1
|
Liu Z, Hao N, Hou Y, Wang Q, Liu Q, Yan S, Chen F, Zhao L. Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2023; 387:129631. [PMID: 37544545 DOI: 10.1016/j.biortech.2023.129631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are emerging as a promising source for augmenting the supply of essential products to meet global demands in an environmentally sustainable manner. Despite the potential benefits of microalgae in industry, the high energy consumption for harvesting remains a significant obstacle. This review offers a comprehensive overview of microalgae harvesting technologies and their industrial applications, with particular emphasis on the latest advances in flocculation techniques. These cutting-edge methods have been applied to biodiesel production, food and nutraceutical processing, and wastewater treatment. Large-scale harvesting is still severely impeded by the high cost despite progress has been made in laboratory studies. In the future, cost-effective microalgal harvesting will rely on efficient resource utilization, including the use of waste materials and the reuse of media and flocculants. Additionally, precise regulation of biological metabolism will be necessary to overcome algal species-related limitations through the development of extracellular polymeric substance-induced flocculation technology.
Collapse
Affiliation(s)
- Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Nahui Hao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyong Hou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qing Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qingling Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
2
|
Zhao D, Fu C, Lin S, Xu Y, He H, Liu S, Shi X. Lead-imprinted polyvinylidene fluoride membrane for selective removal of lead from contaminated water: material fabrication, filtration application, and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94195-94204. [PMID: 37526830 DOI: 10.1007/s11356-023-28569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
The drinking water has become contaminated with lead in many countries across the world. In this study, a novel lead-imprinted polyvinylidene fluoride (PVDF) membrane was successfully fabricated for selective decontamination of lead from water. First of all, the membrane fabrication process was explored and optimized. The physical and chemical properties were then studied for a better understanding of the features of the membrane. The performance of lead removal by the adsorptive membrane was evaluated by systematic batch adsorption experiments, including pH effect, kinetics, isotherm, selectivity, and regeneration studies. The results indicated that the adsorptive membrane showed a high adsorption capacity of 40.59 mg Pb/g at the optimal pH of 5.5, fast kinetics of 2 h, high selectivity towards lead, and outstanding regeneration performance. The Langmuir equation fitted the isotherm better than the Freundlich equation, while the pseudo-second-order model and pore diffusion model well described the kinetics. The adsorptive membrane showed high selectivity towards lead in the lead/zinc binary solution. In the continuous filtration study, a small piece of adsorptive membrane could treat 3.75 L of lead solution. The XPS studies revealed that the lead uptake was mainly due to the complex reaction between lead and carboxyl and hydroxyl in the membrane.
Collapse
Affiliation(s)
- Dandan Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Chen Fu
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Sudan Lin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Yongzhi Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Haoran He
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Siyuan Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China.
| |
Collapse
|
3
|
Li W, Zhang Y, Hu Y, Luo S, Wu X, Liu Y, Min A, Ruan R. Harvesting Chlorella vulgaris by electro-flotation with stainless steel cathode and non-sacrificial anode. BIORESOURCE TECHNOLOGY 2022; 363:127961. [PMID: 36113816 DOI: 10.1016/j.biortech.2022.127961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
As a promising method for efficiently harvesting microalgae, electro-flotation's performance is related to various factors including electrode design and process operating parameters. In this paper, bubble generation behavior on stainless-steel cathodes, with wire diameters of 0.8 mm, 0.2 mm and 0.05 mm, was studied. The results show that the bubble size increased with the increasing diameter of the electrode wire. Over 90 % harvesting efficiency was achieved using non-sacrificial anode. Extracellular polymeric substance is the main reason keeping bubbles from bursting.
Collapse
Affiliation(s)
- Wenkui Li
- Jiangxi Provincial Key Laboratory of Surface Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yali Zhang
- Jiangxi Provincial Key Laboratory of Surface Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yue Hu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shanshan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and MOE Biomass Energy Center, Nangchang University, Nanchang 330013, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and MOE Biomass Energy Center, Nangchang University, Nanchang 330013, China
| | - Andy Min
- Center for Biorefining, and Bioproducts and Biosystems Engineering Department, University of Minnesota, 1390 Eckles Ave., Saint Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining, and Bioproducts and Biosystems Engineering Department, University of Minnesota, 1390 Eckles Ave., Saint Paul, MN 55108, USA.
| |
Collapse
|
4
|
Qi S, Chen J, Hu Y, Hu Z, Zhan X, Stengel DB. Low energy harvesting of hydrophobic microalgae (Tribonema sp.) by electro-flotation without coagulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155866. [PMID: 35568179 DOI: 10.1016/j.scitotenv.2022.155866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgae have great potential for biofuel production and wastewater treatment, but the high cost of harvesting hinders their practical application. In this study, economical harvesting of hydrophobic microalgae by electro-flotation without coagulation was assessed. The harvesting performance of this method for selected species of freshwater microalgae with different degrees of hydrophobicity (Tribonema sp., highly hydrophobic; Scenedesmus sp., moderately hydrophobic; and Pandorina sp., hydrophilic) were compared. It was found that microalgal hydrophobicity played a critical role in electro-flotation. Under the same condition (current 0.3 A, velocity gradient 200 s-1, biomass concentration 1 g/L), Tribonema sp. could be effectively harvested (96.2 ± 0.4%) after 20 min of electro-flotation, while the harvesting efficiency decreased significantly with Scenedesmus sp. (70.1 ± 5.2%, 20 min) and Pandorina sp. (<10%, 1 h). The influences of current, electrolysis time, mixing intensity (velocity gradient) and biomass concentration on Tribonema sp. (hydrophobic) harvesting were further investigated. Increasing the current within a certain range (0.1 A-0.4 A) was beneficial to harvesting, while it's further increase decreased floating velocity, which was similar to the effect of the velocity gradient. Under the optimal condition, the harvesting efficiency of Tribonema sp. was 96.3% and the energy consumption (0.19 kWh/kg biomass) was much lower than other harvesting techniques, indicating that electro-flotation is a time-saving and economical approach for hydrophobic microalgae harvesting.
Collapse
Affiliation(s)
- Shasha Qi
- Civil Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland; School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Jingrou Chen
- Civil Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Yuansheng Hu
- Civil Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland; Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland; Ryan Institute, National University of Ireland Galway, Galway, Ireland; MaREI Research Centre, National University of Ireland Galway, Galway, Ireland.
| | - Dagmar B Stengel
- Ryan Institute, National University of Ireland Galway, Galway, Ireland; Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
The Biological Performance of a Novel Electrokinetic-Assisted Membrane Photobioreactor (EK-MPBR) for Wastewater Treatment. MEMBRANES 2022; 12:membranes12060587. [PMID: 35736294 PMCID: PMC9228305 DOI: 10.3390/membranes12060587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Developing an effective phycoremediation system, especially by utilizing microalgae, could provide a valuable approach in wastewater treatment for simultaneous nutrient removal and biomass generation, which would help control environmental pollution. This research aims to study the impact of low-voltage direct current (DC) application on Chlorella vulgaris properties and the removal efficiency of nutrients (N and P) in a novel electrokinetic-assisted membrane photobioreactor (EK-MPBR) in treating synthetic municipal wastewater. Two membrane photobioreactors ran in parallel for 49 days with and without an applied electric field (current density: 0.261 A/m2). Mixed liquid suspended soils (MLSS) concentration, chemical oxygen demand (COD), floc morphology, total phosphorus (TP), and total nitrogen (TN) removals were measured during the experiments. The results showed that EK-MPBR achieved biomass production comparable to the control MPBR. In EK-MPBR, an over 97% reduction in phosphate concentration was achieved compared to 41% removal in the control MPBR. The control MPBR outperformed the nitrogen removal of EK-MPBR (68% compared to 43% removal). Induced DC electric field led to lower pH, lower zeta potential, and smaller particle sizes in the EK-MPBR as compared with MPBR. The results of this novel study investigating the incorporation of Chlorella vulgar is in an electrokinetic-assisted membrane photobioreactor indicate that this is a promising technology for wastewater treatment.
Collapse
|
6
|
Lucakova S, Branyikova I, Kovacikova S, Masojidek J, Ranglova K, Branyik T, Ruzicka MC. Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study. BIORESOURCE TECHNOLOGY 2022; 351:126996. [PMID: 35292383 DOI: 10.1016/j.biortech.2022.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The most frequently used method to harvest microalgae on an industrial scale is centrifugation, although this has very high energy costs. To reduce these costs, a continuous electrocoagulation process for harvesting Chlorella vulgaris was developed and tested using a pilot-scale 111 L working volume device consisting of an electrolyser with iron electrodes, aggregation channel and lamellar settler. The flow rate of the microalgal suspension through the device was 240 L/h. When using controlled cultivation and subsequent electrocoagulation, a high harvesting efficiency (above 85%), a low Fe contamination in the harvested biomass (<4 mg Fe/g dry biomass, a harvested biomass complied with legislative requirements for food) and significant energy savings were achieved. When comparing electrocoagulation and subsequent centrifugation with the use of centrifugation alone, energy savings were 80 % for a biomass harvesting concentration of 0.23 g/L. Electrocoagulation was thus proven to be a feasible pre-concentration method for harvesting microalgae.
Collapse
Affiliation(s)
- Simona Lucakova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic; Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Irena Branyikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic.
| | - Sara Kovacikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| | - Jiri Masojidek
- Institute of Microbiology of the Czech Academy of Sciences, Novohradska 237 - Opatovicky mlyn, Trebon 379 01, Czech Republic
| | - Karolina Ranglova
- Institute of Microbiology of the Czech Academy of Sciences, Novohradska 237 - Opatovicky mlyn, Trebon 379 01, Czech Republic
| | - Tomas Branyik
- Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marek C Ruzicka
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| |
Collapse
|
7
|
Min KH, Kim DH, Ki MR, Pack SP. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. BIORESOURCE TECHNOLOGY 2022; 344:126404. [PMID: 34826566 DOI: 10.1016/j.biortech.2021.126404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgal research has made significant progress in terms of the high-value-added industrial application of microalgal biomass and its derivatives. However, cost-effective techniques for producing, harvesting, and processing microalgal biomass on a large scale still need to be fully explored in order to optimize their performance and achieve commercial robustness. In particular, technologies for harvesting microalgae are critical in the practical process as they require excessive energy and equipment costs. This review focuses on microalgal flocculation, dewatering, and drying techniques and specifically covers the traditional approaches and recent technological progress in harvesting microalgal biomass. Several aspects, including the characteristics of the target microalgae and the type of final value-added products, must be considered when selecting the appropriate harvesting technique. Furthermore, considerable aspects and possible future directions in flocculation, dewatering, and drying steps are proposed to develop scalable and low-cost microalgal harvesting systems.
Collapse
Affiliation(s)
- Ki Ha Min
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
8
|
Visigalli S, Barberis MG, Turolla A, Canziani R, Berden Zrimec M, Reinhardt R, Ficara E. Electrocoagulation–flotation (ECF) for microalgae harvesting – A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Laamanen C, Desjardins S, Senhorinho G, Scott J. Harvesting microalgae for health beneficial dietary supplements. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Lucakova S, Branyikova I, Kovacikova S, Pivokonsky M, Filipenska M, Branyik T, Ruzicka MC. Electrocoagulation reduces harvesting costs for microalgae. BIORESOURCE TECHNOLOGY 2021; 323:124606. [PMID: 33385625 DOI: 10.1016/j.biortech.2020.124606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Centrifugation is the most commonly used method for harvesting autotrophically produced microalgae, but it is expensive due to high energy demands. With the aim of reducing these costs, we tested electrocoagulation with iron electrodes for harvesting Chlorella vulgaris. During extensive lab-scale experiments, the following factors were studied to achieve a high harvesting efficiency and a low iron content in the harvested biomass: electric charge, initial biomass concentration, pH, temperature, agitation intensity, residual salt content and electrolysis time. A harvesting efficiency greater than 95% was achieved over a broad range of conditions and the residual iron content in the biomass complied with legislative requirements for food. Using electrocoagulation as the pre-concentration step prior to centrifugation, total energy costs were reduced to 0.136 kWh/kg of dry biomass, which is less than 14% of that for centrifugation alone. Our data show that electrocoagulation is a suitable and cost-effective method for harvesting microalgae.
Collapse
Affiliation(s)
- Simona Lucakova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic; Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Irena Branyikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic.
| | - Sara Kovacikova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| | - Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague 6 166 12, Czech Republic
| | - Monika Filipenska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, Prague 6 166 12, Czech Republic
| | - Tomas Branyik
- Department of Biotechnology, University of Chemistry and Technology, Technicka 5, Prague 6 166 28, Czech Republic
| | - Marek C Ruzicka
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, Prague 6 165 02, Czech Republic
| |
Collapse
|
11
|
Zou S, Wang S, Zhong H, Qin W. Hydrophobic agglomeration of rhodochrosite fines in aqueous suspensions with sodium oleate. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Microalgal Biomass Generation via Electroflotation: A Cost-Effective Dewatering Technology. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae are an excellent source of bioactive compounds for the production of a wide range of vital consumer products in the biofuel, pharmaceutical, food, cosmetics, and agricultural industries, in addition to huge upstream benefits relating to carbon dioxide biosequestration and wastewater treatment. However, energy-efficient, cost-effective, and scalable microalgal technologies for commercial-scale applications are limited, and this has significantly impacted the full-scale implementation of microalgal biosystems for bioproduct development, phycoremediation, and biorefinery applications. Microalgae culture dewatering continues to be a major challenge to large-scale biomass generation, and this is primarily due to the low cell densities of microalgal cultures and the small hydrodynamic size of microalgal cells. With such biophysical characteristics, energy-intensive solid–liquid separation processes such as centrifugation and filtration are generally used for continuous generation of biomass in large-scale settings, making dewatering a major contributor to the microalgae bioprocess economics. This article analyzes the potential of electroflotation as a cost-effective dewatering process that can be integrated into microalgae bioprocesses for continuous biomass production. Electroflotation hinges on the generation of fine bubbles at the surface of an electrode system to entrain microalgal particulates to the surface. A modification of electroflotation, which combines electrocoagulation to catalyze the coalescence of microalgae cells before gaseous entrainment, is also discussed. A technoeconomic appraisal of the prospects of electroflotation compared with other dewatering technologies is presented.
Collapse
|
13
|
Liu W, Cui Y, Cheng P, Huo S, Ma X, Chen Q, Cobb K, Chen P, Ma J, Gao X, Ruan R. Microwave assisted flocculation for harvesting of Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2020; 314:123770. [PMID: 32652448 DOI: 10.1016/j.biortech.2020.123770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Microalgae harvesting is a major hindrance for the development of the microalgae industry. In this paper, short microwave treatment was used to assist the flocculation of Chlorella vulgaris with three flocculants, Fe3+ (FeCl3), chitosan, and Ca2+ (CaCl2). A microwave irradiation time of 20 s, and a pH of 10 was found to be the optimum condition. The harvesting efficiency could be significantly increased by 43.2%, 49.5% and 39.6%, respectively for Fe3+, chitosan, and Ca2+ assisted by microwave under these conditions. Microwave treatment did not cause any damage to the algal cells, and had no obvious influence on the lipid extraction. Microwave treatment decreased the concentration of the flocculants in culture medium after flocculation; this treatment enabled the reuse of the supernatant. This study provides a new and promising method of improving the flocculation efficiency for microalgae harvesting, by using microwave energy.
Collapse
Affiliation(s)
- Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China; Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Yunqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Pengfei Cheng
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochen Ma
- Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Qingfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China
| | - Kirk Cobb
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Paul Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Junjian Ma
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China
| | - Xinguo Gao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
14
|
Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, Show PL. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2020; 11:116-129. [PMID: 31909681 PMCID: PMC6999644 DOI: 10.1080/21655979.2020.1711626] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
Collapse
Affiliation(s)
- Jia Sen Tan
- Department of Biotechnology, Faculty of Applied Science, UCSI University, Kuala Lumpur, Malaysia
| | - Sze Ying Lee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Kajang, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak, Malaysia.,Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia.,Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
15
|
Lu W, Asraful Alam M, Liu S, Xu J, Parra Saldivar R. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO 2 from livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135247. [PMID: 31839294 DOI: 10.1016/j.scitotenv.2019.135247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Development of renewable and clean energy as well as bio-based fine chemicals technologies are the keys to overcome the problems such as fossil depletion, global warming, and environment pollution. To date, cultivation of microalgae using wastewater is regarded as a promising approach for simultaneous nutrients bioremediation and biofuels production due to their high photosynthesis efficiency and environmental benefits. However, the efficiency of nutrients removal and biomass production strongly depends on wastewater properties and microalgae species. Moreover, the high production cost is still the largest limitation to the commercialization of microalgae biofuels. In this review paper, the state-of-the-art algae species employed in livestock farm wastes have been summarized. Further, microalgae cultivation systems and impact factors in livestock wastewater to microalgae growth have been thoroughly discussed. In addition, technologies reported for microalgal biomass harvesting and CO2 mass transfer enhancement in the coupling process were presented and discussed. Finally, this article discusses the potential benefits and challenges of coupling nutrient bioremediation, CO2 capture, and microalgal production. Possible engineering measures for cost-effective nutrients removal, carbon fixation, microalgal biofuels and bioproducts production are also proposed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China; Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Jinliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Roberto Parra Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| |
Collapse
|
16
|
Wu X, Cen Q, Addy M, Zheng H, Luo S, Liu Y, Cheng Y, Zhou W, Chen P, Ruan R. A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment. BIORESOURCE TECHNOLOGY 2019; 292:121925. [PMID: 31442835 DOI: 10.1016/j.biortech.2019.121925] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 05/09/2023]
Abstract
This study developed a high-efficiency algal biofilm photobioreactor for microalgae by designing a special array of curtain membrane components. This paper also discusses the growth and nutrient composition of Chlorella vulgaris, and hog manure wastewater utilization and purification. It was found that after about 5 days of culture, the biomass of C. vulgaris on the membrane could reach as high as 7.37 g/m2 and the algae were easily harvested by mechanical scraping. The lipid content of C. vulgaris on the membrane structure was 10.17% while the lipid content of the algae in suspension was 14.29%. The light intensity showed a significant effect on the fatty acid composition. The C. vulgaris grew very well, and achieved deep purification of the hog manure wastewater; the COD, TP, TN, and NH4+-N removal rates reached 95.67%, 64.40%, 69.55%, and 91.24%, respectively.
Collapse
Affiliation(s)
- Xiaodan Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qingjing Cen
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Min Addy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Hongli Zheng
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shanshan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Wenguang Zhou
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
17
|
Luo S, Wu X, Jiang H, Yu M, Liu Y, Min A, Li W, Ruan R. Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation. BIORESOURCE TECHNOLOGY 2019; 282:325-330. [PMID: 30877913 DOI: 10.1016/j.biortech.2019.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Conventional flocculants, commonly used to improve harvesting efficiency, can contaminate the broth and cause microalgae not suitable for food or feed production. In the present study, Pleurotus ostreatus, an edible fungal strain, was developed to improve the harvesting efficiency of microalgae. The results show that Pleurotus ostreatus pellets cultured under 100 rpm agitation resulted in higher harvesting efficiency than pellets cultured under 0 rpm and 150 rpm agitation. Lower pH of the Chlorella sp. suspension resulted in higher harvesting efficiency. The maximum recovery efficiency reached 64.86% in 150 mins. The above process could be used to achieve low cost, flocculant-free harvesting of microalgae as feedstock for feed or food production.
Collapse
Affiliation(s)
- Shanshan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and MOE Biomass Energy Center, Nangchang University, Nanchang 330013, PR China
| | - Haobin Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Mengling Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and MOE Biomass Energy Center, Nangchang University, Nanchang 330013, PR China
| | - Andy Min
- Center for Biorefining, and Bioproducts and Biosystems Engineering Department, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN 55108, USA
| | - Wenkui Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Roger Ruan
- Center for Biorefining, and Bioproducts and Biosystems Engineering Department, University of Minnesota, 1390 Eckles Ave, Saint Paul, MN 55108, USA.
| |
Collapse
|
18
|
Wei C, Huang Y, Liao Q, Fu Q, Xia A, Sun Y. The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density. BIORESOURCE TECHNOLOGY 2018; 249:713-719. [PMID: 29091857 DOI: 10.1016/j.biortech.2017.10.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 05/21/2023]
Abstract
Different from current harvesting methods, the aim of this study was to concentrate microalgae by removing the medium with polyacrylic superabsorbent polymers (PSAPs). This method can concentrate freshwater microalgae Chlorella sp. at a relatively high biomass concentration of 90.23 g L-1. Without further dewatering, the concentrated microalgae can be directly used to produce biofuels by oil extraction or fermentation. The kinetic characteristics of PSAPs swelling in different solutions were investigated. The results indicate that the negative influence on absorbency caused by ionic strength was greater than microalgae concentration. Compared with the diffusion part, water absorbed by the relaxation of PSAPs was dominant and accounted for over 97%. Equilibrium absorbed water equations under different microalgae concentration were fitted and could provide guide to quantifiably concentrate microalgae. Increasing temperature decreased the absorbency of PSAPs, while, the absorption and desorption rate were increased. Moreover, the absorbency remained at 91.45% after recycling three times.
Collapse
Affiliation(s)
- Chaoyang Wei
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|