1
|
Tang Y, Ju X, Chen X, Li L. Advances in the biological production of sugar alcohols from biomass-derived xylose. World J Microbiol Biotechnol 2025; 41:110. [PMID: 40148723 DOI: 10.1007/s11274-025-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Sugar alcohols are a common class of low-calorie sweeteners. The advancement of technologies utilizing renewable resources has heightened interest in synthesizing sugar alcohols from biomass-derived xylose for cost down of process and sustainability. This review focuses on the potential of biomass-derived xylose and its effective conversion into sugar alcohols, underscoring the significance of this process in sustainable industrial applications. The two main approaches for producing sugar alcohols which include enzyme catalysis and microbial fermentation are thoroughly discussed. The microbial fermentation pathway relies on genetically engineered strains, which are modified to efficiently convert xylose into target sugar alcohols. Enzyme catalysis, on the other hand, directly converts xylose to sugar alcohols through specific reactions. In addition, strategies to improve product selectivity and reduce by-products are discussed in the paper, which are crucial for improving the economic viability and environmental sustainability of sugar alcohol production. Overall, utilizing xylose from biomass to produce sugar alcohols manifests environmental and economic benefits, indicating its substantial potential in the shift towards a low-carbon economy. Future studies may further explore cutting edge technologies to maximize the utilization of biomass-derived xylose and the sustainable production of sugar alcohols.
Collapse
Affiliation(s)
- Yue Tang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xin Ju
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xiaobao Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Liangzhi Li
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China.
| |
Collapse
|
2
|
De La Torre I, Acedos MG, Cestero JJ, Barriuso J, García JL. Engineering Xylose Isomerase and Reductase Pathways in Yarrowia lipolytica for Efficient Lipid Production. Microb Biotechnol 2025; 18:e70127. [PMID: 40087852 PMCID: PMC11909007 DOI: 10.1111/1751-7915.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Xylose is a common monosaccharide in lignocellulosic residues that Yarrowia lipolytica cannot naturally metabolise for lipid production and therefore, heterologous xylose metabolic pathways must be engineered in this yeast to facilitate its consumption. We have compared the metabolic efficiency of two xylose metabolic pathways by developing three recombinant Y. lipolytica strains: one harbouring a xylose reductase pathway, one with a xylose isomerase pathway, and one combining both pathways, and the strains were tested for xylose consumption and lipid production at different scales. The recombinant strain with the reductase pathway that was directly isolated in selective xylose medium showed the highest lipid yield, producing up to 12.8 g/L of lipids, or 43% of the biomass dry weight, without requiring any other xylose consumption adaptive evolution process. This strain achieved a lipid yield of 0.13 g lipids/g xylose, one of the highest yields in yeast reported so far using xylose as the sole carbon and energy source. Although the strain harbouring the isomerase pathway performed better under oxygen-limiting conditions and led to higher lipid intracellular accumulation, it showed a lower xylose uptake and biomass production, rendering a lower yield under non-limiting oxygen conditions. Unexpectedly, the combination of both pathways in the same strain was less effective than the use of the reductase pathway alone.
Collapse
Affiliation(s)
- Isabel De La Torre
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas. Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Miguel G. Acedos
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas. Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Advanced Biofuels and Bioproducts Unit, Department of EnergyCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)MadridSpain
| | - Juan J. Cestero
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas. Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Jorge Barriuso
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas. Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - José L. García
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas. Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
3
|
Park BR, Jeong CR, Cha M, Cha YL, Kim SY, Cho JY, Kim SJ. Sustainable Production of Shinorine from Agricultural Wastes Using Engineered Saccharomyces cerevisiae Expressing Novel d-Alanine-d-alanine Ligase from Pseudonocardia pini. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39374232 DOI: 10.1021/acs.jafc.4c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Shinorine, a compound known for its protective properties against UV radiation, is widely used in cosmetics and pharmaceuticals. Despite the construction of various recombinant Saccharomyces cerevisiae strains for shinorine production, achieving industrial-scale yields remains a challenge. In this study, genes encoding enzymes (DDGS, O-MT, and ATP-grasp enzyme) from Actinosynnema mirum were introduced into S. cerevisiae DXdT to enable the heterologous conversion of sedoheptulose 7-phosphate to mycosporine-glycine─the direct biosynthetic precursor of shinorine. Subsequently, a novel d-alanine-d-alanine ligase from Pseudonocardia pini was introduced to produce shinorine. The engineered strain (DXdT-MG-mi89-PP.ddl) produced 267.9 mg/L shinorine with a 48.6 mg/g dry cell weight (DCW) content in a medium supplemented with lignocellulosic hydrolysate derived from rice straw. Notably, the recombinant strain produced 1.7 g/L shinorine with a 79.1 mg/g DCW content from a corn steep liquor medium with a mixture of glucose and xylose. These results support the idea that sustainable shinorine production from agricultural wastes holds significant promise for industrial applications.
Collapse
Affiliation(s)
- Byeong-Ryeol Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chae-Rim Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseok Cha
- Research Center for Biological Cybernetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Lok Cha
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Soo-Yeon Kim
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Research Center for Biological Cybernetics, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
van Dyk J, Görgens JF, van Rensburg E. Enhanced ethanol production from paper sludge waste under high-solids conditions with industrial and cellulase-producing strains of Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024; 394:130163. [PMID: 38070577 DOI: 10.1016/j.biortech.2023.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Reported ethanol titres from hydrolysis-fermentation of the degraded fibres in paper sludge (PS) waste, generally obtained under fed-batch submerged conditions, can be improved through fermentation processes at high solids loadings, as demonstrated in the present study with two industrial PS wastes at enzyme dosages appropriate for solids loadings up to 40% (w/w). The industrial yeast,Saccharomyces cerevisiaestrain Ethanol Red®, was compared to two genetically engineeredS. cerevisiaestrains, namely Cellusec® 1.0 and Cellusec® 2.0, capable of xylose utilisation, and xylose utilisation and cellulase production, respectively. High-solids batch fermentations were conducted in 3 L horizontal rotating reactors and ethanol titres of 100.8 and 73.3 g/L were obtained for virgin pulp and corrugated recycle PS, respectively, at 40% (w/w) solids loading using Ethanol Red®. Xylose utilisation by Cellusec® 1.0 improved ethanol titres by up to 10.3%, while exogenous cellulolytic enzyme requirements were reduced by up to 50% using cellulase-producing Cellusec® 2.0.
Collapse
Affiliation(s)
- Janke van Dyk
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Johann F Görgens
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Eugéne van Rensburg
- Dept. of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
5
|
Wu Y, Su C, Liao Z, Zhang G, Jiang Y, Wang Y, Zhang C, Cai D, Qin P, Tan T. Sequential catalytic lignin valorization and bioethanol production: an integrated biorefinery strategy. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:8. [PMID: 38245804 PMCID: PMC10800047 DOI: 10.1186/s13068-024-02459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND The effective valorization of lignin and carbohydrates in lignocellulose matrix under the concept of biorefinery is a primary strategy to produce sustainable chemicals and fuels. Based on the reductive catalytic fractionation (RCF), lignin in lignocelluloses can be depolymerized into viscous oils, while the highly delignified pulps with high polysaccharides retention can be transformed into various chemicals. RESULTS A biorefinery paradigm for sequentially valorization of the main components in poplar sawdust was constructed. In this process, the well-defined low-molecular-weight phenols and bioethanol were co-generated by tandem chemo-catalysis in the RCF stage and bio-catalysis in fermentation stage. In the RCF stage, hydrogen transfer reactions were conducted in one-pot process using Raney Ni as catalyst, while the isopropanol (2-PrOH) in the initial liquor was served as a hydrogen donor and the solvent for lignin dissolution. Results indicated the proportion of the 2-PrOH in the initial liquor of RCF influenced the chemical constitution and yield of the lignin oil, which also affected the characteristics of the pulps and the following bioethanol production. A 67.48 ± 0.44% delignification with 20.65 ± 0.31% of monolignols yield were realized when the 2-PrOH:H2O ratio in initial liquor was 7:3 (6.67 wt% of the catalyst loading, 200 °C for 3 h). The RCF pulp had higher carbohydrates retention (57.96 ± 2.78 wt%), which was converted to 21.61 ± 0.62 g/L of bioethanol with a yield of 0.429 ± 0.010 g/g in fermentation using an engineered S. cerevisiae strain. Based on the mass balance analysis, 104.4 g of ethanol and 206.5 g of lignin oil can be produced from 1000 g of the raw poplar sawdust. CONCLUSIONS The main chemical components in poplar sawdust can be effectively transformed into lignin oil and bioethanol. The attractive results from the biorefinery process exhibit great promise for the production of valuable biofuels and chemicals from abundant lignocellulosic materials.
Collapse
Affiliation(s)
- Yilu Wu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zicheng Liao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gege Zhang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
6
|
Jeon GB, Lee HJ, Park JP, Park K, Choi CH, Kim SK. Efficient production of glutathione in Saccharomyces cerevisiae via a synthetic isozyme system. Biotechnol J 2023; 18:e2200398. [PMID: 36326163 DOI: 10.1002/biot.202200398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, has multiple beneficial effects on human health. Previous studies have focused on producing glutathione in Saccharomyces cerevisiae by overexpressing γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), which are the rate-limiting enzymes involved in the glutathione biosynthetic pathway. However, the production yield and titer of glutathione remain low due to the feedback inhibition on GSH1. To overcome this limitation, a synthetic isozyme system consisting of a novel bifunctional enzyme (GshF) from Gram-positive bacteria possessing both GSH1 and GSH2 activities, in addition to GSH1/GSH2, was introduced into S. cerevisiae, as GshF is insensitive to feedback inhibition. Given the HSP60 chaperonin system mismatch between bacteria and S. cerevisiae, co-expression of Group-I HSP60 chaperonins (GroEL and GroES) from Escherichia coli was required for functional expression of GshF. Among various strains constructed in this study, the SKSC222 strain capable of synthesizing glutathione with the synthetic isozyme system produced 240 mg L-1 glutathione with glutathione content and yield of 4.3% and 25.6 mgglutathione /gglucose , respectively. These values were 6.6-, 4.9-, and 4.3-fold higher than the corresponding values of the wild-type strain. In a glucose-limited fed-batch fermentation, the SKSC222 strain produced 2.0 g L-1 glutathione in 67 h. Therefore, this study highlights the benefits of the synthetic isozyme system in enhancing the production titer and yield of value-added chemicals by engineered strains of S. cerevisiae.
Collapse
Affiliation(s)
- Gi-Beom Jeon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Hyun-Jae Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| |
Collapse
|
7
|
Kim SR, Cha M, Kim T, Song S, Kang HJ, Jung Y, Cho JY, Moh SH, Kim SJ. Sustainable Production of Shinorine from Lignocellulosic Biomass by Metabolically Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15848-15858. [PMID: 36475725 DOI: 10.1021/acs.jafc.2c07218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mycosporine-like amino acids (MAAs) have been used in cosmetics and pharmaceuticals. The purpose of this work was to develop yeast strains for sustainable and economical production of MAAs, especially shinorine. First, genes involved in MAA biosynthetic pathway from Actinosynnema mirum were introduced into Saccharomyces cerevisiae for heterologous shinorine production. Second, combinatorial expression of wild and mutant xylose reductase was adopted in the engineered S. cerevisiae to facilitate xylose utilization in the pentose phosphate pathway. Finally, the accumulation of sedoheptulose 7-phosphate (S7P) was attempted by deleting transaldolase-encoding TAL1 in the pentose phosphate pathway to increase carbon flux toward shinorine production. In fed-batch fermentation, the engineered strain (DXdT-M) produced 751 mg/L shinorine in 71 h. Ultimately, 54 mg/L MAAs was produced by DXdT-M from rice straw hydrolysate. The results suggest that shinorine production by S. cerevisiae might be a promising process for sustainable production and industrial applications.
Collapse
Affiliation(s)
- So-Rim Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseok Cha
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Taeok Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sihoon Song
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology and Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Younghoon Jung
- School of Food Science and Biotechnology and Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Hyun Moh
- Bio-FD&C Co., Ltd., Incheon 21990, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
8
|
Liu L, Jin M, Huang M, Zhu Y, Yuan W, Kang Y, Kong M, Ali S, Jia Z, Xu Z, Xiao W, Cao L. Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn Hydrolysates. Front Bioeng Biotechnol 2021; 9:655272. [PMID: 33748094 PMCID: PMC7973232 DOI: 10.3389/fbioe.2021.655272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
The reported haploid Saccharomyces cerevisiae strain F106 can utilize xylose for ethanol production. After a series of XR and/or XDH mutations were introduced into F106, the XR-K270R mutant was found to outperform others. The corresponding haploid, diploid, and triploid strains were then constructed and their fermentation performance was compared. Strains F106-KR and the diploid produced an ethanol yield of 0.45 and 0.48 g/g total sugars, respectively, in simulated corn hydrolysates within 36 h. Using non-detoxicated corncob hydrolysate as the substrate, the ethanol yield with the triploid was approximately sevenfold than that of the diploid at 40°C. After a comprehensive evaluation of growth on corn stover hydrolysates pretreated with diluted acid or alkali and different substrate concentrations, ethanol yields of the triploid strain were consistently higher than those of the diploid using acid-pretreatment. These results demonstrate that the yeast chromosomal copy number is positively correlated with increased ethanol production under our experimental conditions.
Collapse
Affiliation(s)
- Lulu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yixuan Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Meilin Kong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Sajid Ali
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zefang Jia
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
9
|
Recent insights, applications and prospects of xylose reductase: a futuristic enzyme for xylitol production. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03674-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Evaluating the Engineered Saccharomyces cerevisiae With High Spermidine Contents for Increased Tolerance to Lactic, Succinic, and Malic Acids and Increased Xylose Fermentation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Crystal structure of a novel xylose isomerase from Streptomyces sp. F-1 revealed the presence of unique features that differ from conventional classes. Biochim Biophys Acta Gen Subj 2020; 1864:129549. [DOI: 10.1016/j.bbagen.2020.129549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
|
12
|
Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee SM. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:12. [PMID: 31993090 PMCID: PMC6975041 DOI: 10.1186/s13068-019-1641-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. RESULTS In this study, we developed a powerful mixed-sugar co-fermenting strain of S. cerevisiae, XUSEA, with improved xylose conversion capacity during simultaneous glucose/xylose co-fermentation. To reinforce xylose catabolism, the overexpression target in the pentose phosphate pathway was selected using a DNA assembler method and overexpressed increasing xylose consumption and ethanol production by twofold. The performance of the newly engineered strain with improved xylose catabolism was further boosted by elevating fermentation temperature and thus significantly reduced the co-fermentation time by half. Through combined efforts of reinforcing the pathway of xylose catabolism and elevating the fermentation temperature, XUSEA achieved simultaneous co-fermentation of lignocellulosic hydrolysates, composed of 39.6 g L-1 glucose and 23.1 g L-1 xylose, within 24 h producing 30.1 g L-1 ethanol with a yield of 0.48 g g-1. CONCLUSIONS Owing to its superior co-fermentation performance and ability for further engineering, XUSEA has potential as a platform in a lignocellulosic biorefinery toward realizing a more economical and sustainable process for large-scale bioethanol production.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
13
|
Myers KS, Riley NM, MacGilvray ME, Sato TK, McGee M, Heilberger J, Coon JJ, Gasch AP. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast. PLoS Genet 2019; 15:e1008037. [PMID: 30856163 PMCID: PMC6428351 DOI: 10.1371/journal.pgen.1008037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/21/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Microbes can be metabolically engineered to produce biofuels and biochemicals, but rerouting metabolic flux toward products is a major hurdle without a systems-level understanding of how cellular flux is controlled. To understand flux rerouting, we investigated a panel of Saccharomyces cerevisiae strains with progressive improvements in anaerobic fermentation of xylose, a sugar abundant in sustainable plant biomass used for biofuel production. We combined comparative transcriptomics, proteomics, and phosphoproteomics with network analysis to understand the physiology of improved anaerobic xylose fermentation. Our results show that upstream regulatory changes produce a suite of physiological effects that collectively impact the phenotype. Evolved strains show an unusual co-activation of Protein Kinase A (PKA) and Snf1, thus combining responses seen during feast on glucose and famine on non-preferred sugars. Surprisingly, these regulatory changes were required to mount the hypoxic response when cells were grown on xylose, revealing a previously unknown connection between sugar source and anaerobic response. Network analysis identified several downstream transcription factors that play a significant, but on their own minor, role in anaerobic xylose fermentation, consistent with the combinatorial effects of small-impact changes. We also discovered that different routes of PKA activation produce distinct phenotypes: deletion of the RAS/PKA inhibitor IRA2 promotes xylose growth and metabolism, whereas deletion of PKA inhibitor BCY1 decouples growth from metabolism to enable robust fermentation without division. Comparing phosphoproteomic changes across ira2Δ and bcy1Δ strains implicated regulatory changes linked to xylose-dependent growth versus metabolism. Together, our results present a picture of the metabolic logic behind anaerobic xylose flux and suggest that widespread cellular remodeling, rather than individual metabolic changes, is an important goal for metabolic engineering.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Trey K. Sato
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Justin Heilberger
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
14
|
Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioprocess Biosyst Eng 2019; 42:883-896. [PMID: 30820665 DOI: 10.1007/s00449-019-02090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.47, 0.38 and 1.62 g/g DW/h, with an ethanol titre of 41.07 g/L and yield of 0.42 g/g. Industrial wheat straw hydrolysate fermentation resulted in maximal specific rates of glucose and xylose consumption, and ethanol production of 2.61, 0.54 and 1.38 g/g DW/h, respectively, with an ethanol titre of 54.11 g/L and yield of 0.44 g/g. These are among the best for wheat straw hydrolysate fermentation through separate hydrolysis and cofermentation.
Collapse
|
15
|
Park SH, Lee K, Jang JW, Hahn JS. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose. ACS Synth Biol 2019; 8:346-357. [PMID: 30586497 DOI: 10.1021/acssynbio.8b00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shinorine, a mycosporine-like amino acid (MAA), is a small molecule sunscreen produced in some bacteria. In this study, by introducing shinorine biosynthetic genes from cyanobacteria Nostoc punctiform into Saccharomyces cerevisiae, we successfully constructed yeast strains capable of producing shinorine. Sedoheptulose 7-phosphate (S7P), an intermediate of the pentose phosphate pathway, is a key substrate for shinorine biosynthesis. To increase the S7P pool, xylose, which is assimilated via the pentose phosphate pathway, was used as a carbon source after introducing xylose assimilation genes from Scheffersomyces stipitis into the shinorine-producing strain. The resulting xylose-fermenting strain produced a trace amount of shinorine when cells were grown in glucose, but shinorine production was dramatically increased by adding xylose in the medium. Shinorine production was further improved by modulating the pentose phosphate pathway through deleting TAL1 and overexpressing STB5 and TKL1. The final engineered strain JHYS17-4 produced 31.0 mg/L (9.62 mg/g DCW) of shinorine in the optimized medium containing 8 g/L of xylose and 12 g/L of glucose, demonstrating that S. cerevisiae is a promising host to produce this natural sunscreen material.
Collapse
Affiliation(s)
- Seong-Hee Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyusung Lee
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Jae Woo Jang
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Wang L, York SW, Ingram LO, Shanmugam KT. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2019; 273:269-276. [PMID: 30448678 DOI: 10.1016/j.biortech.2018.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Microorganisms ferment xylose at high rate only when glucose concentration in the medium falls below a critical level. Since the specific productivity of product is highest during exponential to early stationary phase of growth, a glucose utilization negative ethanologenic E. coli (strain LW419a) was constructed for high rate of xylose fermentation in combination with Turbo yeast. This co-culture fermented all the released sugars in an acid/enzyme-treated sugar cane bagasse slurry (10% solids) to an ethanol titer of 24.9 ± 0.8 g.L-1 (70% of the theoretical yield) in <30 h. Ethanol titer increased to 48.6 ± 1.04 g.L-1 (yield, 0.45 g.g-1 sugars) at a solids content of 20% and the highest rate of xylose consumption was 1.58 ± 0.21 g.L-1.h-1. This study demonstrates the potential of a co-culture of strain LW419a and yeast to rapidly ferment all the sugars in pretreated biomass slurries to ethanol at their respective highest rates.
Collapse
Affiliation(s)
- Liang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States.
| | - Sean W York
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States.
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States.
| | - K T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
17
|
Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production. Appl Microbiol Biotechnol 2018; 102:8989-9002. [PMID: 30121750 DOI: 10.1007/s00253-018-9306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
In this study, an evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production was characterized by multi-omic approaches. Genome sequencing of the HJ7-14 revealed a point mutation in the GAL83 gene (G703A) involved in the catabolite repression as well as the galactose metabolism. Cultural and transcriptional analyses of a S. cerevisiae mutant with chromosomal GAL83(G703A) indicated that the catabolite repression onto the galactose metabolism was considerably relieved in all cell growth stages. Untargeted metabolomic approach revealed that metabolic phenotypes between the control D452-2 and HJ7-14 strains were clearly discriminated in time-dependent manner. Especially in early growth stage at 6 h, the HJ7-14 showed dramatic and coordinated alteration in central carbon and amino acid metabolisms. Through metabolomic re-organization, fold changes in fatty acid metabolism and metabolites related to stress response system were also found upon glucose depletion and active galactose utilization. Multi-omic characterization using genome sequencing, transcription, and metabolome profiling clearly unveiled that the GAL83 gene mutation partially relieved glucose-dependent catabolite repression and allowed the evolved HJ7-14 to efficiently convert algal sugars to ethanol. Our finding could be applicable for engineering of S. cerevisiae able to covert red algal biomass to other biofuels and biochemicals.
Collapse
|
18
|
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|