1
|
Tsirigka A, Aggeli A, Theodosiou E, Makris AM, Karabelas AJ, Patsios SI. Model-based study of Yarrowia lipolytica cultivation on crude glycerol under different fermentation modes: Development of a membrane bioreactor process. BIORESOURCE TECHNOLOGY 2025; 417:131773. [PMID: 39549960 DOI: 10.1016/j.biortech.2024.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/02/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Batch fermentations of the wild type Yarrowia lipolytica MUCL 28849 were performed in a bench-top bioreactor to assess crucial operating conditions. A setup of carbon to nitrogen (mol/mol) ratio equal to 34, pH = 6.0 and 52 g/L of crude glycerol showed increased lipid production and complete glycerol consumption at t = 24 h, thus, selected for further process improvement. Α semi-continuous process was implemented, where a pH drop to 4.0 at 24 h, interrupted citric acid secretion without affecting lipid production. An in-situ membrane module was employed for membrane bioreactor fermentations, where yeast cells were successfully retained with minimum fouling. The membrane bioreactor fed-batch process, resulted in a high-cell-density culture reaching 49.8 g/L of dry biomass and 4.9 g/L of lipids. An unstructured model was developed and successfully simulated operation under all fermentation modes, distinguishing diverse physiological shifts.
Collapse
Affiliation(s)
- Asimina Tsirigka
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amalia Aggeli
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Anastasios J Karabelas
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Sotiris I Patsios
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece.
| |
Collapse
|
2
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
3
|
Vu DH, Mahboubi A, Root A, Heinmaa I, Taherzadeh MJ, Åkesson D. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids. MEMBRANES 2023; 13:569. [PMID: 37367773 DOI: 10.3390/membranes13060569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Volatile fatty acids (VFAs) appear to be an economical carbon feedstock for the cost-effective production of polyhydroxyalkanoates (PHAs). The use of VFAs, however, could impose a drawback of substrate inhibition at high concentrations, resulting in low microbial PHA productivity in batch cultivations. In this regard, retaining high cell density using immersed membrane bioreactor (iMBR) in a (semi-) continuous process could enhance production yields. In this study, an iMBR with a flat-sheet membrane was applied for semi-continuous cultivation and recovery of Cupriavidus necator in a bench-scale bioreactor using VFAs as the sole carbon source. The cultivation was prolonged up to 128 h under an interval feed of 5 g/L VFAs at a dilution rate of 0.15 (d-1), yielding a maximum biomass and PHA production of 6.6 and 2.8 g/L, respectively. Potato liquor and apple pomace-based VFAs with a total concentration of 8.8 g/L were also successfully used in the iMBR, rendering the highest PHA content of 1.3 g/L after 128 h of cultivation. The PHAs obtained from both synthetic and real VFA effluents were affirmed to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a crystallinity degree of 23.8 and 9.6%, respectively. The application of iMBR could open an opportunity for semi-continuous production of PHA, increasing the feasibility of upscaling PHA production using waste-based VFAs.
Collapse
Affiliation(s)
- Danh H Vu
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Andrew Root
- MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland
| | - Ivo Heinmaa
- National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | | | - Dan Åkesson
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| |
Collapse
|
4
|
Wang Y, Huang Z, Zhao M, Miao H, Shi W, Ruan W. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis. BIORESOURCE TECHNOLOGY 2022; 366:128200. [PMID: 36309178 DOI: 10.1016/j.biortech.2022.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new process for producing chloride-free snow-melting agents (CSAs) was proposed. Organic wastewater was converted to total volatile fatty acids (TVFA) by anaerobic acidogenic fermentation. The experiments for acid generation showed that the maximum TVFA concentration of 45.9 g/L was obtained at an organic loading rate of 5 g chemical oxygen demand /(L·d), and the proportion of acetic acid reached 78.8 %. Forward osmosis was used for concentrating the TVFA solution. The obtained CSAs, after evaporation and crystallization, had a better ice-melting capacity and less corrosion on metal and concrete than NaCl and CaCl2. Additionally, the damage caused by CSAs to the germination of plant seeds was significantly lesser than that caused by chloride salts. This study proposed a feasible method for the high-value conversion of organic wastewater, providing a new direction for the reuse of organic wastewater.
Collapse
Affiliation(s)
- Yijie Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou 215009, China
| |
Collapse
|
5
|
Zentou H, Abidin ZZ, Yunus R, Awang Biak DR, Abdullah Issa M, Yahaya Pudza M. Modelling of mass transfer during pervaporation of ethanol/water mixture using polydimethylsiloxane membrane. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Mazzei R, Yihdego Gebreyohannes A, Papaioannou E, Nunes SP, Vankelecom IFJ, Giorno L. Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. BIORESOURCE TECHNOLOGY 2021; 335:125248. [PMID: 33991878 DOI: 10.1016/j.biortech.2021.125248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzedfor the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR.
Collapse
Affiliation(s)
- Rosalinda Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende (Cosenza), Italy.
| | - Abaynesh Yihdego Gebreyohannes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), 23955-6900 Thuwal, Saudi Arabia.
| | - Emmaouil Papaioannou
- Engineering Department, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), 23955-6900 Thuwal, Saudi Arabia
| | - Ivo F J Vankelecom
- Membrane Technology Group, Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Lidietta Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende (Cosenza), Italy
| |
Collapse
|
7
|
Abstract
Bioethanol obtained from agro-food wastes could contribute to decrease the dependency on fossil resources, reduce the impact of fossil fuels on the environment, and mitigate the food versus fuel debate. This study is aimed to investigate the availability of residual inexpensive agro-food biomasses that could feed a second-generation bioethanol plant located in a specific area of North Eastern Italy. After the identification of all crops in the area, more than 40 agro-food residues were analyzed for their availability and compositions in terms of water, polysaccharides, and sugars potentially convertible into bioethanol. 574,166 Mg of residual wet lignocellulosic biomass corresponding to 297,325 Mg of dry material were found available for bioethanol conversion. The most promising substrates were wheat straw and vine shoots. Based on the chemical composition of residues, the potential attainable ethanol was determined. Theoretical potential ethanol production was estimated at nearly 72,000 Mg per year. This quantity extensively exceeds the minimum yearly capacity of a sustainable bioethanol plant previously identified as around 50,000 Mg of ethanol. Taken together, these results demonstrate that, in the analyzed area, agro-food residues are available in an amount that could sustain bioethanol production in a specific and restricted district. Techno-economical evaluations are in progress to assess the actual feasibility of installing a second generation bioethanol production plant in the area of interest.
Collapse
|
8
|
Fluorescence-assisted real-time study of magnetically immobilized enzyme stability in a crossflow membrane bioreactor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Jomnonkhaow U, Uwineza C, Mahboubi A, Wainaina S, Reungsang A, Taherzadeh MJ. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure. BIORESOURCE TECHNOLOGY 2021; 321:124456. [PMID: 33276207 DOI: 10.1016/j.biortech.2020.124456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Cow manure (CM) generation in large volumes has for long been considered a waste management challenge. However, the organic content of CM signals opportunities for the production of value-added bioproducts such as volatile fatty acids (VFAs) through anaerobic digestion (AD). However, a robust VFAs fermentation process requires effective methane formation inhibition and enhance VFAs recovery. In this study, thermal pretreatment was applied to inhibit methanogens for enhanced VFAs production and an immersed membrane bioreactor (iMBR) for in situ recovery of VFAs in a semi-continuous AD. Maximal VFAs yield of 0.41 g VFAs/g volatile solids (VS) was obtained from thermally-treated CM without inoculum addition. The CM was further fed to the iMBR operating at organic loading rates of 0.8-4.7 gVS/L.d. The VFAs concentration increased to 6.93 g/L by rising substrate loading to 4.7 g VS/L.d. The applied iMBR set-up was successfully used for stable long-term (114 days) VFAs production and recovery.
Collapse
Affiliation(s)
- Umarin Jomnonkhaow
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academic of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | | |
Collapse
|
10
|
Pretreatment of Mango (Mangifera indica L. Anacardiaceae) Seed Husk for Bioethanol Production by Dilute Acid Treatment and Enzymatic Hydrolysis. Appl Biochem Biotechnol 2020; 193:1338-1350. [PMID: 32888162 DOI: 10.1007/s12010-020-03387-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
One of the targets of the Sustainable Development Goals is clean and affordable energy. This is also the aim of the Biofuels Act of 2007 in the Philippines. However, this law is confronted with challenges such as the limitation of lignocellulosic feedstock, specifically available for bioethanol production. The present study sought to address the issue by exploring the potential of mango seed husk (MSH), a by-product of the mango industry, in bioethanol production. MSH is considered a waste material and its utilization also permit value-addition as this can serve as an alternative and affordable source of feedstock in energy production. Two pretreatment strategies are employed to exploit the cellulose and hemicellulose content of MSH, namely, dilute acid treatment and enzymatic hydrolysis. Results show that the %H2SO4 resulting in the highest glucose concentration and yield is 4% v/v at 95 °C hydrolysis temperature, 1:10 (w/v) solid-to-solvent ratio, and 60-min hydrolysis time. For enzymatic hydrolysis using a commercial enzyme preparation, the reaction time up to 72 h did not affect glucose concentration and yield at the following conditions: 50 °C hydrolysis temperature, 150 rpm, pH 5.0, 10% solids loading, and 4% enzyme loading. This could be attributed to the lignin and non-structural compounds present in MSHs. However, a combined process strategy of dilute acid pretreatment followed by enzymatic hydrolysis in the pretreatment of MSH contributes to an increased concentration and yield of sugars in the hydrolysates, which is advantageous for bioethanol production. Graphical Abstract.
Collapse
|
11
|
Mahboubi A, Elyasi S, Doyen W, De Wever H, Taherzadeh MJ. Concentration-driven reverse membrane bioreactor for the fermentation of highly inhibitory lignocellulosic hydrolysate. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A. An overview on bioethanol production from lignocellulosic feedstocks. CHEMOSPHERE 2020; 242:125080. [PMID: 31675581 DOI: 10.1016/j.chemosphere.2019.125080] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Lignocellulosic ethanol has been proposed as a green alternative to fossil fuels for many decades. However, commercialization of lignocellulosic ethanol faces major hurdles including pretreatment, efficient sugar release and fermentation. Several processes were developed to overcome these challenges e.g. simultaneous saccharification and fermentation (SSF). This review highlights the various ethanol production processes with their advantages and shortcomings. Recent technologies such as singlepot biorefineries, combined bioprocessing, and bioenergy systems with carbon capture are promising. However, these technologies have a lower technology readiness level (TRL), implying that additional efforts are necessary before being evaluated for commercial availability. Solving energy needs is not only a technological solution and interlinkage of various factors needs to be assessed beyond technology development.
Collapse
Affiliation(s)
- Manju Toor
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion - 7505101, Israel
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125 001, Haryana, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
13
|
Mahboubi A, Uwineza C, Doyen W, De Wever H, Taherzadeh MJ. Intensification of lignocellulosic bioethanol production process using continuous double-staged immersed membrane bioreactors. BIORESOURCE TECHNOLOGY 2020; 296:122314. [PMID: 31671329 DOI: 10.1016/j.biortech.2019.122314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Processing complexities associated with different lignocellulosic bioethanol production stages have hindered reaching full commercial capacity. Therefore, in this study efforts were made to remediate some issues associated with hydrolysis and fermentation, by the integration of immersed membrane bioreactors (iMBRs) into lignocellulosic bioethanol production process. In this regards, double-staged continuous saccharification-filtration and co-fermentation-filtration of wheat straw slurry was conducted using iMBRs at filtration fluxes up to 51.0 l.m-2.h-1 (LMH). The results showed a stable long-term (264 h) continuous hydrolysis-filtration and fermentation-filtration with effective separation of lignin-rich solids (up to 70% lignin) from hydrolyzed sugars, and separation of yeast cells from bioethanol stream at an exceptional filtration performance at 21.9 LMH. Moreover, the effect of factors such as filtration flux, medium quality and backwashing on fouling and cake-layer formation was studied. The results confirmed the process intensification potentials of iMBRs in tackling commonly faced technical obstacles in lignocellulosic bioethanol production.
Collapse
Affiliation(s)
- A Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium.
| | - C Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - W Doyen
- Mixed Matrix Material Innovations BVBA, B-2160 Wommelgem, Belgium
| | - H De Wever
- Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium
| | - M J Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| |
Collapse
|
14
|
Continuous production of bioethanol from sugarcane bagasse and downstream purification using membrane integrated bioreactor. Catal Today 2019. [DOI: 10.1016/j.cattod.2017.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioprocess Biosyst Eng 2019; 42:883-896. [PMID: 30820665 DOI: 10.1007/s00449-019-02090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.47, 0.38 and 1.62 g/g DW/h, with an ethanol titre of 41.07 g/L and yield of 0.42 g/g. Industrial wheat straw hydrolysate fermentation resulted in maximal specific rates of glucose and xylose consumption, and ethanol production of 2.61, 0.54 and 1.38 g/g DW/h, respectively, with an ethanol titre of 54.11 g/L and yield of 0.44 g/g. These are among the best for wheat straw hydrolysate fermentation through separate hydrolysis and cofermentation.
Collapse
|
16
|
Mulko L, Pereyra JY, Rivarola CR, Barbero CA, Acevedo DF. Improving the retention and reusability of Alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. Int J Biol Macromol 2019; 122:1253-1261. [DOI: 10.1016/j.ijbiomac.2018.09.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
|
17
|
Wainaina S, Parchami M, Mahboubi A, Horváth IS, Taherzadeh MJ. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. BIORESOURCE TECHNOLOGY 2019; 274:329-334. [PMID: 30529480 DOI: 10.1016/j.biortech.2018.11.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Volatile fatty acids (VFAs) are the key intermediates from anaerobic digestion (AD) process that can be a platform to synthesize products of higher value than biogas. However, some obstacles still exist that prevent large-scale production and application of VFAs, key among them being the difficulty in recovering the acids from the fermentation medium and low product yields. In this study, a novel anaerobic immersed membrane bioreactor (iMBR) with robust cleaning capabilities, which incorporated frequent backwashing to withstand the complex AD medium, was designed and applied for production and in situ recovery of VFAs. The iMBR was fed with food waste and operated without pH control, achieving a high yield of 0.54 g VFA/g VSadded. The continuous VFA recovery process in the iMBR was investigated for 40 days at OLRs of 2 gVS/L/d and 4 gVS/L/d without significant change in the permeate flux at a maximum suspended solids concentration of 31 g/L.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | | | |
Collapse
|
18
|
Xue D, Zeng X, Gong C, Lin D, Yao S. A cold adapt and ethanol tolerant endoglucanase from a marine Bacillus subtilis. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Removal of Bacterial Contamination from Bioethanol Fermentation System Using Membrane Bioreactor. FERMENTATION 2018. [DOI: 10.3390/fermentation4040088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A major issue hindering efficient industrial ethanol fermentation from sugar-based feedstock is excessive unwanted bacterial contamination. In industrial scale fermentation, reaching complete sterility is costly, laborious, and difficult to sustain in long-term operation. A physical selective separation of a co-culture of Saccharomyces cerevisiae and an Enterobacter cloacae complex from a buffer solution and fermentation media at dilution rates of 0.1–1 1/h were examined using an immersed membrane bioreactor (iMBR). The effect of the presence of yeast, inoculum size, membrane pore size, and surface area, backwashing and dilution rate on bacteria removal were assessed by evaluating changes in the filtration conditions, medium turbidity, and concentration of compounds and cell biomass. The results showed that using the iMBR with dilution rate of 0.5 1/h results in successful removal of 93% of contaminating bacteria in the single culture and nearly complete bacteria decontamination in yeast-bacteria co-culture. During continuous fermentation, application of lower permeate fluxes provided a stable filtration of the mixed culture with enhanced bacteria washout. This physical selective separation of bacteria from yeast can enhance final ethanol quality and yields, process profitability, yeast metabolic activity, and decrease downstream processing costs.
Collapse
|
20
|
Gebreyohannes AY, Dharmjeet M, Swusten T, Mertens M, Verspreet J, Verbiest T, Courtin CM, Vankelecom IFJ. Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes. BIORESOURCE TECHNOLOGY 2018; 263:532-540. [PMID: 29778024 DOI: 10.1016/j.biortech.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMRSP). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction. Due to in-situ biocatalysis, there was limited filtration resistance. Simultaneous separation of the product helped to avoid enzyme product inhibition, achieve constant reaction rate over time and 50% higher enzyme efficiency than batch reactor. Stable enzyme immobilization and the ability to keep enzyme in the system for long period helped to achieve continuous productivity at very low enzyme but high solid loading, while also reducing the extent of membrane fouling. Hence, the BMRSP paves a path for sustainable production of bioethanol from the cheaply available lignocellulose.
Collapse
Affiliation(s)
- Abaynesh Yihdego Gebreyohannes
- Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium
| | | | - Tom Swusten
- Molecular Imaging and Photonics, Faculty of Bioengineering Sciences, KU Leuven, Celestijnenlaan 200d - Box 2425, 3001 Leuven, Belgium
| | - Matthias Mertens
- Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Faculty of Bioengineering Sciences, KU Leuven, Kasteelpark Arenberg 22, PO Box 2463, 3001 Leuven, Belgium
| | - Thierry Verbiest
- Molecular Imaging and Photonics, Faculty of Bioengineering Sciences, KU Leuven, Celestijnenlaan 200d - Box 2425, 3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Faculty of Bioengineering Sciences, KU Leuven, Kasteelpark Arenberg 22, PO Box 2463, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium.
| |
Collapse
|
21
|
Mahboubi A, Lundin M, Doyen W, De Wever H, Taherzadeh MJ. Diffusion-based reverse membrane bioreactor for simultaneous bioconversion of high-inhibitor xylose-glucose media. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes. Appl Microbiol Biotechnol 2018; 102:7293-7308. [DOI: 10.1007/s00253-018-9194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|
23
|
Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. BIORESOURCE TECHNOLOGY 2018; 253:343-354. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mengyu Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|