1
|
Manzoor K, Khan SJ, Khan A, Abbasi H, Zaman WQ. Woven-fiber microfiltration coupled with anaerobic forward osmosis membrane bioreactor treating textile wastewater: Use of fertilizer draw solutes for direct fertigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Liu Q, Bui XT, Hoang NB. Bio-membrane integrated systems for nitrogen recovery from wastewater in circular bioeconomy. CHEMOSPHERE 2022; 289:133175. [PMID: 34875297 DOI: 10.1016/j.chemosphere.2021.133175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Wastewater contains a significant amount of recoverable nitrogen. Hence, the recovery of nitrogen from wastewater can provide an option for generating some revenue by applying the captured nitrogen to producing bio-products, in order to minimize dangerous or environmental pollution consequences. The circular bio-economy can achieve greater environmental and economic sustainability through game-changing technological developments that will improve municipal wastewater management, where simultaneous nitrogen and energy recovery are required. Over the last decade, substantial efforts were undertaken concerning the recovery of nitrogen from wastewater. For example, bio-membrane integrated system (BMIS) which integrates biological process and membrane technology, has attracted considerable attention for recovering nitrogen from wastewater. In this review, current research on nitrogen recovery using the BMIS are compiled whilst the technologies are compared regarding their energy requirement, efficiencies, advantages and disadvantages. Moreover, the bio-products achieved in the nitrogen recovery system processes are summarized in this paper, and the directions for future research are suggested. Future research should consider the quality of recovered nitrogenous products, long-term performance of BMIS and economic feasibility of large-scale reactors. Nitrogen recovery should be addressed under the framework of a circular bio-economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, PR China.
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Bich Hoang
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
Abbasi H, Khan SJ, Manzoor K, Adnan M. Optimization of nutrient rich solution for direct fertigation using novel side stream anaerobic forward osmosis process to treat textile wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113691. [PMID: 34530367 DOI: 10.1016/j.jenvman.2021.113691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The current study focused on the performance of a lab scale side stream anaerobic fertilizer drawn forward osmosis (An-FDFO) setup and optimization of nutrient rich solution to achieve sustainable water reuse from high strength synthetic textile wastewater. Three fertilizer draw solutes including Mono Ammonium Phosphate (MAP), Ammonium Sulphate (SOA) and Mono Potassium Phosphate (MKP) were blended in six different ratios with total molar concentration not exceeding 1 M. Among six blended draw solutions (DS), combination with high concentration of SOA have shown highest flux and combination with high concentration of MKP have shown highest reverse solute flux, while those with high concentration of MAP remain moderate both in flux and RSF. During long term runs, SOA: MKP (0.75: 0.25 M) showed longest filtration duration of 217 h in Run 1, with highest initial flux of 8.29 LMH and minimum dilution factor to achieve final nutrients concentration fit for direct fertigation, followed by Run 3 MAP: SOA: MKP (0.2: 0.6: 0.2 M) and then Run 2 MAP: MKP (0.75: 0.25). Moreover, deterioration of mixed liquor characteristics occurs in membrane tank due to high RSF. Similarly, the same inhibitory effect of reverse salt on biogas production was also assessed through Bio-Methane Potential experiments. However, Anaerobic Continuous Stirring Tank Reactor exhibited high performance efficacy, highlighting the importance of side stream submerged configuration in forward osmosis (FO) process.
Collapse
Affiliation(s)
- Hassam Abbasi
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Kamran Manzoor
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Muhammad Adnan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
4
|
Removal and Fouling Influence of Microplastics in Fertilizer Driven Forward Osmosis for Wastewater Reclamation. MEMBRANES 2021; 11:membranes11110845. [PMID: 34832074 PMCID: PMC8620803 DOI: 10.3390/membranes11110845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Insufficient removal of microplastics (MPs) and nanoplastics (NPs) may exert negative effects on the environment and human health during wastewater reclamation. The fertilizer-driven forward osmosis (FDFO) is an emerging potential technology to generate high-quality water for irrigation of hydroponic systems. In this study, the removal of MPs/NPs by the FDFO process together with their impact on FDFO membrane fouling was investigated, due to FDFO’s low molecular weight cut-off and energy requirement by using fertilizer as draw solution. Plastic particles with two different sizes (100 nm and 1 μm) and extracellular polymers released by real wastewater bacteria were utilized as model compounds for FDFO performance comparison. Results show that FDFO membrane system could generate high-quality irrigation water with only fertilizer, completely removing extracellular polymers, MPs and NPs from wastewater. It was found that the MPs and NPs themselves do not cause a significant membrane fouling. Moreover, it could help to reduce the membrane fouling caused by extracellular substances. That is probably because MPs and NPs helped to form a loose and porous fouling layer. Therefore, the FDFO process could be a long-term stable (low fouling) process for the reclamation of wastewater with high-quality requirements.
Collapse
|
5
|
Schneider C, Evangelio Oñoro A, Hélix-Nielsen C, Fotidis IA. Forward-osmosis anaerobic-membrane bioreactors for brewery wastewater remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Yang YL, Wu Y, Lu YX, Cai Y, He Z, Yang XL, Song HL. A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 320:124300. [PMID: 33129093 DOI: 10.1016/j.biortech.2020.124300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/26/2023]
Abstract
Hybrid osmotic membrane bioreactor (OMBR) takes advantage of the cooperation of varying biological or desalination processes and can achieve NEWS (nutrient-energy-water-solute) recovery from wastewater. However, a lack of universal parameters hinders our understanding. Herein, system configurations and new parameters are systematically investigated to help better evaluate recovery performance. High-quality water can be produced in reverse osmosis/membrane distillation-based OMBRs, but high operation cost limits their application. Although bioelectrochemical system (BES)/electrodialysis-based OMBRs can effectively achieve solute recovery, operation parameters should be optimized. Nutrients can be recovered from various wastewater by porous membrane-based OMBRs, but additional processes increase operation cost. Electricity recovery can be achieved in BES-based OMBRs, but energy balances are negative. Although anaerobic OMBRs are energy-efficient, salinity accumulation limits methane productions. Additional efforts must be made to alleviate membrane fouling, control salinity accumulation, optimize recovery efficiency, and reduce operation cost. This review will accelerate hybrid OMBR development for real-world applications.
Collapse
Affiliation(s)
- Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
7
|
Liu J, Zhang L, Zhang P, Zhou Y. Quorum quenching altered microbial diversity and activity of anaerobic membrane bioreactor (AnMBR) and enhanced methane generation. BIORESOURCE TECHNOLOGY 2020; 315:123862. [PMID: 32702577 DOI: 10.1016/j.biortech.2020.123862] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
A facultative bacterium Microbacterium sp. (QQ strain) was found significantly mitigated membrane biofouling and also increased methane production. It was found genera Nitrospira, norank-c-Bacterodetes vadinHA17, Trichococcus and family Anaerolineaceae were likely responsible for membrane biofouling. The presence of QQ strain increased the total abundance of fermentative and acetogenic genera by 0.61% and 379.61%, respectively, but had a minor effect on the abundance of methanogens. The increased methane production was likely due to the strengthened methanogenic activity and more available substrates. Homo-acetogenic Treponema was enriched (9.01%) in the presence of QQ strain suggesting that apart from hydrogenotrophic methanogenic pathway, extra CH4 could be also produced from the additional acetate synthesized via homo-acetogenic pathway. This study advances knowledge about the effects of QQ strain on microbial communities, microbiota biofouling behavior and anaerobic fermentation process in AnMBRs.
Collapse
Affiliation(s)
- Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Panyue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
8
|
Cong Nguyen N, Cong Duong H, Chen SS, Thi Nguyen H, Hao Ngo H, Guo W, Quang Le H, Cong Duong C, Thuy Trang L, Hoang Le A, Thanh Bui X, Dan Nguyen P. Water and nutrient recovery by a novel moving sponge - Anaerobic osmotic membrane bioreactor - Membrane distillation (AnOMBR-MD) closed-loop system. BIORESOURCE TECHNOLOGY 2020; 312:123573. [PMID: 32470825 DOI: 10.1016/j.biortech.2020.123573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
For the first time, a novel sponge-based moving bed-anaerobic osmosis membrane bioreactor/membrane distillation (AnOMBR/MD) system using mixed Na3PO4/EDTA-2Na as the draw solution was employed to treat wastewater for enhanced water flux and reduced membrane fouling. Results indicated that the moving sponge-AnOMBR/MD system obtained a stable water flux of 4.01 L/m2 h and less membrane fouling for a period lasting 45 days. Continuous moving sponge around the FO module is the main mechanism for minimizing membrane fouling during the 45-day AnOMBR operation. The proposed system's nutrient removal was almost 100%, thus showing the superiority of simultaneous FO and MD membranes. Nutrient recovery from the MF permeate was best when solution pH was controlled to 9.5, whereby 17.4% (wt/wt) of phosphorus was contained in precipitated components. Moreover, diluted draw solute following AnOMBR was effectively regenerated using the MD process with water flux above 2.48 L/m2 h and salt rejection > 99.99%.
Collapse
Affiliation(s)
| | | | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, ROC
| | - Hau Thi Nguyen
- Faculty of Chemistry and Environment, Dalat University, Dalat, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | - Huy Quang Le
- Faculty of Chemistry and Environment, Dalat University, Dalat, Viet Nam; Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, ROC
| | - Chinh Cong Duong
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, ROC
| | - Le Thuy Trang
- Faculty of Environment and Chemical Engineering, Duy Tan University, Viet Nam
| | - Anh Hoang Le
- Faculty of Environment, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Xuan Thanh Bui
- Vietnam National University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Phuoc Dan Nguyen
- Centre de Asiatique de Recherche sur l'Eau, Ho Chi Minh City University- National University-HCM, Viet Nam
| |
Collapse
|
9
|
Wu Y, Cai Y, Lu YX, Zhang LM, Yang XL, Song HL, Yang YL. Bioelectrochemically-assisted nitrogen removal in osmotic membrane bioreactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:330-338. [PMID: 32941174 DOI: 10.2166/wst.2020.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrogen removal in osmosis membrane bioreactor (OMBR) is important to its applications but remains a challenge. In this study, a bioelectrochemically-assisted (BEA) operation was integrated into the feed side of OMBRs to enhance nitrogen removal, and sodium acetate was served as a draw solute and supplementary carbon source for the growth of denitrifying bacteria due to reversed-solute. The effects of operation mode and influent ammonium (NH4 +) concentration were systematically examined. Compared to a conventional OMBR, the integrated BEA-OMBR achieved higher total nitrogen removal efficiency of 98.13%, and chemical oxygen demand removal efficiency of 95.83% with the influent NH4 +-N concentration of 39 mg L-1. The sequencing analyses revealed that ammonia-oxidizing bacteria (0-0.04%), nitrite-oxidizing bacteria (0-0.16%), and denitrifying bacteria (1.98-8.65%) were in abundance of the microbial community in the feed/anode side of integrated BEA-OMBR, and thus BEA operation increased the diversity of the microbial community in OMBR. Future research will focus on improving nitrogen removal from a high ammonium strength wastewater by looping anolyte effluent to the cathode. These findings have demonstrated that BEA operation can be an effective approach to improve nitrogen removal in OMBRs toward sustainable wastewater treatment.
Collapse
Affiliation(s)
- You Wu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China E-mail:
| | - Yun Cai
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China E-mail:
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China E-mail:
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China E-mail: ; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China E-mail:
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China E-mail:
| |
Collapse
|
10
|
Gao Y, Fang Z, Chen C, Zhu X, Liang P, Qiu Y, Zhang X, Huang X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. BIORESOURCE TECHNOLOGY 2020; 307:123254. [PMID: 32247274 DOI: 10.1016/j.biortech.2020.123254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Sewage can become a valuable source if its treatment is re-oriented for recovery. An anaerobic forward osmosis membrane bioreactor (AnOMBR) was developed for real municipal sewage treatment to investigate performance, biogas production, flux change and mixed liquor characteristics. The AnOMBR had a good treatment capacity with removal ratio of chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus more than 96%, 88%, 89% and almost 100%. Although high DS concentration increased the initial flux, it caused rapid decline and poor recoverability of FO membrane flux. Low DS concentration led to too long hydraulic retention time, thus resulting in a low reactor efficiency. Additionally, it was observed that salt, protein, polysaccharide and humic acid were all accumulated in the reactor, which was not conducive to stable long-term operation. Based on the characteristics of membrane fouling, salt accumulation and AnOMBR performance, the optimal DS of 1 M NaCl solution was selected.
Collapse
Affiliation(s)
- Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Zhou Fang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Cheng Chen
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xianzheng Zhu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Kim Y, Li S, Phuntsho S, Xie M, Shon HK, Ghaffour N. Understanding the organic micropollutants transport mechanisms in the fertilizer-drawn forward osmosis process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109240. [PMID: 31310933 DOI: 10.1016/j.jenvman.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
We systematically investigated the transport mechanisms of organic micropollutants (OMPs) in a fertilizer-drawn forward osmosis (FDFO) membrane process. Four representative OMPs, i.e., atenolol, atrazine, primidone, and caffeine, were chosen for their different molecular weights and structural characteristics. All the FDFO experiments were conducted with the membrane active layer on the feed solution (FS) side using three different fertilizer draw solutions (DS): potassium chloride (KCl), monoammonium phosphate (MAP), and diammonium phosphate (DAP) due to their different properties (i.e., osmotic pressure, diffusivity, viscosity and solution pH). Using KCl as the DS resulted in both the highest water flux and the highest reverse solute flux (RSF), while MAP and DAP resulted in similar water fluxes with varying RSF. The pH of the FS increased with DAP as the DS due to the reverse diffusion of NH4+ ions from the DS toward the FS, while for MAP and DAP DS, the pH of the FS was not impacted. The OMPs transport behavior (OMPs flux) was evaluated and compared with a simulated OMPs flux obtained via the pore-hindrance transport model to identify the effects of the OMPs structural properties. When MAP was used as DS, the OMPs flux was dominantly influenced by the physicochemical properties (i.e., hydrophobicity and surface charge). Those OMPs with positive charge and more hydrophobic, exhibited higher forward OMP fluxes. With DAP as the DS, the more hydrated FO membrane (caused by increased pH) as well as the enhanced RSF hindered OMPs transport through the FO membrane. With KCl as DS, the structural properties of the OMPs were dominant factors in the OMPs flux, however the higher RSF of the KCl draw solute may likely hamper the OMPs transport through the membrane especially those with higher MW (e.g., atenolol). The pore-hindrance model can be instrumental in understanding the effects of the hydrodynamic properties and the surface properties on the OMPs transport behaviors.
Collapse
Affiliation(s)
- Youngjin Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Haibin Road #1121, Nansha District, Guangzhou, China
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia.
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Zhao J, Li Y, Pan S, Tu Q, Zhu H. Performance of a forward osmotic membrane bioreactor for anaerobic digestion of waste sludge with increasing solid concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:239-246. [PMID: 31176985 DOI: 10.1016/j.jenvman.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
A forward osmotic membrane bioreactor for sludge anaerobic digestion (ad-OMBR) could realize high-solid digestion via drawing moisture out by forward osmosis (FO). Methane production and microbial community evolution were monitored in an ad-OMBR as the total solids (TS) content was gradually increased. With magnesium chloride (MgCl2) and cellulose triacetate (CTA) membrane as a draw solution and FO membrane, respectively, the ad-OMBR exhibited better performance than the conventional digester, with higher solid content, organic degradation and methane content in biogas. The conductivity of the ad-OMBR did not increase, potentially because of the formation of struvite crystals aided by the reverse-fluxed Mg2+ ions. Microbial diversity increased along with the increase in solid content based on the Shannon index, while the most operational taxonomic units were obtained in the 8% TS sludge Although phylum Firmicutes decreased when the TS content was raised to 11%, the relative abundance of Proteobacteria, Chloroflexi, Actinobacteria, and Bacteroidetes, which could also degrade organic matter, increased with increasing TS in ad-OMBR. FO membrane fouling in ad-OMBR was highly reversible.
Collapse
Affiliation(s)
- Jing Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yunqian Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shuang Pan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qianqian Tu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Gao Y, Fang Z, Liang P, Zhang X, Qiu Y, Kimura K, Huang X. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: Focus on the impact of salt and ammonia nitrogen. BIORESOURCE TECHNOLOGY 2019; 276:204-210. [PMID: 30634163 DOI: 10.1016/j.biortech.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Sewage can become a valuable source if its treatment is re-oriented. Forward osmosis (FO) is an effective pre-treatment for concentrating solutions. A laboratory-scale anaerobic digestion (AD) bioreactor was setup for the treatment of concentrated real sewage by FO membrane to investigate the removal of chemical oxygen demand (COD) and biogas production. Inhibitory batch tests were carried out for the impact of NaCl and NH4+-N. Results showed that the concentrated sewage could be purified with 80% COD removal, and energy recovery could be achieved. But the process was inhibited. The results of inhibitory batch test showed that (i) when the NH4+-N concentration was lower (<200 mg/L), the biogas production was promoted, when it went high, the inhibition appeared; (ii) single existence of NaCl had negative influence on methane production; (iii) the inhibition was more severe with co-existence of NaCl and NH4+-N. The AD performance could be recovered via sludge acclimation.
Collapse
Affiliation(s)
- Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Zhou Fang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Schneider C, Rajmohan RS, Zarebska A, Tsapekos P, Hélix-Nielsen C. Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1021-1030. [PMID: 30180310 DOI: 10.1016/j.scitotenv.2018.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Forward osmosis (FO) can be used to reclaim nutrients and high-quality water from wastewater streams. This could potentially contribute towards relieving global water scarcity. Here we investigated the feasibility of extracting water from four real and four synthetic anaerobically digested effluents, using FO membranes. The goal of this study was to 1) evaluate FO membrane performance in terms of water flux and nutrient rejection 2) examine the methane yield that can be achieved and 3) analyse FO membrane fouling. Out of the four tested real anaerobically digested effluents, swine manure and potato starch wastewater achieved the highest combined average FO water flux (>3 liter per square meter per hour (LMH) with 0.66 M MgCl2 as initial draw solution concentration) and methane yield (>300 mL CH4 per gram of organic waste expressed as volatile solids (VS)). Rejection of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN) and total phosphorous (TP) was high (up to 96.95%, 95.87% and 99.83%, respectively), resulting in low nutrient concentrations in the recovered water. Membrane autopsy revealed presence of organic and biological fouling on the FO membrane. However, no direct correlation between feed properties and methane yield and fouling potential was found, indicating that there is no inherent trade-off between high water flux and high methane production.
Collapse
Affiliation(s)
- Carina Schneider
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Rajath Sathyadev Rajmohan
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Agata Zarebska
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Panagiotis Tsapekos
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
15
|
Zhao J, Li Y, Pan S, Tu Q, Dang W, Wang Z, Zhu H. Effects of magnesium chloride on the anaerobic digestion and the implication on forward osmosis membrane bioreactor for sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2018; 268:700-707. [PMID: 30144745 DOI: 10.1016/j.biortech.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
This work elucidates the effects of model reversed salt MgCl2 on methane production in an anaerobic digestion bioreactor treating waste sludge. Along with MgCl2 concentration being raised stepwise, the methane production was only slightly less than in the control when MgCl2 was 20 g/L and under, and then suddenly reduced to only about 10 mL/(L·d) at a MgCl2 concentration of 30 g/L, and finally stopped when the MgCl2 concentration reached 50 g/L. However, the total relative abundance of methanogens Methanomicrobia and Methanobacteria still accounted for 84.97% of the archaeal community when MgCl2 was 50 g/L. The high correlation between live/dead cell ratio and methane production suggests that the live/dead cell ratio instead of the inhibition of methanogen might be the major cause for the halt of methane production at a magnesium chloride concentration of 50 g/L.
Collapse
Affiliation(s)
- Jing Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuang Pan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Tu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenyue Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhuo Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Abstract
Large-scale production of T1 lipase using conventional culture media is costly. To reduce the cost of production, an alternative growth medium using local resources has been developed. In this study, the growth of recombinant Escherichia coli and expression of T1 lipase were tested using different agroindustrial wastes as carbon and nitrogen sources by conventional method. Subsequently, by using central composite rotatable design (CCRD), a set of 30 experiments was generated to evaluate the effect of different parameters, including the amount of molasses (as carbon source), fish waste (as nitrogen source), NaCl, and inducer concentration on production of T1 lipase. Response surface methodology (RSM) analysis indicated that all factors had significant effects on T1 lipase production. This statistical analysis was utilised to develop a quadratic model to correlate various important variables for the growth of the recombinant strain and regulation of gene expression to the response (T1 lipase activity). Optimum conditions for T1 lipase production were observed to be 1.0 g/L of molasses, 2.29 g/L of fish waste, 3.46 g/L of NaCl, and 0.03 mM of IPTG (Isopropyl β-d-1-thiogalactopyranoside). Based on these conditions, the actual lipase activity was found to be 164.37 U/mL, which fitted well with the maximum predicted value of 172.89 U/mL. Therefore, the results demonstrated that, the statistical analysis, performed using RSM, was efficient in optimising T1 lipase production. Moreover, the optimum conditions obtained can be applied to scale up the process and minimise the cost of enzyme production.
Collapse
|
17
|
Vyrides I, Andronikou M, Kyprianou A, Modic A, Filippeti A, Yiakoumis C, Samanides CG. CO2 conversion to CH4 using Zero Valent Iron (ZVI) and anaerobic granular sludge: Optimum batch conditions and microbial pathways. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ansari AJ, Hai FI, Price WE, Ngo HH, Guo W, Nghiem LD. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery. BIORESOURCE TECHNOLOGY 2018; 260:221-226. [PMID: 29626781 DOI: 10.1016/j.biortech.2018.03.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical.
Collapse
Affiliation(s)
- Ashley J Ansari
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Huu H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia.
| |
Collapse
|