| | - Estelle Couallier
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Patricia Abellan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| |
Collapse
|
3
|
Mago Y, Sharma Y, Thakran Y, Mishra A, Tewari S, Kataria N. Next-Generation Organic Beauty Products Obtained from Algal Secondary Metabolites: A Sustainable Development in Cosmeceutical Industries. Mol Biotechnol 2023:10.1007/s12033-023-00841-9. [PMID: 37603213 DOI: 10.1007/s12033-023-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Algae lay over most of the earth's habitats, and it is said that there are more algal cells in water than there are stars in the sky. They are among the wealthiest marine resources that are to be deemed harmless, with hardly any deleterious consequences. Recently, they have received a lot of consideration to be used in cosmeceuticals. Cosmetics encompass synthetic concoctions that are extremely toxic to the environment. Due to their higher molecular size, synthetic cosmetic items induce undesirable side effects and inadequate absorption rates. Consequently, utilizing algae or their secondary metabolites in cosmetics has won multiple votes. Various secondary metabolites synthesized from algae are known to provide skin advantages, such as ultraviolet protection and reduction of skin flaccidity, rough texture, and wrinkles. The tangent drawn here using algae reduces the inorganic/organic chemicals used in the industry that are known to accumulate and affect other organisms and thus opens a pandora's box of ways to a less-polluted environment. The alga is indeed very intriguing. According to the reported studies, algal cells provide biosorption, bio-assimilation, biotransformation, and biodegradation, making them suitable for the eradication of chronic and harmful contaminants from the environment. Another rapid innovation is the product's sustainability. While presenting and marketing new algal products, cosmetics producers have greatly highlighted that they are eco-friendly. This review thus accentuates the significance of using algae and their secondary metabolites in cosmetics to produce extensive variety of products that include sunscreens, moisturizers, anti-aging creams, colorants, and hair care items and extensive insight on the possible remedial capacities of algae species against environmentally dangerous substances in the context of cosmetic chemicals.
Collapse
Affiliation(s)
- Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashita Sharma
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Thakran
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anurag Mishra
- Department of Science and Technology, New Delhi, 110030, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
4
|
Tzima S, Georgiopoulou I, Louli V, Magoulas K. Recent Advances in Supercritical CO 2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023; 28:molecules28031410. [PMID: 36771076 PMCID: PMC9920624 DOI: 10.3390/molecules28031410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Supercritical CO2 extraction is a green method that combines economic and environmental benefits. Microalgae, on the other hand, is a biomass in abundance, capable of providing a vast variety of valuable compounds, finding applications in the food industry, cosmetics, pharmaceuticals and biofuels. An extensive study on the existing literature concerning supercritical fluid extraction (SFE) of microalgae has been carried out focusing on carotenoids, chlorophylls, lipids and fatty acids recovery, as well as the bioactivity of the extracts. Moreover, kinetic models used to describe SFE process and experimental design are included. Finally, biomass pretreatment processes applied prior to SFE are mentioned, and other extraction methods used as benchmarks are also presented.
Collapse
|
5
|
Liu S, Rouquié C, Lavenant L, Frappart M, Couallier E. Coupling bead-milling and microfiltration for the recovery of lipids and proteins from Parachlorella kessleri: Impact of the cell disruption conditions on the separation performances. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
NaCl precleaning of microfiltration membranes fouled with oil-in-water emulsions: Impact on fouling dislodgment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Cheng M, Xie X, Schmitz P, Fillaudeau L. Extensive review about industrial and laboratory dynamic filtration modules: Scientific production, configurations and performances. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Kiran BR, Venkata Mohan S. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:836. [PMID: 33919450 PMCID: PMC8143517 DOI: 10.3390/plants10050836] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.
Collapse
Affiliation(s)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India;
| |
Collapse
|
9
|
Abstract
Several microalgae species have been exploited due to their great biotechnological potential for the production of a range of biomolecules that can be applied in a large variety of industrial sectors. However, the major challenge of biotechnological processes is to make them economically viable, through the production of commercially valuable compounds. Most of these compounds are accumulated inside the cells, requiring efficient technologies for their extraction, recovery and purification. Recent improvements approaching physicochemical treatments (e.g., supercritical fluid extraction, ultrasound-assisted extraction, pulsed electric fields, among others) and processes without solvents are seeking to establish sustainable and scalable technologies to obtain target products from microalgae with high efficiency and purity. This article reviews the currently available approaches reported in literature, highlighting some examples covering recent granted patents for the microalgae’s components extraction, recovery and purification, at small and large scales, in accordance with the worldwide trend of transition to bio-based products.
Collapse
|
10
|
Nitsos C, Filali R, Taidi B, Lemaire J. Current and novel approaches to downstream processing of microalgae: A review. Biotechnol Adv 2020; 45:107650. [PMID: 33091484 DOI: 10.1016/j.biotechadv.2020.107650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Biotechnological application of microalgae cultures at large scale has significant potential in the various fields of biofuels, food and feed, cosmetic, pharmaceutic, environmental remediation and water treatment. Despite this great potential application, industrialisation of microalgae culture and valorisation is still faced with serious remaining challenges in culture scale-up, harvesting and extraction of target molecules. This review presents a general summary of current techniques for harvesting and extraction of biomolecules from microalgae, their relative merits and potential for industrial application. The cell wall composition and its impact on microalgae cell disruption is discussed. Additionally, more recent progress and promising experimental methods and studies are summarised that would allow the reader to further investigate the state of the art. A final survey of energetic assessments of the different techniques is also made. Bead milling and high-pressure homogenisation seem to give clear advantages in terms of target high value compounds extraction from microalgae, with enzyme hydrolysis as a promising emerging technique. Future industrialisation of microalgae for high scale biotechnological processing will require the establishment of universal comparison-standards that would enable easy assessment of one technique against another.
Collapse
Affiliation(s)
- Christos Nitsos
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Rayen Filali
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| | - Behnam Taidi
- LGPM, CentraleSupélec, Unierstiy of Paris Sacaly, Bât Gustave Eiffel, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France.
| | - Julien Lemaire
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université paris-Saclay, 3 rue des Rouges Terres, 51110 Pomacle, France.
| |
Collapse
|
11
|
Sarkar S, Manna MS, Bhowmick TK, Gayen K. Priority-based multiple products from microalgae: review on techniques and strategies. Crit Rev Biotechnol 2020; 40:590-607. [DOI: 10.1080/07388551.2020.1753649] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sambit Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Mriganka Sekhar Manna
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India
| |
Collapse
|
12
|
Nagarajan D, Chang JS, Lee DJ. Pretreatment of microalgal biomass for efficient biohydrogen production - Recent insights and future perspectives. BIORESOURCE TECHNOLOGY 2020; 302:122871. [PMID: 32007310 DOI: 10.1016/j.biortech.2020.122871] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Biohydrogen is a plausible alternative fuel solution for the contemporary issues regarding global warming and the steadily increasing greenhouse gas emissions, because of its high energy content and carbon-free combustion properties. Hydrogen does not exist in its natural state and the current hydrogen production technologies (steam methane reforming, water splitting) are energy-intensive, accompanied by a huge carbon footprint. Dark fermentative hydrogen production by anaerobic hydrogen-producing bacteria is a green, sustainable and emission-free pathway for hydrogen production. Microalgal biomass is considered as the third generation biofuel feedstock and is receiving academic and industrial research attention for its carbon sequestration abilities. This review discusses in detail about the pretreatment methods that could be adapted for microalgal biomass for effective biohydrogen production. Microalgal cell wall structure and the associated polymeric carbohydrates that offer certain recalcitrance are critically analyzed and future research perspectives are presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan
| |
Collapse
|
13
|
Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cross-flow filtration for the recovery of lipids from microalgae aqueous extracts: Membrane selection and performances. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zhang M, Yao L, Maleki E, Liao BQ, Lin H. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101686] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Kwan TA, Zimmerman JB. Mono- and poly-unsaturated triacylglycerol fractionation from Chlorella sp. using supercritical carbon dioxide. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Villafaña-López L, Clavijo Rivera E, Liu S, Couallier E, Frappart M. Shear-enhanced membrane filtration of model and real microalgae extracts for lipids recovery in biorefinery context. BIORESOURCE TECHNOLOGY 2019; 288:121539. [PMID: 31152954 DOI: 10.1016/j.biortech.2019.121539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
In this work, the hydrodynamic effects of rotating disk filtration (with maximum shear rates of 16,000 s-1 and 66,000 s-1) were evaluated and compared with the crossflow filtration (16,000 s-1) in the recovery of lipids from a model solution that simulates the characteristics of Parachlorella kessleri aqueous extracts. Four polymeric membranes were tested. The PAN 500 kDa membrane along with the rotating disk filtration presented the best performances for lipid concentration and coalescence. The rotating disk filtration was tested with real microalgae extracts, confirming the total lipid retention and the limited membrane fouling.
Collapse
Affiliation(s)
- Liliana Villafaña-López
- CNRS, GEPEA, Université de Nantes, 37 Boulevard de l'université, BP 406, 44602 Saint-Nazaire Cedex, France; CIATEC A.C., Centro de Innovación Aplicada en Tecnologías Competitivas, Omega 201, Col. Industrial Delta, 37545 León, Gto., Mexico
| | - Erika Clavijo Rivera
- CNRS, GEPEA, Université de Nantes, 37 Boulevard de l'université, BP 406, 44602 Saint-Nazaire Cedex, France
| | - Shuli Liu
- CNRS, GEPEA, Université de Nantes, 37 Boulevard de l'université, BP 406, 44602 Saint-Nazaire Cedex, France; ADEME, 20 avenue du Grésillé, BP90406, 49004 Angers Cedex 01, France
| | - Estelle Couallier
- CNRS, GEPEA, Université de Nantes, 37 Boulevard de l'université, BP 406, 44602 Saint-Nazaire Cedex, France.
| | - Matthieu Frappart
- CNRS, GEPEA, Université de Nantes, 37 Boulevard de l'université, BP 406, 44602 Saint-Nazaire Cedex, France
| |
Collapse
|
18
|
Hapońska M, Clavero E, Salvadó J, Farriol X, Torras C. Pilot scale dewatering of Chlorella sorokiniana and Dunaliella tertiolecta by sedimentation followed by dynamic filtration. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Hoyer J, Cotta F, Diete A, Großmann J. Bioenergy from Microalgae - Vision or Reality? CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201800007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan Hoyer
- GICON - Großmann Ingenieur Consult GmbH; Tiergartenstrasse 48 01219 Dresden Germany
| | - Fritz Cotta
- GICON - Großmann Ingenieur Consult GmbH; Tiergartenstrasse 48 01219 Dresden Germany
| | - Anja Diete
- GICON - Großmann Ingenieur Consult GmbH; Tiergartenstrasse 48 01219 Dresden Germany
| | - Jochen Großmann
- GICON - Großmann Ingenieur Consult GmbH; Tiergartenstrasse 48 01219 Dresden Germany
| |
Collapse
|
20
|
Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation. Processes (Basel) 2018. [DOI: 10.3390/pr6040028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
21
|
Gorry PL, Sánchez L, Morales M. Microalgae Biorefineries for Energy and Coproduct Production. ENERGY FROM MICROALGAE 2018. [DOI: 10.1007/978-3-319-69093-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Hoyer J, Cotta F, Diete A, Großmann J. Bioenergie aus Mikroalgen - Vision oder Wirklichkeit? CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan Hoyer
- GICON - Großmann Ingenieur Consult GmbH; Greppiner Straße 6 06766 Bitterfeld-Wolfen Deutschland
| | - Fritz Cotta
- GICON - Großmann Ingenieur Consult GmbH; Greppiner Straße 6 06766 Bitterfeld-Wolfen Deutschland
| | - Anja Diete
- GICON - Großmann Ingenieur Consult GmbH; Greppiner Straße 6 06766 Bitterfeld-Wolfen Deutschland
| | - Jochen Großmann
- GICON - Großmann Ingenieur Consult GmbH; Tiergartenstraße 48 01219 Dresden Deutschland
| |
Collapse
|
23
|
Fan J, Zheng L, Bai Y, Saroussi S, Grossman AR. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits by Metal Cations and High pH. FRONTIERS IN PLANT SCIENCE 2017; 8:1997. [PMID: 29209355 PMCID: PMC5702007 DOI: 10.3389/fpls.2017.01997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 05/31/2023]
Abstract
Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90%) at an elevated pH of the medium (pH 11) upon the addition of divalent cations such as calcium and magnesium (>5 mM). The trivalent ferric cation (at 10 mM) proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5), with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions) used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Lvhong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shai Saroussi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
24
|
‘t Lam GP, van der Kolk J, Chordia A, Vermuë MH, Olivieri G, Eppink MHM, Wijffels RH. Mild and Selective Protein Release of Cell Wall Deficient Microalgae with Pulsed Electric Field. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2017; 5:6046-6053. [PMID: 28706759 PMCID: PMC5503177 DOI: 10.1021/acssuschemeng.7b00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/08/2017] [Indexed: 05/04/2023]
Abstract
Pulsed electric field (PEF) is considered to be a very promising technology for mild cell disruption. The application of PEF for microalgae that have a rigid cell wall, however, is hampered by the presence of that rigid outer cell wall. A cell wall free mutant of C. reinhardtii was used to mimic pretreated microalgae with removed cell wall, to investigate the possibility of using PEF for protein release from microalgae. A complete release of hydrophilic proteins from the cell wall free mutants was observed whereas PEF treatment on the cell wall containing species resulted in substantially lower protein yields. Additional experiments showed that even at low energy input (0.05 kWh/kgbiomass), still about 70% of the proteins could be released with respect to bead beating as reference. These released proteins were water-soluble while the hydrophobic chlorophyll remained mainly entrapped in cell particles. SEM-analysis of these cell particles showed that PEF only opened the cells, instead of completely fragmenting them into smaller particles. These results indicate that PEF is an energy-efficient cell disruption method for selective release of water-soluble proteins, after the microalgal outer cell wall is removed. Enzymatic pretreatment to degrade the cell walls before PEF treatment was shown to be an efficient method to remove the cell wall.
Collapse
Affiliation(s)
- Gerard P. ‘t Lam
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- E-mail:
| | - Jelmer
A. van der Kolk
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Akshita Chordia
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Marian H. Vermuë
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Giuseppe Olivieri
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Dipartimento
di Ingeneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio, 80, 80125 Napoli, Italy
| | - Michel H. M. Eppink
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H. Wijffels
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Faculty
of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| |
Collapse
|