1
|
Wang X, Jiang C, Wang H, Xu S, Zhuang X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117033. [PMID: 36603247 DOI: 10.1016/j.jenvman.2022.117033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; The Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Kakar FL, Liss SN, Elbeshbishy E. Differential impact of acidic and alkaline conditions on hydrothermal pretreatment, fermentation and anaerobic digestion of sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3077-3092. [PMID: 36579871 DOI: 10.2166/wst.2022.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion and fermentation processes in wastewater sludge treatment are limited by several factors, including the slow breakdown of complex organic matter and solubilization of solids. In this study, thermochemical pretreatment of thickened waste activated sludge using high temperature (>170 °C) was investigated to understand the impact of the pretreatment on the volatile fatty acids (VFA) production and its fractions during the fermentation process. Furthermore, the influence the thermochemical pretreatment on sludge disintegration and methane recovery was investigated. A range of acidic and alkaline conditions over the pH range of 4.5-10 was examined. Sludge (pH adjusted) was exposed to hydrothermal pretreatment (HTP) at a temperature of 170 °C for 30 min. Pretreated samples were then subjected to batch fermentation and methane potential tests which revealed that acidic and alkaline conditions resulted in increased sludge solubilization during HTP. Acidic conditions were associated with a higher VFA production yield of up to 185 mg chemical oxygen demand/g total chemical oxygen demand. Alkaline conditions led to a higher methane production yield where the maximum yield (276 mL CH4/g total chemical oxygen demandadded) was found to occur at pH 10. Therefore, alkaline sludge used for fermentation has shown technical and economic feasibility for sludge carbon recovery.
Collapse
Affiliation(s)
- Farokh Laqa Kakar
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada E-mail:
| | - Steven N Liss
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada; Department of Microbiology, Stellenbosch University, Private Bag, XI, Matieland 7602, Stellenbosch, South Africa
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada E-mail:
| |
Collapse
|
3
|
Jin W, Dai Z, Wang L, Cai F, Song C, Liu G, Chen C. Recycling different textile wastes for methane production: Morphological and microstructural changes and microbial community dynamics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:154-162. [PMID: 35952413 DOI: 10.1016/j.wasman.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The dramatic increase of textile wastes has become a major global concern, which calls for alternative practices to alleviate severe environmental pollution and waste of resources due to their improper disposal and management. Anaerobic digestion (AD) is a cost-effective and eco-friendly technology that allows the bioconversion of organic wastes into clean energy (methane), which might be potentially useful for recycling textile wastes. In this study, AD was applied to 11 commonly available textile wastes in daily life to explore their feasibility, along with the methane production efficiency, biodegradability (BD), degradation mechanism, and microbial community dynamics during AD. The results showed that all textile wastes presented an obvious decomposition from an integrated shape to fragmented pieces within 18 days except blue denim. The highest experimental methane production (EMP) of 356.0 mL/g volatile solids (VS) and BD of 78.0 % were obtained with flax. The degradation mechanism could be concluded that predominant bacteria, especially Clostridium sensu stricto, first attached to the surface of textile waste and converted its main compositions cellulose and hemicellulose into acetate as the core intermediate. Then, acetate was utilized by the major methanogen, Methanothrix, through the acetoclastic methanogenesis pathway to produce methane. This study not only enriches the understanding of textile wastes degradation mechanisms during AD and provides very useful data on methane production from commonly available textile wastes but also proposes a promising method for efficiently recycling and utilizing the diverse range of textile wastes to reduce waste pollution and generate clean energy simultaneously.
Collapse
Affiliation(s)
- Wenxiong Jin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuangqiang Dai
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry. ENERGIES 2022. [DOI: 10.3390/en15155574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The textile industry is one of the largest environmental polluters in the world. Although waste management via anaerobic digestion (AD) is a sustainable strategy to transform waste into clean energy and water recovery, the efficiency of the AD process is reduced by the presence of recalcitrant materials, chemicals, and toxic contents. This study aims to investigate the performance of several chemical, physical, and biological pretreatments applied to improve the biodegradability of textile waste. We performed a meta-analysis with 117 data extracted from 13 published articles that evaluated the efficiency of pretreatments applied to textile waste prior to AD to increase biogas production measured as methane (CH4) yield. Even though the majority of the studies have focused on the effect of chemical and physical pretreatments, our results showed that the application of biological pretreatments are more efficient and eco-friendlier. Biological pretreatments can increase CH4 yield by up to 360% with lower environmental risk and lower operating costs, while producing clean energy and a cleaner waste stream. Biological pretreatments also avoid the addition of chemicals and favor the reuse of textile wastewater, decreasing the current demand for clean water and increasing resource circularity in the textile industry.
Collapse
|
5
|
Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8030115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The revolutionary transformation from petrol-based production to bio-based production is becoming urgent in line with the rapid industrialization, depleting resources, and deterioration of the ecosystem. Bio-based production from waste-streams is offering a sustainable and environmentally friendly solution. It offers several advantages, such as a longer operation period, less competition for microorganisms, higher efficiency, and finally, lower process costs. In the current study, several bio-based products (organic acids, biomethane, biohydrogen, and metal leachates) produced under acidic conditions are reviewed regarding their microbial pathways, processes, and operational conditions. Furthermore, the limitations both in the production process and in the scale-up are evaluated with future recommendations.
Collapse
|
6
|
Zhou W, Chen X, Wang Y, Tuersun N, Ismail M, Cheng C, Li Z, Song Q, Wang Y, Ma C. Anaerobic co-digestion of textile dyeing sludge: Digestion efficiency and heavy metal stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149722. [PMID: 34425439 DOI: 10.1016/j.scitotenv.2021.149722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Anaerobic co-digestion (AcoD) has become an important mean for the stabilization and recycling of textile dyeing sludge (TDS). Using the soybean okara byproduct (SOB) as a co-digestion substrate, the effects on AcoD performance and heavy metal stability were studied. The results indicated that the optimal mixing ratio was 1:1 (calculated by total sloid). Under this condition, the SCOD removal efficiency was 64% (that of TDS alone and SOB alone were 47% and 48%, respectively) and the cumulative methane production field was 503 L CH4/kg VS (that of TDS alone and SOB alone were 435 L CH4/kg VS and 408 L CH4/kg VS, respectively). At the same time, the addition of SOB could also enhance the stability of heavy metals (Zn, Cu, Cr and Ni) in TDS. Remarkably, that could increase the steady state content nickel from 47.98% to 57.21%, while anaerobic digestion of TDS caused no increase but a decrease (only 42.13%). According to the risk assessment code analyses, the AcoD of TDS by SOB can significantly reduce the ecotoxicity risk caused by Ni, Zn and Cr.
Collapse
Affiliation(s)
- Weizhu Zhou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China,.
| | - Yu Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Nurmangul Tuersun
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashgar University, Kashgar 844006, China
| | - Muhammad Ismail
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Chen Cheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Zenan Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yiqi Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Chengyu Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China,; Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashgar University, Kashgar 844006, China
| |
Collapse
|
7
|
Xie C, Liu J, Liang J, Xie W, Evrendilek F, Li W. Optimizing environmental pollution controls in response to textile dyeing sludge, incineration temperature, CaO conditioner, and ash minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147219. [PMID: 33930813 DOI: 10.1016/j.scitotenv.2021.147219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The dynamics of heavy metal speciation and flue gas emissions during the incineration of textile dyeing sludge (TDS) were quantified as a function of four addition levels of CaO, incineration temperature, and ash minerals using thermogravimetric analysis and experimental tube furnace. The TDS incineration was most improved with the addition of 10% CaO. The increased fractions of CaO coupled with the ash minerals changed the retention behaviors of eight heavy metals. The CaO addition increased the Cu, Zn, As, and Pb retentions, did not significantly change Cr, Mn, and Cd, but decreased the Ni retention. The CaO addition enhanced the speciation stability of Cu and transferred the Cr, Cd, and As speciations to the mobile fractions. The increased temperature weakened the Zn and Pb retentions and the speciation stabilities of As and Pb and turned the Cr, Mn, Ni, Cu, Zn, and Cd speciations into the stable fractions. The CaO addition inhibited HCN, NO, NO2, COS, SO2, CS2, and SO3 emissions from the TDS incineration. Neural network-based multi-response optimization was implemented to determine the optimal operational temperature for the TDS incineration and the reduction of the 12 gas emissions. The range of 640-755 °C with(out) 5% CaO appeared to be most beneficial in terms of both environmental quality and economic efficiency.
Collapse
Affiliation(s)
- Candie Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jialin Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wuming Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fatih Evrendilek
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu 14052, Turkey
| | - Weixin Li
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Guangdong Provincial Institute of Mining Applications, Guangdong 512026, China
| |
Collapse
|
8
|
Niu C, Pan Y, Lu X, Wang S, Zhang Z, Zheng C, Tan Y, Zhen G, Zhao Y, Li YY. Mesophilic anaerobic digestion of thermally hydrolyzed sludge in anaerobic membrane bioreactor: Long-term performance, microbial community dynamics and membrane fouling mitigation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Comparing Low-Temperature Hydrothermal Pretreatments through Convective Heating versus Microwave Heating for Napier Grass Digestion. Processes (Basel) 2020. [DOI: 10.3390/pr8101221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigates the effects of convective hydrothermal pretreatment (CHTP) compared to microwave pretreatment (MWP) on the anaerobic digestion of hybrid Napier grass for biomethane production. For rapid estimation of methane yield (YCH4), enzymatic hydrolyzability (EH), whose test lasts only 2 days was used as a surrogate parameter instead of the biochemical methane potential (BMP) assay that normally takes 45–60 days. The relationship between EH and BMP was successfully modeled with satisfactory accuracy (R2 = 0.9810). From CHTP results, quadratic regression characterised by p < 0.0001 and R2 = 0.8364 shows that YCH4 increase was clearly sensitive to detention time at all CHTP temperatures. The maximal YCH4 achieved of 301.5 ± 3.0 mL CH4/gVSadd was 53.2% higher than the control. Then, MWP was employed at various power levels and microwave exposure times. Changes in lignocellulosic structure by Fourier-transform infrared spectroscopy (FTIR) and energy balance demonstrate that MWP caused more damage to plant cells, which proved more effective than CHTP. In the best conditions, approximately 50% of energy was needed for MWP to achieve the equivalent improvement in YCH4. However, CHTP is a more suitable option since waste heat, i.e., from a biogas CHP (combined heat and power) unit, could be used, as opposed to the electricity required for MWP.
Collapse
|
10
|
Avila R, Carrero E, Crivillés E, Mercader M, Vicent T, Blánquez P. Effects of low temperature thermal pretreatments in solubility and co-digestion of waste activated sludge and microalgae mixtures. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Xu H, Yun S, Wang C, Wang Z, Han F, Jia B, Chen J, Li B. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite. BIORESOURCE TECHNOLOGY 2020; 301:122753. [PMID: 31982852 DOI: 10.1016/j.biortech.2020.122753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Phosphorus content of the digestate is crucial for evaluating its fertilizer utilization in anaerobic digestion system. The vermiculite containing rich-phosphorus is firstly used as an accelerant in anaerobic batch co-digestion system of aloe peel waste and dairy manure. After introducing vermiculite, the cumulative biogas production (295.14-353.96 mL/g VS), chemical oxygen demand removal rate (45.53%-71.03%), and volatile solid removal rate (50.70%-52.76%) are remarkably higher than those of reference reactor (234.08 mL/g VS, 39.38%, 45.10%). The thermal and fertility analyses manifest the digestates with vermiculite possess superior stability, admirable fertilizer values (5.97%-6.81%), and excellent total phosphorus content (11.44-13.29 g/kg). The improved co-digestion performance can be attributed to the addition of vermiculite. This work introduces a novel approach for improving the performance of anaerobic co-digestion and the fertilizer utilization of digestate in the co-digestion systems.
Collapse
Affiliation(s)
- Hongfei Xu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Chen Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Ziqi Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Feng Han
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bo Jia
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiageng Chen
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bingjie Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
12
|
Yang M, Lu D, Yang J, Zhao Y, Zhao Q, Sun Y, Liu H, Ma J. Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions. CHEMOSPHERE 2019; 234:162-170. [PMID: 31207421 DOI: 10.1016/j.chemosphere.2019.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, both the carbon and nitrogen metabolisms of two heterotrophic nitrification bacteria were investigated under aerobic and anaerobic conditions at 2 °C. Similar catabolism and anabolism trends were observed for the two bacteria in stable experimental systems under aerobic and anaerobic conditions. Based on the nitrogen and carbon balance analysis and adenosine triphosphate (ATP) calculation, we proposed the following metabolic pathways: i) aerobic: except for microbial assimilation, the carbon and nitrogen sources were removed through respiration and nitrification, which provided energy for cell synthesis; and ii) anaerobic: the nitrification process almost stopped and most of the carbon sources decomposed into inorganic carbon, which dissolved in the medium. Based on our proposed metabolic pathways, we speculated that the nitrifying process almost stopped under anaerobic conditions and the nitrification bacteria would degrade more carbon contaminants to produce energy and maintain the cell growth. Furthermore, these bacteria may decompose the non-readily biodegradable carbon through anaerobic degradation. To verify these hypotheses, experiments with two types of synthetic wastewater were conducted: i) synthetic wastewater rich in carbon and poor in nitrogen, and higher carbon removal efficiencies of strain J and strain P (∼25%) were obtained under anaerobic conditions compared with aerobic conditions (∼19%); and ii) synthetic wastewater with recalcitrant carbon sources, and carbon removal efficiencies under anaerobic conditions were higher than those under aerobic conditions. The results of the synthetic wastewater experiments were consistent with the hypotheses and thus validated the metabolic pathways proposed for carbon and nitrogen.
Collapse
Affiliation(s)
- Mo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jiaxuan Yang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430010, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yan Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Liu X, Xu Q, Wang D, Yang Q, Wu Y, Li Y, Fu Q, Yang F, Liu Y, Ni BJ, Wang Q, Li X. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. BIORESOURCE TECHNOLOGY 2019; 281:158-167. [PMID: 30818267 DOI: 10.1016/j.biortech.2019.02.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Deterioration of anaerobic digestion can occur with the presence of polyacrylamide (PAM) in waste activated sludge, and little information on mitigating this deterioration is currently available. In this study, simultaneous mitigation of PAM negative effects and improvement of methane production was accomplished by thermal-alkaline pretreatment. Under the optimized pretreatment conditions (i.e., 75 °C, pH 11.0 for 17.5 h), the biochemical methane potential of PAM-flocculated sludge increased from 100.5 to 210.8 mL/g VS and the hydrolysis rate increased from 0.122 to 0.187 d-1. Mechanism investigations revealed that the pretreatment not only broke the large firm floccules, improved the degradation of PAM, but also facilitated the release of biodegradable organics from sludge, which thereby provided better growth environment and enough nutrients to anaerobic microbes for methane production. The activities of key enzymes responsible for methane production and PAM degradation were greatly improved in pretreated reactor, with the accumulation of acrylamide being avoided.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fan Yang
- Hunan Communication Research Institute Co, Changsha 410015, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
14
|
Anjum M, Kumar R, Abdelbasir SM, Barakat MA. Carbon nitride/titania nanotubes composite for photocatalytic degradation of organics in water and sludge: Pre-treatment of sludge, anaerobic digestion and biogas production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:495-502. [PMID: 29958131 DOI: 10.1016/j.jenvman.2018.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, carbon nitride/titania nanotubes (C3N4/TiO2 NTs) composites were synthesized for the enhanced visible light mediated photocatalytic degradation and pre-treatment of wastewater sludge for enhanced biogas production. The co-existence of C3N4 and TiO2 NTs and visible light activity was confirmed by XRD, TEM, UV-visible and PL spectroscopy. The photocatalytic performance of TiO2 NTs with 2% of melamine (precursor of C3N4), enhanced the degradation of 2-chlorophenol (2-CP) (k = 0.0176 min-1), where 96.6% removal was achieved at optimum pH 7.0 and 2-CP concentration of 30 mg/L. On the other hand, the application of C3N4/TiO2 NTs for solubilization of the rigid structure of sludge by photocatalysis released the soluble organics showing an improvement in sCOD production (4587 mg/L). Subsequently, anaerobic digestion of solubilized sludge has improved the methane production (723.4 ml kg-1 VS) by 1.37 and 1.6 times compared to that in anaerobic digestion with photolytic and raw sludge, thus showing a promising applicability for biogas production from sludge and wastewater treatment.
Collapse
Affiliation(s)
- Muzammil Anjum
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S M Abdelbasir
- Central Metallurgical R & D Institute, Helwan 11421, Cairo, Egypt
| | - M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Central Metallurgical R & D Institute, Helwan 11421, Cairo, Egypt.
| |
Collapse
|
15
|
Rajput AA, Visvanathan C. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 221:45-52. [PMID: 29793209 DOI: 10.1016/j.jenvman.2018.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/29/2018] [Accepted: 05/05/2018] [Indexed: 05/19/2023]
Abstract
Hard lignocellulosic structure of wheat straw is the main hindrance in its anaerobic digestion. Thus, a laboratory scale batch experiment was conducted to study the effect of thermal pretreatment on anaerobic digestion of wheat straw. For this purpose, different thermal pretreatment temperatures of 120, 140, 160 and 180 °C were studied and the results were compared with raw wheat straw. Significant differences in biogas production were observed at temperature higher than 160 °C. Highest biogas yield of 615 Nml/gVS and volatile solids reduction of 69% was observed from wheat straw pretreated at 180 °C. Wheat straw pretreated at 180 °C showed 53% higher biogas yield as compared to untreated. Further, FTIR analysis revealed change in chemical bonds of lignocellulosic structure of wheat straw. Modified Gompertz model was best fitted on biogas production data and predicted shorter lag phase time and higher biogas production as the pretreatment temperature increased. Overall, change in lignocellulosic structure and increase in cellulose content were the main reason in enhancing biogas production.
Collapse
Affiliation(s)
- Asad Ayub Rajput
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Chettiyappan Visvanathan
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Bangkok, Thailand
| |
Collapse
|
16
|
Choi JM, Han SK, Lee CY. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. BIORESOURCE TECHNOLOGY 2018; 259:207-213. [PMID: 29554601 DOI: 10.1016/j.biortech.2018.02.123] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
This study was performed to optimize thermal hydrolysis pretreatment (THP) of sewage sludge for enhanced anaerobic digestion (AD). Using the response surface methodology (RSM), the optimal conditions were found 180 °C of reaction temperature and 76 min of reaction time. Through THP under optimal conditions, high molecular substances in sewage sludge such as soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were hydrolyzed into low molecular ones without the generation of refractory compounds. The microbial community analysis revealed that relative abundances of Methanomicrobia such as Methanosarcina, Methanosaeta (acetoclastic methanogens), and Methanoculleus (hydrogenotrophic methanogens) in AD with THP were higher than those in conventional AD.
Collapse
Affiliation(s)
- Jae-Min Choi
- Department of Civil Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Sun-Kee Han
- Department of Environmental Health, Korea National Open University, Seoul 03087, Republic of Korea
| | - Chae-Young Lee
- Department of Civil Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea.
| |
Collapse
|
17
|
Li J, Zhang W, Li X, Ye T, Gan Y, Zhang A, Chen H, Xue G, Liu Y. Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature. BIORESOURCE TECHNOLOGY 2018; 247:890-896. [PMID: 30060427 DOI: 10.1016/j.biortech.2017.09.186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 06/08/2023]
Abstract
Valorization of organic-rich waste stream to lactic acid by the mixed microbial consortium has attracted tremendous research interests in recent years. In this study, thermal pretreatment was involved in co-fermentation of food waste (FW) and waste activated sludge (WAS) to enhance lactic acid production. First, sole FW was observed as the most suitable substrate employing thermal pretreatment for the generation of lactic acid. The fermentation time for reaching the maximal plateau was significantly shortened at a corresponding thermal pretreatment temperature. The mechanism study found that the enhancement of lactic acid yield was in accordance with the acceleration of solubilization and hydrolysis. Furthermore, the physicochemical characteristics of fermentative substrate and surface morphology of the fermentation mixture varied with the pretreatment temperatures. Further investigations of microbial community structure also revealed that the proportions of key microorganisms such as Bacillus and Lactobacillus were changed by the thermal pretreatment.
Collapse
Affiliation(s)
- Jun Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng 224000, China.
| | - Tingting Ye
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanfei Gan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|