1
|
Polettini A, Pomi R, Rossi A, Zonfa T, De Gioannis G, Muntoni A. Factor-based assessment of continuous bio-H 2 production from cheese whey. CHEMOSPHERE 2022; 308:136174. [PMID: 36030944 DOI: 10.1016/j.chemosphere.2022.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Despite having been widely investigated, dark fermentative H2 production from organic residues is still limited by process-related issues which may hamper the perspectives of full-scale process implementation. Such constraints are mainly due to the process complexity, which is largely affected by multiple and often mutually interacting factors. In the present work, the results of continuous fermentative H2 production experiments using synthetic cheese whey as the input substrate were used to gain detailed knowledge of the process features and identify suitable and critical operating conditions. Specifically, innovative process interpretation involved a combination of analytical characterization of the fermentation broth, mass balance calculations and statistical methods (correlation and principal component analyses) to derive systematic considerations for process characterization and scale-up. The metabolic products mainly included acetate and butyrate, which however were likely to derive (in different proportions depending on the operating conditions) from both hydrogenogenic and competing pathways. For some tests, lactate and succinate were also found to have been formed. It was observed that the main features of the process (H2 yield and rate, stability condition) were correlated with the operational and analytical parameters. The first three principal components identified by the statistical analysis were able to account for: 1) the effect of retention time and total metabolites produced; 2) biogas (H2 and CO2) generation, butyrate production and stability condition; and 3) organic loading rate and propionate production. The results suggested that the main features of hydrogenogenic fermentation can be described by a reduced set of factors that may be usefully adopted for both process monitoring and prediction purposes.
Collapse
Affiliation(s)
- A Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - R Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - A Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy.
| | - T Zonfa
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - G De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy
| | - A Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy
| |
Collapse
|
2
|
Ren W, Wu Q, Deng L, Hu Y, Guo W, Ren N. Simultaneous medium chain fatty acids production and process carbon emissions reduction in a continuous-flow reactor: Re-understanding of carbon flow distribution. ENVIRONMENTAL RESEARCH 2022; 212:113294. [PMID: 35460635 DOI: 10.1016/j.envres.2022.113294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Due to its wide application and high value, the production of medium chain fatty acids (MCFAs) from waste biomass has become one of the worldwide research hotspots. Increasing the carbon element participation from short-chain fatty acids to the form of MCFAs is also conductive to reduce the release of biogas from biological treatment process, because carbon is in the form of MCFAs instead of biogas which directly contribute to process carbon emissions reduction. However, many barriers limiting MCFAs production and application remain to be resolved. Aiming continuous MCFAs production from lactate-rich waste biomass, this study optimized the operation conditions and clarified the main limiting factors and possible mechanisms. The maximum caproic acid concentration of 2.757 g/L were obtained at the Upflow Velocity (ULV) of 1.15 m/h and pH 4.9-5.1. Caproiciproducens, Pseudoramibacter, norank_f_Eubacteriaceae, and Oscillibacter were identified to be the dominant microbial genus responsible for MCFAs production from lactate. The reduction of carbon emissions calculation was also studied in the present processes.
Collapse
Affiliation(s)
- Weitong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yanbiao Hu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
3
|
Rao R, Basak N. Fermentative molecular biohydrogen production from cheese whey: present prospects and future strategy. Appl Biochem Biotechnol 2021; 193:2297-2330. [PMID: 33608807 DOI: 10.1007/s12010-021-03528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Waste-dependent fermentative routes for biohydrogen production present a possible scenario to produce hydrogen gas on a large scale in a sustainable way. Cheese whey contains a high portion of organic carbohydrate and other organic acids, which makes it a feasible substrate for biohydrogen production. In the present review, recent research progress related to fermentative technologies, which explore the potentiality of cheese whey for biohydrogen production as an effective tool on a large scale, has been analyzed systematically. In addition, application of multiple response surface methodology tools such as full factorial design, Box-Behnken model, and central composite design during fermentative biohydrogen production to study the interactive effects of different bioprocess variables for higher biohydrogen yield in batch, fed-batch, and continuous mode is also discussed. The current paper also emphasizes computational fluid dynamics-based simulation designs, by which the substrate conversion efficiency of the cheese whey-based bioprocess and temperature distribution toward the turbulent flow of reaction liquid can be enhanced. The possible future developments toward higher process efficiency are outlined.
Collapse
Affiliation(s)
- Raman Rao
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144 011, India
| | - Nitai Basak
- Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144 011, India.
| |
Collapse
|
4
|
Asunis F, De Gioannis G, Dessì P, Isipato M, Lens PNL, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111240. [PMID: 32866754 DOI: 10.1016/j.jenvman.2020.111240] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
With an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues. This review critically analyses the different treatment options available for energy and materials recovery from cheese whey, their combinations and perspectives for implementation. Thus, instead of focusing on a specific valorisation platform, in the present review the most relevant aspects of each strategy are analysed to support the integration of different routes, in order to identify the most appropriate treatment train.
Collapse
Affiliation(s)
- Fabiano Asunis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Giorgia De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Paolo Dessì
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Marco Isipato
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Aldo Muntoni
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy; IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council - Piazza D'Armi 1, 09123, Cagliari, Italy
| | - Alessandra Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Raffaella Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Andreina Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184, Rome, Italy
| | - Daniela Spiga
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza D'Armi 1, 09123, Cagliari, Italy
| |
Collapse
|
5
|
Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. BIORESOURCE TECHNOLOGY 2020; 309:123307. [PMID: 32315913 DOI: 10.1016/j.biortech.2020.123307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The biotransformation of phytosterol to androstenedione (AD) by mycobacteria is a unique process accompanied by energy-producing. However, high intracellular ATP content can severely inhibit the efficient production of AD. In this study, a novel citrate-based ATP futile cycle (AFC) and pyruvate-based AFC were constructed for the first time. Application of AFCs reduced intracellular ATP and propionyl-CoA levels and increased NAD+/NADH ratios and cell viability. The forced consumption of ATP promotes the transcription of critical genes in propionyl-CoA metabolism. The synergistic effect of enhanced propionyl-CoA metabolism and AFC increased AD conversion yield from 60.6% to 97.3%. The AD productivity was further improved by repeated batch fermentation using untreated cane molasses. The maximum productivity was 181% higher than that of the original strain. Therefore, the strategy of combining AFC and repeated batch fermentation is a valuable tool for the efficient and low-cost production of AD and other steroidal pharmaceutical precursors.
Collapse
Affiliation(s)
- Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zehui Zan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Guiné RDPF. Evaluation of texture of cheese by-products incorporated bread. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.31919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract This work aimed to develop new breads incorporating whey residue, “sorelho”, obtained from ewe’s milk after the production of Serra da Estrela Cheese. For this, we baked three types of bread: wheat bread (control sample), bread incorporating sorelho, and another version containing additional nutritional elements. The texture was evaluated with a texturometer, using compression and perforation tests. Results showed that sorelho can be successfully incorporated in bread. The best product was the bread with sorelho plus improved nutrition, which presented good textural characteristics during a period of 24 hours. This trend was observed for all properties evaluated: hardness, chewiness, resilience, cohesiveness, springiness (compression test) and external firmness, inner firmness, stickiness, adhesiveness (perforation test). Finally, factor analysis showed: FACTOR 1 – compression textural properties; FACTOR 2 – perforation firmness properties and FACTOR 3 – perforation adhering properties, which in total explained approximately 81% of total variance.
Collapse
|
7
|
Asunis F, De Gioannis G, Isipato M, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. BIORESOURCE TECHNOLOGY 2019; 289:121722. [PMID: 31323727 DOI: 10.1016/j.biortech.2019.121722] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Batch dark fermentation tests were performed on sheep cheese whey without inoculum addition at different operating pHs, relating the type and production yields of the observed gaseous and liquid by-products to the evolution of fermentation. Cheese whey fermentation evolved over time in two steps, involving an initial conversion of carbohydrates to lactic acid, followed by the degradation of this to soluble and gaseous products including short-chain fatty acids (mainly acetic, butyric and propionic acids) and hydrogen. The operating pH affected the production kinetics and yields, as well as the fermentation pathways. By varying the duration of the fermentation process, different cheese whey exploitation strategies may be applied and oriented to the main production of lactic acid, hydrogen or other organic acids.
Collapse
Affiliation(s)
- F Asunis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy.
| | - G De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy; IGAG - CNR, Environmental Geology and Geoengineering Institute of the National Research Council, Piazza d'Armi, 09123 Cagliari, Italy
| | - M Isipato
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - A Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy; IGAG - CNR, Environmental Geology and Geoengineering Institute of the National Research Council, Piazza d'Armi, 09123 Cagliari, Italy
| | - A Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - R Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - A Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - D Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| |
Collapse
|
8
|
Show KY, Yan Y, Zong C, Guo N, Chang JS, Lee DJ. State of the art and challenges of biohydrogen from microalgae. BIORESOURCE TECHNOLOGY 2019; 289:121747. [PMID: 31285100 DOI: 10.1016/j.biortech.2019.121747] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Biohydrogen from microalgae has attracted extensive attention owing to its promising features of abundance, renewable and self sustainability. Unlike other well-established biofuels like biodiesel and bioethanol, biohydrogen from microalgae is still in the preliminary stage of development. Criticisms in microalgal biohydrogen centered on its practicality and sustainability. Various laboratory- and pilot-scale microalgal systems have been developed, and some research initiatives have exhibited potential for commercial application. This work provides a review of the state of the art of biohydrogen from microalgae. Discussions include metabolic pathways of light-driven transformation and dark fermentation, reactor schemes and system designs encompassing reactor configurations and light manipulation. Challenges, knowledge gaps and the future directions in metabolic limitations, economic and energy assessments, and molecular engineering are also delineated. Current scientific and engineering challenges of microalgal biohydrogen need to be addressed for technology leapfrog or breakthrough.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Yuegen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Chunxiang Zong
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Na Guo
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jo-Shu Chang
- Research Centre for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
9
|
Zhou X, Zhang Y, Shen Y, Zhang X, Zhang Z, Xu S, Luo J, Xia M, Wang M. Economical production of androstenedione and 9α-hydroxyandrostenedione using untreated cane molasses by recombinant mycobacteria. BIORESOURCE TECHNOLOGY 2019; 290:121750. [PMID: 31325842 DOI: 10.1016/j.biortech.2019.121750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Production of androstenedione (AD) and 9α-hydroxyandrostenedione (9α-OH-AD) by recombinant mycobacteria using untreated cane molasses and hydrolysate of mycobacterial cells (HMC) was investigated for the first time. B-vitamins feeding experiment and reverse transcription-PCR analysis showed that propionyl-CoA carboxylase (PCC) plays an important role in the phytosterol biotransformation of mycobacteria. The respective AD and 9α-OH-AD conversion ratios were increased by 2.91 and 1.48 times through coexpression of PCC and NADH dehydrogenase. The highest conversion ratios of AD and 9α-OH-AD obtained by using a co-feeding strategy of cane molasses and HMC reached 96.38% and 95.04%, respectively, and the total costs of carbon and nitrogen sources for the culture medium were reduced by 29.89% and 49.49%, respectively. Taking the results together, untreated cane molasses and HMC can be used for the economical production of steroidal pharmaceutical precursors by mycobacteria. This study offers an economical and green strategy for steroidal pharmaceutical precursor production.
Collapse
Affiliation(s)
- Xiuling Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Xiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhenjian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuangping Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China.
| |
Collapse
|
10
|
Zhao L, Han D, Yin Z, Bao M, Lu J. Biohydrogen and polyhydroxyalkanoate production from original hydrolyzed polyacrylamide-containing wastewater. BIORESOURCE TECHNOLOGY 2019; 287:121404. [PMID: 31108414 DOI: 10.1016/j.biortech.2019.121404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
This work aimed to study biohydrogen (H2) and polyhydroxyalkanoate (PHA) production from original hydrolyzed polyacrylamide (HPAM)-containing wastewater. NH4+-N from HPAM hydrolysis was removed efficiently through short-cut nitrification and anoxic ammonia oxidation (anammox). Carbon/Nitrogen (C/N) ratios of effluent reached 51-97, and TOC decreased only 2%-4%, providing potential for subsequent H2 and PHA production. The maximum yields of H2 (0.833 mL·mg-1substrate) and Volatile Fatty Acid (VFA) (465 mg·L-1) occurred at influent C/N ratio of 51. Substrate removal increased linearly with the activities of dehydrogenase and hydrogenase (R2 ≥ 0.990), and H2 yield rose exponentially with enzyme activities (R2 ≥ 0.989). The maximum PHA yield (54.2% VSS) occurred at the 42nd hour and influent C/N ratio of 97. PHA yield was positively correlated with substrate uptake. The change of H2-producing, PHA-accumulating and HPAM-degradating bacteria indicated that those functional microorganisms had synergistic effects on H2 production and substrate uptake, as well as PHA accumulation and substrate uptake.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Han
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Marques TD, Macêdo WV, Peiter FS, Bonfim AATL, Sakamoto IK, Caffaro Filho RA, Damianovic MHZ, Varesche MBA, Salomon KR, Amorim ELCD. INFLUENCE OF HYDRAULIC RETENTION TIME ON HYDROGEN PRODUCTION BY TREATING CHEESE WHEY WASTEWATER IN ANAEROBIC FLUIDIZED BED BIOREACTOR - AN APPROACH FOR DEVELOPING COUNTRIES. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190363s20190075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Baldi F, Iannelli R, Pecorini I, Polettini A, Pomi R, Rossi A. Influence of the pH control strategy and reactor volume on batch fermentative hydrogen production from the organic fraction of municipal solid waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:478-485. [PMID: 30736725 PMCID: PMC6484781 DOI: 10.1177/0734242x19826371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Three different experimental sets of runs involving batch fermentation assays were performed to evaluate the influence of the experimental conditions on biological hydrogen production from the source-separated organic fraction of municipal solid waste collected through a door-to-door system. The fermentation process was operated with and without automatic pH control, at a pH of 5.5 and 6.5, food-to-microorganism ratios of 1/3 and 1/1 (wet weight basis) and with different working volumes (0.5 and 3 L). The experimental results showed that the pH control strategy and the reactor volume did not affect the final hydrogen production yield but played an important role in determining the time evolution of the process. Indeed, although the different experimental conditions tested yielded comparable hydrogen productions (with maximum average values ranging from 68.5 to 88.5 NLH2 (kgTVSOF)-1), the automatic pH control strategy improved the process from the kinetic viewpoint resulting in a t95 reduction from an average of 34.9 h without automatic pH control to an average of 19.5 h.
Collapse
Affiliation(s)
- Francesco Baldi
- DIEF, Department of Industrial Engineering, University of Florence, Italy
| | - Renato Iannelli
- DESTEC – Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy
| | - Isabella Pecorini
- DESTEC – Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy
| | - Alessandra Polettini
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| | - Raffaella Pomi
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| | - Andreina Rossi
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| |
Collapse
|
13
|
Akhlaghi M, Boni MR, Polettini A, Pomi R, Rossi A, De Gioannis G, Muntoni A, Spiga D. Fermentative H 2 production from food waste: Parametric analysis of factor effects. BIORESOURCE TECHNOLOGY 2019; 276:349-360. [PMID: 30654168 DOI: 10.1016/j.biortech.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Factorial fermentation experiments on food waste (FW) inoculated with activated sludge (AS) were conducted to investigate the effects of pH and the inoculum-to-substrate ratio (ISR [g VSAS/g TOCFW]) on biohydrogen production. The two parameters affected the H2 yield, the fermentation rate and the biochemical pathways. The minimum and maximum yields were 41 L H2/kg TOCFW (pH = 7.5, ISR = 1.74) and 156-160 L H2/kg TOCFW (pH = 5.5, ISR = 0.58 and 1.74). The range of carbohydrates conversion into H2 was 0.37-1.45 mol H2/mol hexose, corresponding to 9.4-36.2% of the theoretical threshold. A second-order predictive model for H2 production identified an optimum region at low pHs and high ISRs, with a theoretical maximum of 168 L H2/kg TOCFW at pH = 5.5 and ISR = 1.74. The Spearman's correlation method revealed several relationships between the variables, suggesting the potentially governing metabolic pathways, which turned out to involve both hydrogenogenic pathways and competing reactions.
Collapse
Affiliation(s)
- M Akhlaghi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - M R Boni
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - A Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy.
| | - R Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - A Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - G De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - A Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - D Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy
| |
Collapse
|
14
|
Abstract
Four inocula collected from different operating facilities were tested in their hydrogenic performances by means of two biochemical hydrogen potential test set-ups using sucrose and food waste as substrates, with the aim of evaluating the influence of inoculum media in batch fermentative assays. The selected inocula were: activated sludge collected from the aerobic unit of a municipal wastewater treatment plant, digested sludge from an anaerobic reactor treating organic waste and cattle manure, digested sludge from an anaerobic reactor treating agroindustrial residues, and digested sludge from an anaerobic reactor of a municipal wastewater treatment plant. Test results, in terms of specific hydrogen production, hydrogen conversion efficiency, and volatile solids removal efficiency, were significantly dependent on the type of inoculum. Statistical analysis showed different results, indicating that findings were due to the different inocula used in the tests. In particular, assays performed with activated sludge showed the highest performances for both substrates and both experimental set-ups.
Collapse
|
15
|
Biohydrogen Production from Food Waste: Influence of the Inoculum-To-Substrate Ratio. SUSTAINABILITY 2018. [DOI: 10.3390/su10124506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, the influence of the inoculum-to-substrate ratio (ISR) on dark fermentative hydrogen production from food waste (FW) was evaluated. ISR values ranging from 0.05 to 0.25 g VSinoculum/g VSsubstrate were investigated by performing batch tests at T = 39 °C and pH = 6.5, the latter being the optimal value identified based on a previous study. The ISR was found to affect the fermentation process, clearly showing that an adequate ISR is essential in order to optimise the process kinetics and the H2 yield. An ISR of 0.14 proved to optimum, leading to a maximum H2 yield of 88.8 L H2/kg VSFW and a maximum production rate of 10.8 L H2/kg VSFW∙h. The analysis of the fermentation products indicated that the observed highest H2 production mostly derived from the typical acetate/butyrate-type fermentation.
Collapse
|
16
|
Guiné RPF, Santos C, Rocha C, Marques C, Rodrigues C, Manita F, Sousa F, Félix M, Silva S, Rodrigues S. Whey-Bread, an Improved Food Product: Evaluation of Textural Characteristics. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2018. [DOI: 10.1080/15428052.2018.1502112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Raquel P. F. Guiné
- Dep. Food Industry, Polytechnic Institute of Viseu, CI&DETS/CERNAS Research Centre, Portugal
| | - Carina Santos
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| | - Celeste Rocha
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| | | | | | - Filipa Manita
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| | - Filipe Sousa
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| | - Márcia Félix
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| | - Sílvia Silva
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| | - Susana Rodrigues
- Dep. Food Industry, Agrarian School of Viseu, IPV, Viseu, Portugal
| |
Collapse
|