1
|
Deng H, Xu W, Zhang D, Li X, Shi J. Recent Advances in Application of Polyoxometalates in Lignocellulose Pretreatment and Transformation. Polymers (Basel) 2023; 15:polym15102401. [PMID: 37242976 DOI: 10.3390/polym15102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lignocellulose, composed of cellulose, hemicellulose, and lignin, holds immense promise as a renewable resource for the production of sustainable chemicals and fuels. Unlocking the full potential of lignocellulose requires efficient pretreatment strategies. In this comprehensive review, efforts were taken to survey the latest developments in polyoxometalates (POMs)-assisted pretreatment and conversion of lignocellulosic biomass. An outstanding finding highlighted in this review is that the deformation of the cellulose structure from I to II accompanied by the removal of xylan/lignin through the synergistic effect of ionic liquids (ILs) and POMs resulted in a significant increase in glucose yield and improved cellulose digestibility. Furthermore, successful integration of POMs with deep eutectic solvents (DES) or γ-valerolactone/water (GVL/water) systems has demonstrated efficient lignin removal, opening avenues for advanced biomass utilization. This review not only presents the key findings and novel approaches in POMs-based pretreatment but also addresses the current challenges and prospects for large-scale industrial implementation. By offering a comprehensive assessment of the progress in this field, this review serves as a valuable resource for researchers and industry professionals aiming to harness the potential of lignocellulosic biomass for sustainable chemical and fuel production.
Collapse
Affiliation(s)
- Haoyu Deng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| |
Collapse
|
2
|
Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022. [DOI: 10.3390/catal12060615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth in population and thereby increased industrialization to meet its requirement, has elevated significantly the demand for energy resources. Depletion of fossil fuel and environmental sustainability issues encouraged the exploration of alternative renewable eco-friendly fuel resources. Among major alternative fuels, bio-ethanol produced from lignocellulosic biomass is the most popular one. Lignocellulosic biomass is the most abundant renewable resource which is ubiquitous on our planet. All the plant biomass is lignocellulosic which is composed of cellulose, hemicellulose and lignin, intricately linked to each other. Filamentous fungi are known to secrete a plethora of biomass hydrolyzing enzymes. Mostly these enzymes are inducible, hence the fungi secrete them economically which causes challenges in their hyperproduction. Biomass’s complicated structure also throws challenges for which pre-treatments of biomass are necessary to make the biomass amorphous to be accessible for the enzymes to act on it. The enzymatic hydrolysis of biomass is the most sustainable way for fermentable sugar generation to convert into ethanol. To have sufficient ethanol concentration in the broth for efficient distillation, high solid loading ~<20% of biomass is desirable and is the crux of the whole technology. High solid loading offers several benefits including a high concentration of sugars in broth, low equipment sizing, saving cost on infrastructure, etc. Along with the benefits, several challenges also emerged simultaneously, like issues of mass transfer, low reaction rate due to water constrains in, high inhibitor concentration, non-productive binding of enzyme lignin, etc. This article will give an insight into the challenges for cellulase action on cellulosic biomass at a high solid loading of biomass and its probable solutions.
Collapse
|
3
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Mehta P, Rani R, Gupta R, Puri SK, Ramakumar SSV, Mathur AS. Synergistic integration of wastewaters from second generation ethanol plant for algal biofuel production: an industrially relevant option. 3 Biotech 2022; 12:34. [PMID: 35070624 PMCID: PMC8724354 DOI: 10.1007/s13205-021-03097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The present study provides an integrated method for utilizing the wastewaters from second generation (2G) ethanol pretreatment plant for microalgal biomass and lipid production. The study was conducted using a mixture of wastewaters (referred as MW; pH 4.3) generated after washing of acidic and alkaline-soaked lignocellulosic biomass prior to pretreatment process. The growth studies indicated that the thermotolerant strain of Chlorella pyrenoidosa (C. pyrenoidosa) M18 exhibited higher cell proliferation in wastewater as compared to freshwater. About 20-25% enhancement in biomass (509 mg L-1 d-1 ± 3.09) and lipid productivity (146 mg L-1 d-1 ± 1.34) was observed in MW. The total chlorophyll content and variable fluorescence by maximum fluorescence (Fv/Fm) ratio of strain cultivated in MW were 10.32 µg mL-1 and 0.75, respectively. The use of MW also enhanced the content of saturated and monounsaturated fatty acids in total lipid. The exhausted wastewater medium obtained after harvesting the auto-flocculated biomass was also reused up to three successive growth cycles. The recycled medium without any nutrient addition could be used for two subsequent rounds with enhanced biomass (520 mg L-1 d-1 ± 4.07) and lipid (157.71 mg L-1 d-1 ± 1.09) productivities. This synergistic approach of cultivating thermotolerant microalgae with wastewater from 2G pretreatment plant provides an economical setup for development of commercial algal biofuel technology.
Collapse
Affiliation(s)
- Preeti Mehta
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Rekha Rani
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Ravi Gupta
- Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Suresh Kumar Puri
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | | | | |
Collapse
|
5
|
Wang Y, Gong X, Hu X, Zhou N. Lignin monomer in steam explosion assist chemical treated cotton stalk affects sugar release. BIORESOURCE TECHNOLOGY 2019; 276:343-348. [PMID: 30641333 DOI: 10.1016/j.biortech.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 05/12/2023]
Abstract
In this study, the fermentable sugar released from cotton stalk (CS), which were pretreated by instant catapult steam explosion (SE) combined with different concentrations of strong monobasic acid (HCl), weak monobasic acid (CH3COOH), strong monobasic alkali (NaOH) and weak monobasic alkali (NH3·H2O), followed by hydrolysis in cellulase/xylanase mixed enzyme solutions, were comparably investigated. The highest yield of 73.22% of fermentable sugar yield was obtained in SE-2.4 MPa-5%NH3·H2O treated CS substrates, which was 5.14 times higher than that from enzymatic hydrolysis (EH) of raw CS. Furthermore, evaluation of monolignins content (H, G, S) in different CS samples suggested that substrates rich in guaiacyl (G) and syringyl (S) would generate a higher efficiency of enzymatic saccharification. Therefore, the slight genetic modification of monolignins for cotton stalk might be a potential way to enhance biomass degradation and transformation.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiaowu Gong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiaona Hu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Na Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|