1
|
Ni X, Li J, Xiong H, Deng Z, Sun Y. Influence of fatty acid distribution on lipid metabolism and cognitive development in first-weaned mice. Food Res Int 2025; 209:116292. [PMID: 40253195 DOI: 10.1016/j.foodres.2025.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 04/21/2025]
Abstract
There are significant structural differences between breast milk fat and the fat found in existing infant formulas, and these differences may partly explain the observed variations in growth and development between breastfed and formula-fed infants. This study used mice compared three groups: a control group (mixed vegetable oil), an OPO group (vegetable oil added with OPO), and a human milk fat substitute (HMFS) group formulated to match the fatty acid composition of breast milk. Compared to the control group and OPO group, HMFS-fed mice exhibited reduced body fat content and improved cognitive abilities. Lipidomics studies revealed that these differences in HMFS mice were associated with downregulation of hepatic glycerolipids and upregulation of glycerophospholipids and sphingolipids, facilitating the delivery of long-chain polyunsaturated fatty acids to the brain. Molecular investigations confirmed that HMFS reduces body fat accumulation by inhibiting endogenous fatty acid synthesis and promoting fatty acid β-oxidation, while changes in hepatic lipid profiles result from lipid molecule synthesis and interconversion. Metataxonomic studies demonstrated that HMFS reshaped the gut microbiota, including upregulating Akkermansia and downregulating Desulfovibrio and the Firmicutes/Bacteroidetes ratio, with strong correlations observed between the change of gut microbiota and responded lipids in liver. Overall, the breast milk's unique fatty acid distribution promotes organismal growth by modulating hepatic lipid metabolism, systemic lipid circulation, and gut microbiota. These findings underscore the nutritional benefits of breast milk fat structure and provide insights for the development of next-generation infant formulas.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
3
|
Li F, Ning Y, Zhang Y, Huang H, Yuan Q, Wang X, Wei W. Positional distribution of DHA in triacylglycerols: natural sources, synthetic routes, and nutritional properties. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40111396 DOI: 10.1080/10408398.2025.2479071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is a long-chain polyunsaturated fatty acid (PUFA) present in high quantities in the mammalian brain and is a precursor of several metabolites. Clinical trials have demonstrated the benefits of dietary DHA in infants and adults. Triacylglycerols (TAGs) are the most abundant components of many natural oils, and in specific oils (e.g., fish, algal oils, etc.), they represent the main molecular form of dietary DHA. The positional distribution of DHA in the TAG glycerol backbone (sn-2 vs. sn-1/3) varied among different sources. Recent studies have shown that in human breast milk, DHA is mainly esterified at the sn-2 position (∼50% DHA of the total DHA), thus attracting research interest regarding the nutritional properties of sn-2 DHA. In this review, we summarize the different sources of TAG in natural oils with high amounts of DHA, including fish, algae, and marine mammal oils, with a focus on their positional distribution. Methods for analyzing the distribution of fatty acids in TAG of high-PUFA oils are discussed, and the lipase-catalyzed synthetic routes of specific triacylglycerols with sn-2 DHA are summarized. Furthermore, we discuss the recent research progress on the nutritional properties of DHA associated with its positional distribution on TAGs.
Collapse
Affiliation(s)
- Feng Li
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Yiren Zhang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Qingbin Yuan
- Nutrition Research Institute, Junlebao Dairy Group Co. Ltd, Shijiazhuang, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Ijaz H, Sun S. A review on preparation and application of low-calorie structured lipids in food system. Food Sci Biotechnol 2025; 34:49-64. [PMID: 39758727 PMCID: PMC11695523 DOI: 10.1007/s10068-024-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
Low-calorie structured lipids are an advanced form of functional lipids made by changing the position of fatty acids attached to the glycerol backbone. The main reason for their production is to get nutraceutical lipids. Different methods are used to synthesize low-calorie structured lipids, like chemical or enzymatic methods. Initially, these lipids are prepared by using chemical methods. Synthesis of low-calorie structured lipids using enzymes is now in demand due to several advantages like good catalytic efficiency, environmentally friendly, and moderate reaction conditions. Enzymatic interesterification is mostly used in industries to make modified lipids like low-calorie structured lipids, human milk substitutes, cocoa butter equivalents, margarine, and shortenings. This review summarizes the synthesis, uses and clinical applications of modified lipids in food systems. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01689-8.
Collapse
Affiliation(s)
- Hira Ijaz
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| | - Shangde Sun
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
5
|
Zhang Y, Fu Y, Li H, Wang X, Wang X. A systematic review on the acyl migration in enzymatic synthesis of structured lipids: Mechanisms, influencing factors, evaluation methods, and future prospects. Food Res Int 2024; 196:115140. [PMID: 39614530 DOI: 10.1016/j.foodres.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 12/01/2024]
Abstract
Structured lipids (SLs) are modified triacylglycerols with specific physicochemical or nutritional properties. Acyl migration is a universal chemical phenomenon observed during interesterification, a critical process in the enzyme-catalyzed synthesis of SLs. Acyl migration causes shifts in the positional composition of lipids that bring changes in function. Recent advances in understanding acyl migration during lipase-catalyzed interesterification reactions were systematically summarized, offering a comprehensive overview of its mechanisms and influencing factors. The current research on acyl migration has been mainly at the level of enzymatic reactions, and the evaluation methods of acyl migration degree need further exploration. It is necessary to investigate the acyl migration throughout the production of SLs. A thorough investigation into the factors influencing rates of interesterification, hydrolysis, and randomization, along with their underlying mechanisms, is imperative for the efficient development of specialized SL products.
Collapse
Affiliation(s)
- Youfeng Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Houyue Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaohan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, China.
| |
Collapse
|
6
|
Vázquez L, Pardo de Donlebún B, Gutiérrez-Guibelalde A, Chabni A, Torres CF. Structured Triacylglycerol with Optimal Arachidonic Acid and Docosahexaenoic Acid Content for Infant Formula Development: A Bio-Accessibility Study. Foods 2024; 13:2797. [PMID: 39272562 PMCID: PMC11395319 DOI: 10.3390/foods13172797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that supplementation with triacylglycerols (TAGs) with an ARA:DHA (w/w) ratio of 2:1 may be optimal for preterm infants, as presented in commercial formulas such as Formulaid™. This study explored methods to produce TAGs with a 2:1 ratio (ARA:DHA), particularly at the more bioavailable sn-2 position of the glycerol backbone. Blending and enzymatic acidolysis of microalgae oil (rich in DHA) and ARA-rich oil yielded products with the desired ARA:DHA ratio, enhancing sn-2 composition compared to Formulaid™ (1.6 for blending and 2.3 for acidolysis versus 0.9 in Formulaid™). Optimal acidolysis conditions were 45 °C, a 1:3 substrate molar ratio, 10% Candida antarctica lipase, and 4 h. The process was reproducible, and scalable, and the lipase could be reused. In vitro digestion showed that 75.5% of the final product mixture was bio-accessible, comprising 19.1% monoacylglycerols, ~50% free fatty acids, 14.6% TAGs, and 10.1% diacylglycerols, indicating better bio-accessibility than precursor oils.
Collapse
Affiliation(s)
- Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Blanca Pardo de Donlebún
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Alejandra Gutiérrez-Guibelalde
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Assamae Chabni
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Carlos F Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolas Cabrera 9, Cantoblanco Campus, Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Baloch KA, Patil U, Pudtikajorn K, Khojah E, Fikry M, Benjakul S. Lipase-Catalyzed Synthesis of Structured Fatty Acids Enriched with Medium and Long-Chain n-3 Fatty Acids via Solvent-Free Transesterification of Skipjack Tuna Eyeball Oil and Commercial Butterfat. Foods 2024; 13:347. [PMID: 38275715 PMCID: PMC10815637 DOI: 10.3390/foods13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Human milk lipids generally have the maximum long-chain fatty acids at the sn-2 position of the glycerol backbone. This positioning makes them more digestible than long-chain fatty acids located at the sn-1, 3 positions. These unique fatty acid distributions are not found elsewhere in nature. When lactation is insufficient, infant formula milk has been used as a substitute. However, the distribution of most fatty acids ininfant formula milk is still different from human milk. Therefore, structured lipids were produced by the redistribution of medium-chain fatty acids from commercial butterfat (CBF) and n-3 and n-6 long-chain fatty acids from skipjack tuna eyeball oil (STEO). Redistribution was carried out via transesterification facilitated by Asian seabass liver lipase (ASL-L). Under the optimum conditions including a CBF/STEO ratio (3:1), transesterification time (60 h), and ASL-L unit (250 U), the newly formed modified-STEO (M-STEO) contained 93.56% triacylglycerol (TAG), 0.31% diacylglycerol (DAG), and 0.02% monoacylglycerol (MAG). The incorporated medium-chain fatty acids accounted for 18.2% of M-STEO, whereas ASL-L could incorporate 40% of n-3 fatty acids and 25-30% palmitic acid in M-STEO. The 1H NMRA and 13CNMR results revealed that the major saturated fatty acid (palmitic acid) and unsaturated fatty acids (DHA and EPA) were distributed at the sn-2 position of the TAGs in M-STEO. Thus, M-STEO enriched with medium-chain fatty acids and n-3 fatty acids positioned at the sn-2 position of TAGs can be a potential substitute for human milk fatty acids in infant formula milk (IFM).
Collapse
Affiliation(s)
- Khurshid Ahmed Baloch
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Khamtorn Pudtikajorn
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia
| | - Mohammad Fikry
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Ma Q, Zhang X, Li X, Liu L, Liu S, Hao D, Bora AFM, Kouame KJEP, Xu Y, Liu W, Li J. Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants. Food Res Int 2023; 174:113574. [PMID: 37986523 DOI: 10.1016/j.foodres.2023.113574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Differences in the composition and structure of lipid droplets in infant formula (IF) and human milk (HM) can affect the fat digestion of infants, leading to high risk of metabolic diseases during later stages of growth. Recently, interest in simulating HM fat (HMF) has gradually increased due to its beneficial functions for infants. Much research focuses on the simulation of fatty acids and triacylglycerols. Enzymatic combined with new technologies such as carbodiimide coupling immobilization enzymes, solvent-free synthesis, and microbial fermentation can improve the yield of simulated HMF. Furthermore, fat modification in next-generation IF requires attention to the impact on the structure and function of milk fat globules (MFG). This review also summarizes the latest reports on MFG structure simulation, mainly related to the addition method and sequence of membrane components, and other milk processing steps. Although some of the simulated HMF technologies and products have been applied to currently commercially available IF, the cost is still high. Furthermore, understanding the fat decomposition of simulated HMF during digestion and assessing its nutritional effects on infants later in life is also a huge challenge. New process development and more clinical studies are needed to construct and evaluate simulated HMF in the future.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanling Xu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Wenli Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, Harbin 150010, China
| |
Collapse
|
9
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
10
|
De Bhowmick G, Guieysse B, Everett DW, Reis MG, Thum C. Novel source of microalgal lipids for infant formula. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Progress and perspectives of enzymatic preparation of human milk fat substitutes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:118. [PMCID: PMC9635142 DOI: 10.1186/s13068-022-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Human milk fat substitutes (HMFS) with triacylglycerol profiles highly similar to those of human milk fat (HMF) play a crucial role in ensuring the supply in infant nutrition. The synthesis of HMFS as the source of lipids in infant formula has been drawing increasing interest in recent years, since the rate of breastfeeding is getting lower. Due to the mild reaction conditions and the exceptionally high selectivity of enzymes, lipase-mediated HMFS preparation is preferred over chemical catalysis especially for the production of lipids with desired nutritional and functional properties. In this article, recent researches regarding enzymatic production of HMFS are reviewed and specific attention is paid to different enzymatic synthetic route, such as one-step strategy, two-step catalysis and multi-step processes. The key factors influencing enzymatic preparation of HMFS including the specificities of lipase, acyl migration as well as solvent and water activity are presented. This review also highlights the challenges and opportunities for further development of HMFS through enzyme-mediated acylation reactions.
Collapse
|
12
|
Liu W, Luo X, Tao Y, Huang Y, Zhao M, Yu J, Feng F, Wei W. Ultrasound enhanced butyric acid-lauric acid designer lipid synthesis: Based on artificial neural network and changes in enzymatic structure. ULTRASONICS SONOCHEMISTRY 2022; 88:106100. [PMID: 35908344 PMCID: PMC9340510 DOI: 10.1016/j.ultsonch.2022.106100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound is a green technology for intensifying enzymatic reactions. In this study, an ultrasonic water bath with equipment parameters of 28 kHz, 1750.1 W/m2, 60% duty cycle was used to assist the synthesis of butyric acid-lauric acid designer lipid (BLDL), which was catalyzed by Lipozyme 435. A convincing three-layer feed-forward artificial neural network (ANN) model was established (R2 = 0.949, RMSE = 4.759, ADD = 7.329) to accurately predict the optimal parameters combination, which was described as 13.72 mL reaction volume, 15.49% enzyme loading, 0.253 substrate molar ratio (tributyrin/lauric acid), 56.58 °C reaction temperature and 120 min reaction time. The ultrasonic assistance increased actual butyric acid conversion rate by 11.38%, and also enhanced the consumption rate of tributyrin and lauric acid during the reaction. Meanwhile, the esterification activity of Lipozyme 435 was enhanced and its effectiveness up to 6 cycles. Structurally, ultrasound assistance significantly disrupted the secondary structure of the Lipozyme 435: reduced the content of α-helices, increased the content of β-sheet and β-turn. In addition, sonication caused an increase in crevice and micro-damage on the surface of the immobilized enzyme. In conclusion, low-intensity ultrasound at 28 kHz improved the synthesis efficiency of BLDL, which was scientifically predicted by ANN model, and the change of enzyme structure may be the vital reason for ultrasound enhanced reaction. However, the effect of ultrasound on immobilized enzymes' activity needs to be further explored.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Yu
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; ZhongYuan Institute, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wei
- State Key Lab of Food Science and Technology and Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Chen M, Yang C, Deng L, Wang F, Liu J. Production of 1, 3- medium chain-2-long chain (MLM) triacylglycerols by metabolically engineered Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Preparation of Human Milk Fat Substitutes: A Review. Life (Basel) 2022; 12:life12020187. [PMID: 35207476 PMCID: PMC8874823 DOI: 10.3390/life12020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human milk is generally regarded as the best choice for infant feeding. Human milk fat (HMF) is one of the most complex natural lipids, with a unique fatty acid composition and distribution and complex lipid composition. Lipid intake in infants not only affects their energy intake but also affects their metabolic mode and overall development. Infant formula is the best substitute for human milk when breastfeeding is not possible. As the main energy source in infant formula, human milk fat substitutes (HMFSs) should have a composition similar to that of HMF in order to meet the nutritional needs of infant growth and development. At present, HMFS preparation mainly focuses on the simulation of fatty acid composition, the application of structured lipids and the addition of milk fat globule membrane (MFGM) supplements. This paper first reviews the composition and structure of HMF, and then the preparation development of structured lipids and MFGM supplements are summarized. Additionally, the evaluation and regulation of HMFSs in infant formula are also presented.
Collapse
|
15
|
|
16
|
Qiu C, He Y, Huang Z, Qiu W, Huang J, Wang M, Chen B. Biosafety evaluation of Nannochloropsis oculata and Schizochytrium sp. oils as novel human milk fat substitutes. Food Funct 2021; 12:2972-2984. [PMID: 33690766 DOI: 10.1039/d0fo03000g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biosafety assessment of novel human milk fat substitutes (HMFs) from microalgae oils of Nannochloropsis oculata and Schizochytrium sp. was evaluated by testing the cytotoxic activity using IEC-6 cells, and by conducting a sub-chronic 28-day dietary study using Sprague-Dawley (SD) suckling rats in this study. The results of the cytotoxic activity of IEC-6 cells treated with HMFs showed no apparent effect on cell viability at the tested concentrations (0-1000 μg mL-1). For the 28-day sub-chronic study, five rat dietary feeds with 7.5% fat were designed to have the DHA content in the range from 0 to 2.0% using corn oil as a basal oil. After the 28-day treatment, SD rats fed HMFs did not show toxicity signs and adverse effects, based on the results of clinical observation, body weight, food consumption, behavior, hematology, clinical chemistry, and necropsy findings. These results could lead to the conclusion that the inclusion of the new synthesized HMFs into the pre-weaning SD rat diet was acceptable for SD rats and did not exhibit toxic characteristics and adverse features, indicating that the HMFs from microalgal oils were safe and had the potential to be used as a promising feedstock in infant formula.
Collapse
Affiliation(s)
- Changyang Qiu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kanno Mathias D, Piazentin Costa J, Rodrigues Calvo C, Claro da Silva R, Converti A, Segura N, Jachmanián I, Gioielli LA, Neves Rodrigues Ract J. Incorporation of Caprylic Acid into a Single Cell Oil Rich in Docosahexaenoic Acid for the Production of Specialty Lipids. Food Technol Biotechnol 2021; 58:411-422. [PMID: 33505204 PMCID: PMC7821774 DOI: 10.17113/ftb.58.04.20.6546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background New sources of docosahexaenoic acid have recently been investigated aiming at infant formula fortification and dietary supplementation, among which the single cell oil with 40-50% of this acid. Experimental approach For this purpose, such an oil was blended with caprylic acid in amount substance ratio ranging from 1:1 to 5:1 and the blends were interesterified using either Novozym 435 or Lipozyme TL IM as the catalyst. The influence of the amount of excess free caprylic acid in the substrate, as well as the type of enzyme on the triacylglycerol rearrangement resulting from the synthesis of the structured lipids were evaluated. Results and conclusions The regiospecific lipase Lipozyme TL IM seemed to induce transesterification among single cell oil triacylglycerols preferably by acidolysis with caprylic acid, which was directly proportional to the ratio of this acid in the substrate. In reactions catalyzed by the non-regiospecific lipase Novozym 435, a higher incorporation of caprylic acid into single cell oil triacylglycerols was observed than when using Lipozyme TL IM, independently of the oil/caprylic acid molar ratio. Novelty and scientific contribution These results revealed the importance of combining the choice of the type of lipase, either regiospecific or not, with the amount ratios of free fatty acids and the substrate in acidolysis when aiming to produce structured lipids as a source of docosahexaenoic acid.
Collapse
Affiliation(s)
- Daniela Kanno Mathias
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, Brazil
| | - Jacqueline Piazentin Costa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, Brazil
| | - Carolina Rodrigues Calvo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, Brazil
| | - Roberta Claro da Silva
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 E. Market Street, NC 27411 Greensboro, USA
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145 Genoa, Italy
| | - Nadia Segura
- Department of Food Science and Technology, School of Chemistry, University of the Republic (UDELAR), Av. Gral Flores 2124, Casilla de Correos 1157, 11800 Montevideo, Uruguay
| | - Iván Jachmanián
- Department of Food Science and Technology, School of Chemistry, University of the Republic (UDELAR), Av. Gral Flores 2124, Casilla de Correos 1157, 11800 Montevideo, Uruguay
| | - Luiz Antonio Gioielli
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, Brazil
| | - Juliana Neves Rodrigues Ract
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, Brazil
| |
Collapse
|
18
|
Sivakanthan S, Madhujith T. Current trends in applications of enzymatic interesterification of fats and oils: A review. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Guo Y, Cai Z, Xie Y, Ma A, Zhang H, Rao P, Wang Q. Synthesis, physicochemical properties, and health aspects of structured lipids: A review. Compr Rev Food Sci Food Saf 2020; 19:759-800. [PMID: 33325163 DOI: 10.1111/1541-4337.12537] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.
Collapse
Affiliation(s)
- Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanping Xie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aiqin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, P. R. China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
20
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
21
|
Qiu C, He Y, Huang Z, Li S, Huang J, Wang M, Chen B. Lipid extraction from wet Nannochloropsis biomass via enzyme-assisted three phase partitioning. BIORESOURCE TECHNOLOGY 2019; 284:381-390. [PMID: 30959375 DOI: 10.1016/j.biortech.2019.03.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
A green and efficient enzyme assisted three phase partitioning (EA-TPP) process was firstly developed to extract microalgal lipids using wet Nannochloropsis sp. biomass. In the pretreatment of microalgal biomass by four hydrolytic enzymes, TPP obtained a higher TFAs lipid extraction efficiency by cellulase compared with the resting enzymes. After optimization by EA-TPP of the wet disrupted Nannochloropsis biomass (3 g), the maximum TFAs extraction yield (90.40%) was attained at 20% ammonium sulphate, 6-7 pH, 1:2 slurry/tert-butanol ratio and 70 °C for 2 h incubation time and two extraction cycles. Moreover, results also revealed that the lipidic species compositions of Nannochloropsis sp. biomass were greatly related with the EA-TPP parameters. In the laboratory scale for wet disrupted microalgae biomass, EA-TPP process achieved 88.70% TFAs extraction yield under the optimized conditions. In all, EA-TPP process could be a promising approach to extract microalgae lipids for food application using wet microalgae biomass.
Collapse
Affiliation(s)
- Changyang Qiu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People's Republic of China, Beijing 100081, China
| | - Zicheng Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofeng Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jian Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
22
|
Tecelão C, Perrier V, Dubreucq E, Ferreira‐Dias S. Production of Human Milk Fat Substitutes by Interesterification of Tripalmitin with Ethyl Oleate Catalyzed by
Candida parapsilosis
Lipase/Acyltransferase. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carla Tecelão
- MARE—Marine and Environmental Sciences Centre, ESTMInstituto Politécnico de Leiria, 2520‐641 Peniche Portugal
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and FoodUniversidade de Lisboa, Tapada da Ajuda, 1349‐017 Lisbon Portugal
| | - Véronique Perrier
- Montpellier SupAgro, UMR 1208 IATE, 2 Place Viala, F‐34060 Montpellier cedex France
| | - Eric Dubreucq
- Montpellier SupAgro, UMR 1208 IATE, 2 Place Viala, F‐34060 Montpellier cedex France
| | - Suzana Ferreira‐Dias
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and FoodUniversidade de Lisboa, Tapada da Ajuda, 1349‐017 Lisbon Portugal
| |
Collapse
|
23
|
Chen H, Li T, Wang Q. Ten years of algal biofuel and bioproducts: gains and pains. PLANTA 2019; 249:195-219. [PMID: 30603791 DOI: 10.1007/s00425-018-3066-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 05/09/2023]
Abstract
It has been proposed that future efforts should focus on basic studies, biotechnology studies and synthetic biology studies related to algal biofuels and various high-value bioproducts for the economically viable production of algal biof uels. In recognition of diminishing fossil fuel reserves and the worsening environment, microalgal biofuel has been proposed as a renewable energy source with great potential. Algal biofuel thus became one of the hottest topics in renewable energy research in the new century, especially over the past decade. Between 2007 and 2017, research related to microalgal biofuels experienced a dramatic, three-stage development, rising, growing exponentially, and then declining rapidly due to overheating of the subject. However, biofuel-driven algal biotechnology and bioproducts research has been thriving since 2010. To clarify the gains (and pains) of the past decade and detail prospects for the future, this review summarizes the extensive scientific progress and substantial technical advances in algal biofuel over the past decade, covering basic biology, applied research, as well as the production of value-added natural products. Even after 10 years of hard work and billions of dollars in investments, its unacceptably high cost remains the ultimate bottleneck for the industrialization of algal biofuel. To maximize the total research benefits, both economically and socially, it has been proposed that future efforts should focus on basic studies to characterize oilgae, on biotechnology studies into various high-value bioproducts. Moreover, the development of synthetic biology provides new possibilities for the economically viable production of biofuels via the directional manufacture of microalgal bioproducts in algal cell factories.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China.
- University of the Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
24
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
25
|
He Y, Wu T, Sun H, Sun P, Liu B, Luo M, Chen F. Comparison of fatty acid composition and positional distribution of microalgae triacylglycerols for human milk fat substitutes. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Sun P, Wong CC, Li Y, He Y, Mao X, Wu T, Ren Y, Chen F. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis. Food Chem 2018; 277:566-572. [PMID: 30502186 DOI: 10.1016/j.foodchem.2018.10.133] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022]
Abstract
In this study, the microalga Nitzschia laevis (N. laevis) can accumulate a marine carotenoid fucoxanthinol. In particular, fucoxanthinol was firstly isolated from microalgae, accompanied by its derivative fucoxanthin. The identification and quantification of fucoxanthinol and fucoxanthin were determined by ultra-performance liquid chromatography coupled to photodiode array detector-quadrupole/travelling-wave ion mobility mass spectrometry/time-of-flight mass spectrometry (UPLC-PDA-TWIMS-QTOF-MS). Furthermore, a cost-effective approach mediated with solid-phase extraction (SPE) and thin-layer chromatography (TLC) technique was used to isolate and purify fucoxanthinol and fucoxanthin from the extracts of N. laevis. This two-step method can obtain 98% fucoxanthinol and 95% fucoxanthin, with the recovery efficiencies of around 85% for fucoxanthinol and 70% for fucoxanthin, respectively. Moreover, 1H and 13C nuclear magnetic resonance (NMR) techniques were adopted to record the purified compounds for supporting the above results. In all, the developed method has a promising potential to purify fucoxanthinol and fucoxanthin of microalgae for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Peipei Sun
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chi-Chun Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yuelian Li
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongjin He
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Ren
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Sforza E, Calvaruso C, La Rocca N, Bertucco A. Luxury uptake of phosphorus in Nannochloropsis salina : Effect of P concentration and light on P uptake in batch and continuous cultures. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Moomaw W, Berzin I, Tzachor A. Cutting Out the Middle Fish: Marine Microalgae as the Next Sustainable Omega-3 Fatty Acids and Protein Source. Ind Biotechnol (New Rochelle N Y) 2017. [DOI: 10.1089/ind.2017.29102.wmo] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- William Moomaw
- Fletcher School of Law and Diplomacy, Tufts University, Boston, MA
| | | | - Asaf Tzachor
- Department of Science, Technology, Engineering and Public Policy, University College London, London, United Kingdom
| |
Collapse
|